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Abstract
The main purpose of this paper is to present the conditions under which every (� ,�)-deri-
vation is continuous on topological algebras such as normed algebras, Banach algebras and 
C
∗-algebras.
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1 � Introduction and preliminaries

Let A and B be two algebras, let � be a B-bimodule and let � ,� ∶ A → B be 
two mappings. A linear mapping d ∶ A → � is called a (� ,�)-derivation if 
d(ab) = d(a)�(b) + �(a)d(b) for all a, b ∈ A . If A ⊆ B and � = I = � , the identity map-
ping on A , then we reach an ordinary derivation. The main objective of this study is to 
investigate the automatic continuity of (� ,�)-derivations on some topological algebras. 
Generally, the automatic continuity of a certain class of mappings, e.g. (� ,�)-deriva-
tions, is the study of (algebraic) conditions on a category, e.g. Banach algebras, which 
guarantee that every (� ,�)-derivation is continuous. Let us give a brief background in 
this regard. The theory of automatic continuity of derivations has a long history. Results 
on automatic continuity of linear mappings defined on Banach algebras comprise a 
fruitful area of research developed during the last sixty years. The reader is referred to 
[2, 3, 14] for a deep and extensive study on this subject. In 1958, Kaplansky [11] con-
jectured that every derivation on a C∗-algebra is continuous. Two years later, Sakai [15] 
answered to this conjecture. Indeed, he proved that every derivation on a C∗-algebra is 
automatically continuous and later in 1972, Ringrose [13], by using the pioneering work 
of Bade and Curtis [1] concerning the automatic continuity of a module homomorphism 
between bimodules over C(K)-spaces, showed that every derivation from a C∗-algebra A 
into a Banach A-bimodule is automatically continuous. Also, Johnson and Sinclair [10] 
investigated the continuity of derivations on semisimple Banach algebras. In [12], it is 
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shown that if � ,� are continuous ∗-linear mappings, then every (� ,�)-derivation from a 
C∗-algebra into B(H) is automatically continuous, and in [8] the assumption of linearity 
of � ,� were deleted. Moreover, Hou et al. [9] proved that if X  is simple and � ,� are 
surjective and continuous mappings on B(X) , then every (� ,�)-derivation on B(X) is 
continuous. For more material concerning the automatic continuity of mappings, see, 
e.g. [4–6, 16].

This paper consists of two sections. The main results of the paper are presented in 
the second section. In this section, e denotes the identity element of any unital alge-
bra. First, we obtain a characterization of (� ,�)-derivations as follows: Let A and B be 
two unital algebras and let d ∶ A → B be a (� ,�)-derivation such that d(e) ∈ Inv(B) , 
where Inv(B) denotes the set of all invertible elements of B . If either [�(e), d(e)] = 0 
or [�(e), d(e)] = 0 , where [a, b] = ab − ba (a, b ∈ A) , then d(ab) = d(a)(d(e))−1d(b) for 
all a, b ∈ A . In particular, if d(e) = e , then d is a homomorphism. Using this result, 
we prove that if A and B are two topological unital algebras and d ∶ A → B is a (� ,�

)-derivation such that d(e) = e and also if we have all the conditions under which every 
homomorphism from A into B is continuous, then d, � and � are continuous map-
pings. In addition, we obtain some results concerning the continuity of (� ,�)-deriva-
tions on unital involutive topological algebras. Suppose that (A, ∗) and (B,⋆) are two 
unital, involutive topological algebras and d ∶ A → B is a (� ,�)-derivation such that 
d, � and � are (∗,⋆)-mappings and d(e) ∈ Inv(B) . Assume that either [�(e), d(e)] = 0 
or [�(e), d(e)] = 0 . If we have all the conditions under which every homomorphism 
from A into B is continuous, then d, � and � are continuous mappings. Another result 
in this regard reads as follows: Let (A, ∗) and (B,⋆) be two unital involutive algebras 
and let d

1

, d
2

∶ A → B be two (∗,⋆) − (𝜓 ,𝜙)-derivations such that d
1

(eA)d2(a0) = eB or 
d
1

(a
0

)d
2

(eA) = eB for some a
0

∈ A . Suppose that [�(a), d
2

(b)] = 0 = [�(a), d
1

(b)] for all 
a, b ∈ A . Then, the mappings � and � are linear. Moreover, suppose we have the condi-
tions under which every homomorphism from A into B is continuous. Then, d

1

 , d
2

 , � 
and � are continuous linear mappings.

2 � Main results

In this section, without further mention, e denotes the identity element of any unital 
algebra. If A is a unital algebra, Inv(A) denotes the set of all invertible elements of 
A . Let A and B be two algebras, let � be a B-bimodule and let � ,� ∶ A → B be two 
mappings. Recall that a linear mapping d ∶ A → � is called a (� ,�)-derivation if 
d(ab) = d(a)�(b) + �(a)d(b) for all a, b ∈ A . We now provide an example of this notion.

Example 2.1  Let A and B be two algebras (finite dimensional or not). It is easy to see that 
� = A × B is an algebra by the following operations:

for all a
1

, a
2

∈ A , b
1

, b
2

∈ B and � ∈ ℂ . Let F,G ∶ B → B be two mappings. Define the 
mappings d,� ,� ∶ � → � by

(a
1

, b
1

) ∙ (a
2

, b
2

) = (a
1

a
2

, b
1

b
2

);

(a
1

, b
1

) + (a
2

, b
2

) = (a
1

+ a
2

, b
1

+ b
2

);

�(a
1

, b
1

) = (�a
1

, �b
1

)
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A routine calculation shows that d is a linear (� ,�)-derivation on �.

We begin with the following theorem, which provides a characterization for (� ,�)-derivations.

Theorem 2.2  Let A and B be two unital algebras and let d ∶ A → B be a (� ,�)-derivation 
such that d(e) ∈ Inv(B) . If either [�(e), d(e)] = 0 or [�(e), d(e)] = 0 , then both � and � are 
linear mappings and d(ab) = d(a)(d(e))−1d(b) for all a, b ∈ A . In particular, if d(e) = e , 
then d is a homomorphism.

Proof  Suppose that [�(e), d(e)] = 0 . Then, it is easy to see that [�(e), (d(e))−1] = 0 . 
So, d(e) = d(e)�(e) + �(e)d(e) = d(e)(�(e) + �(e)) . This equality with the assump-
tion that d(e) is an invertible element of B implies that �(e) + �(e) = e . We have 
d(a) = d(a)�(e) + �(a)d(e) for any a ∈ A . So, d(a)(e − �(e)) = �(a)d(e) and 
consequently,

Similarly, we can get that

It follows from (2.1) and (2.2) that both � and � are linear mappings and also we have

which means that

Clearly, if d(e) = e , then d is a homomorphism. Besides, we can prove that [d(e),�(e)] = 0 . 
In view of (2.2) and (2.3), we have

Letting a = e in the above equations, we get that

d((a, b)) = (a, 0),

�((a, b)) = (
a

2

,F(b)),

�((a, b)) = (
a

2

,G(b)),

(2.1)�(a) = d(a)�(e)(d(e))−1, (a ∈ A).

(2.2)�(a) = (d(e))−1�(e)d(a), (a ∈ A).

d(ab) = d(a)�(b) + �(a)d(b)

= d(a)(d(e))−1�(e)d(b) + d(a)�(e)(d(e))−1d(b)

= d(a)(d(e))−1�(e)d(b) + d(a)(d(e))−1�(e)d(b)

= d(a)(d(e))−1(�(e) + �(e))d(b)

= d(a)(d(e))−1d(b),

(2.3)d(ab) = d(a)(d(e))−1d(b), (a, b ∈ A).

�(ab) = (d(e))−1�(e)d(ab)

= (d(e))−1�(e)d(a)(d(e))−1d(b)

= �(a)(d(e))−1d(b).

(2.4)�(b) = �(e)(d(e))−1d(b), (b ∈ A).
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Comparing (2.2) and (2.4), we obtain that �(e)(d(e))−1d(a) = (d(e))−1�(e)d(a) for all 
a ∈ A . Putting a = e in the previous equation, we get that [d(e),�(e)] = 0 . So, each of the 
equations [d(e),�(e)] = 0 or [�(e), d(e)] = 0 implies the other. 	�  ◻

In the following, there are some consequences of the previous theorem.

Corollary 2.3  Let A and B be two unital normed algebras and let d ∶ A → B be a 
(� ,�)-derivation such that d(e) ∈ Inv(B) . Suppose that either [�(e), d(e)] = 0 or 
[�(e), d(e)] = 0 . Then, the continuity of d implies the continuity of both � and �.

Proof  Using (2.1) and (2.2), we obtain the required result. 	�  ◻

In the following, we present some conditions that provide the continuity of (� ,�)-derivations.

Corollary 2.4  Let A and B be two topological unital algebras and let d ∶ A → B be a (� ,�)-derivation 
such that d(e) = e . If we have all the conditions under which every homomorphism from A into B is con-
tinuous, then d, � and � are continuous mappings.

Proof  It follows from Theorem 2.2 that d is a homomorphism from A into B . Since 
we are assuming all the conditions under which every homomorphism from A into 
B is continuous, we deduce that d is continuous. This fact along with (2.1) and 
(2.2) implies the continuity of �  and � . 	�  ◻

Remark 2.5  There are many different conditions under which a homomorphism is continu-
ous. For instance, if A is a Banach ∗-algebra and B is a C∗-algebra, then it follows from 
[3, Corollary 3.2.4] that every ∗-homomorphism � ∶ A → B is automatically continuous. 
For more material about the continuity of homomorphisms and other results, see, e.g. [2, 
Proposition 5.1.1, Theorem 5.1.8, Theorem 5.2.4, Coroolary 5.2.5].

Let A be a complex algebra. Recall that an involution over A is a map ∗∶ A → A sat-
isfying the following conditions for all a, b ∈ A and all � ∈ ℂ:

1.	 (a∗)∗ = a,
2.	 (ab)∗ = b∗a∗,
3.	 (a + b)∗ = a∗ + b∗,
4.	 (�a)∗ = �a∗.

An algebra A equipped with an involution ∗ is called an involutive algebra or ∗-alge-
bra and is denoted, as an ordered pair, by (A, ∗) . Let (A, ∗) and (B,⋆) be two involutive 
algebras. A mapping T ∶ A → B is called a (∗,⋆)-map if T(a) = (T(a∗))⋆ for all a ∈ A.

Theorem 2.6  Let (A, ∗) and (B,⋆) be two unital, involutive algebras and let d ∶ A → B be 
a (� ,�)-derivation such that d, � and � are (∗,⋆)-mappings and d(e) ∈ Inv(B) . If either 
[�(e), d(e)] = 0 or [�(e), d(e)] = 0 , then � = � + � ∶ A → B is a homomorphism and fur-
ther, d(a) = d(e)�(a) = �(a)d(e) for all a ∈ A.

Proof  It follows from Theorem 2.2 that �(e) + �(e) = e and also it follows from (2.1) that 
�(a) = d(a)�(e)(d(e))−1 for all a ∈ A . Since � and d are (∗,⋆)-mappings, we have



75A note on Automatic continuity of (Ψ, ϕ)‑derivations﻿	

1 3

Considering � = � + � and using (2.2) and (2.5), we have

It is observed that

Similarly, we get that

and so, we have

Our next task is to show that � is a homomorphism. Using (2.3) and (2.7), we get that

Left multiplication of (2.8) by (d(e))−1 and using (2.6) give

which means that � is a homomorphism. This proves the theorem, completely. 	�  ◻

An immediate corollary reads as follows:

Corollary 2.7  Suppose that (A, ∗) and (B,⋆) are two unital, involutive topological alge-
bras and d ∶ A → B is a (� ,�)-derivation such that d, � and � are (∗,⋆)-mappings and 
d(e) ∈ Inv(B) . Assume that either [�(e), d(e)] = 0 or [�(e), d(e)] = 0 . If we have all the 
conditions under which every homomorphism from A into B is continuous, then d, � and � 
are continuous mappings.

Proof  It follows from Theorem 2.6 that there exists a homomorphism � ∶ A → B such that 
d(a) = d(e)�(a) = �(a)d(e) for all a ∈ A . Since we are assuming all the conditions under 
which every homomorphism from A into B is continuous, we obtain the continuity of d. 
Now, Eqs. (2.1) and (2.2) imply the continuity of � and � , respectively. 	�  ◻

In the following, we provide an example that shows that the conditions of Theo-
rem 2.6 are not superfluous.

Example 2.8  Let (A, ∗) be an involutive algebra. Set U = ℂ
⨁

A . Consider U as an algebra 
with pointwise addition, scalar multiplication and the product defined by

U is also an involutive algebra when we define ⋆ ∶ U → U as follows:

(2.5)𝜙(a) = (𝜙(a∗))⋆ = (d(a∗)𝜙(e∗)(d(e∗))−1)⋆ = (d(e))−1𝜙(e)d(a)

(2.6)�(a) = �(a) + �(a) = (d(e))−1�(e)d(a) + (d(e))−1�(e)d(a) = (d(e))−1d(a).

(2.7)d(a) = d(e)�(a), (a ∈ A).

�(a) = d(a)(d(e))−1, (a ∈ A)

d(a) = �(a)d(e), (a ∈ A).

(2.8)d(a)(d(e))−1d(b) = d(ab) = d(e)�(ab), (a, b ∈ A).

�(ab) = (d(e))−1d(a)(d(e))−1d(b) = �(a)�(b), (a, b ∈ A).

(�, a) ∙ (�, b) = (��, �b + �a), (�, � ∈ ℂ, a, b ∈ A).

(𝛼, a)⋆ = (𝛼, a∗), (𝛼 ∈ ℂ, a ∈ A).
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Furthermore, e = (1, 0) is the identity of U . Let R, S,T ∶ A → A be ∗-linear mappings. 
We define the mappings d,� ,� ∶ U → U by d((�, a)) = (0,T(a)) , �((�, a)) = (�, S(a)) and 
�((�, a)) = (�,R(a)) for all (�, a) ∈ U . It is clear that d,� ,� are ⋆-mappings and also d 
is a (� ,�)-derivation. A straightforward verification shows that (�, a)−1 = (�−1

,

−a

�2
) for all 

(�, a) ∈ ℂ�{0}
⨁

A . So, Inv(U) = ℂ�{0}
⨁

A and obviously, d(e) ∉ Inv(U) . As can be 
seen, � = � + � is not a homomorphism and further d ≠ d(e)� . Note that if A is a normed 
algebra, then so is U with the following norm:

Theorem 2.9  Suppose that A and B are two unital algebras such that B is commutative. Let 
d ∶ A → B be a (� ,�)-derivation such that d(e) ∈ Inv(B) . Then, � = � + � ∶ A → B is a 
homomorphism and also d(a) = d(e)�(a) for all a ∈ A.

Proof  By using an argument similar to the proof of Theorem 2.6, we get the desired result. 	
� ◻

Corollary 2.10  Suppose that A and B are two unital topological algebras such that B is 
commutative. Let d ∶ A → B be a (� ,�)-derivation such that d(e) ∈ Inv(B) . If we have all 
the conditions under which every homomorphism from A into B is continuous, then d, � 
and � are continuous mappings.

Note that if A is an ∗-algebra, then a straightforward verification shows that A ×A is 
also an ∗-algebra by regarding the following structure:

1.	 (a, b) + (c, d) = (a + c, b + d);
2.	 �(a, b) = (�a, �b):
3.	 (a, b).(c, d) = (ac, bd);
4.	 (a, b)∗ = (a∗, b∗);

 for a, b ∈ A and � ∈ ℂ.
Similar to the (∗,⋆)-mappings, a bi-mapping Ω ∶ A ×A → B is a (∗,⋆)-mapping if 

Ω(a, b) = (Ω(a∗, b∗))⋆ for all a, b ∈ A . Let � ,� ∶ A → B be two mappings. A bi-linear 
mapping (i.e., linear in both arguments) Ω ∶ A ×A → B is called a left two variable 
(� ,�)-derivation if Ω(ab, c) = Ω(a, c)�(b) + �(a)Ω(b, c) for all a, b, c ∈ A . A right two 
variable (� ,�)-derivation is defined, similarly. A bi-linear mapping Ω ∶ A ×A → B is 
said to be a two variable (� ,�)-derivation if it is both a left-and a right two variable 
(� ,�)-derivation. A (∗,⋆)-left two variable (� ,�)-derivation means a left two variable 
(� ,�)-derivation Ω ∶ A ×A → B , whenever Ω , � and � are (∗,⋆)-mappings.

Theorem 2.11  Let (A, ∗) and (B,⋆) be two unital involutive algebras and let d
1

, d
2

∶ A → B 
be two (∗,⋆) − (𝜓 ,𝜙)-derivations such that d

1

(e)d
2

(a
0

) = e or d
1

(a
0

)d
2

(e) = e for some 
a
0

∈ A . Suppose that [�(a), d
2

(b)] = 0 = [�(a), d
1

(b)] for all a, b ∈ A . Then, the map-
pings � and � are linear. Moreover, suppose we have the conditions under which every 
homomorphism from A into B is continuous. Then, d

1

 , d
2

 , � and � are continuous linear 
mappings.

Proof  Define Ω ∶ A ×A → B by Ω(a, b) = d
1

(a)d
2

(b) . It is easy to see that Ω is a (∗,⋆)−
two variable (� ,�)-derivation. So, we have

‖(�, a)‖ = ��� + ‖a‖, (� ∈ ℂ, a ∈ A).
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Moreover, we know that Ω(ab, c) = Ω(a, c)�(b) + �(a)Ω(b, c) for all a, b, c ∈ A . Hence, 
we have the following expressions:

So,

for all a, b, c ∈ A . Considering �+�

2

= Σ , we see that

for all a, b, c ∈ A . Let a
0

 be an element of A such that d
1

(e)d
2

(a
0

) = e . So, it is observed 
that Ω(e, a

0

) = e . It follows from [7, Theorem 2.16] that there exists a unital homomor-
phism Θ ∶ A → B defined by Θ(a) = Ω(a, a

0

) such that Ω(a, b) = Θ(ab)(Θ(a
0

))−1 for all 
a, b ∈ A and also �(a)+�(a)

2

= Σ(a) =
Ω(a,a

0

)

2

=
Θ(a)

2

 for all a ∈ A . Consequently, Θ = � + � . 
Since d

1

(e)d
2

(a
0

) = e and [�(a), d
2

(b)] = 0 for all a, b ∈ A , we have

So, we have the following statements:

which means that

Reasoning like above, one can easily get that

Putting Θ(a) = �(a) + �(a) ( a ∈ A ) in Eq. (2.9) and using �(e) + �(e) = e , we obtain that

Ω(ab, c) =
(
Ω(b∗a∗, c∗)

)⋆

=

(
Ω(b∗, c∗)𝜓(a∗) + 𝜙(b∗)Ω(a∗, c∗)

)⋆

= 𝜓(a)Ω(b, c) + Ω(a, c)𝜙(b)

Ω(ab, c) =
1

2

Ω(ab, c) +
1

2

Ω(ab, c)

=
Ω(a, c)�(b) + �(a)Ω(b, c)

2

+
�(a)Ω(b, c) + Ω(a, c)�(b)

2

Ω(ab, c) = Ω(a, c)

(
�(b) + �(b)

2

)
+

(
�(a) + �(a)

2

)
Ω(b, c),

Ω(ab, c) = Ω(a, c)Σ(b) + Σ(a)Ω(b, c),

e = d
1

(e)d
2

(a
0

) = d
1

(e)�(e)d
2

(a
0

) + �(e)d
1

(e)d
2

(a
0

)

= d
1

(e)d
2

(a
0

)�(e) + �(e)d
1

(e)d
2

(a
0

)

= �(e) + �(e).

Θ(a) = Ω(a, a
0

) = d
1

(a)d
2

(a
0

)

= d
1

(a)�(e)d
2

(a
0

) + �(a)d
1

(e)d
2

(a
0

)

= d
1

(a)d
2

(a
0

)�(e) + �(a)

= Θ(a)�(e) + �(a),

(2.9)�(a) = Θ(a)�(e), (a ∈ A).

(2.10)�(a) = �(e)Θ(a), (a ∈ A).

(2.11)�(a) = Θ(a)�(e), (a ∈ A).
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Similarly, we get that

Since Θ is a linear mapping, the above discussion implies that both � and � are linear map-
pings and further, if �(e) = �(e) , then � = � . Now, we are going to prove that d

1

 , d
2

 , � 
and � are continuous linear mappings. Note that Θ is continuous, since we are assuming 
the conditions under which every homomorphism from A into B is continuous. This fact 
with Eqs. (2.9) and (2.10) (or (2.11) and (2.12)) imply that both � and � are continuous 
linear mappings. Now, our task is to prove that d

1

 and d
2

 are continuous. We know that 
Σ(a) =

Ω(a,a
0

)

2

=
Θ(a)

2

 for all a ∈ A . So, Σ is continuous and also Σ(e) = e

2

 . Using an argu-
ment similar to the one given above, it can be shown that

for all a, b ∈ A Thus, we have d
1

(a) = d
1

(a)Σ(e) + Σ(a)d
1

(e) =
d
1

(a)

2

+ Σ(a)d
1

(e) for all 
a ∈ A . Hence,

and similarly, we get that

Equations (2.13) and (2.14) with the continuity of Σ give that both d
1

 and d
2

 are continuous. 
Thereby, our proof is complete. 	�  ◻

An immediate consequence of Theorem 2.11 reads as follows:

Corollary 2.12  Let (A, ∗) and (B,⋆) be two unital involutive algebras and let d ∶ A → B be 
a (∗,⋆) − (𝜓 ,𝜙)-derivation such that d(e)d(a

0

) = e or d(a
0

)d(e) = e for some a
0

∈ A . Sup-
pose that [�(a), d(b)] = 0 = [�(a), d(b)] for all a, b ∈ A . Then, the mappings � and � are 
linear. Moreover, suppose we have the conditions under which every homomorphism from 
A into B is continuous. Then, d, � and � are continuous linear mappings.
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