

# A note on Automatic continuity of ( $\boldsymbol{\psi}, \boldsymbol{\phi}$ )-derivations

### Amin Hosseini<sup>1</sup>

Received: 4 May 2021 / Accepted: 4 August 2021 / Published online: 7 September 2021 © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2021

## Abstract

The main purpose of this paper is to present the conditions under which every  $(\psi, \phi)$ -derivation is continuous on topological algebras such as normed algebras, Banach algebras and  $C^*$ -algebras.

**Keywords** Derivation  $\cdot (\psi, \phi)$ -derivation  $\cdot$  Banach algebra  $\cdot$  Involutive Banach algebra  $\cdot$  Automatic continuity

Mathematics Subject Classification Primary 46H40 · Secondary 47B48

# 1 Introduction and preliminaries

Let  $\mathcal{A}$  and  $\mathcal{B}$  be two algebras, let  $\mathfrak{M}$  be a  $\mathcal{B}$ -bimodule and let  $\psi, \phi: \mathcal{A} \to \mathcal{B}$  be two mappings. A linear mapping  $d: \mathcal{A} \to \mathfrak{M}$  is called a  $(\psi, \phi)$ -derivation if  $d(ab) = d(a)\psi(b) + \phi(a)d(b)$  for all  $a, b \in \mathcal{A}$ . If  $\mathcal{A} \subseteq \mathcal{B}$  and  $\phi = I = \psi$ , the identity mapping on  $\mathcal{A}$ , then we reach an ordinary derivation. The main objective of this study is to investigate the automatic continuity of  $(\psi, \phi)$ -derivations on some topological algebras. Generally, the automatic continuity of a certain class of mappings, e.g.  $(\psi, \phi)$ -derivations, is the study of (algebraic) conditions on a category, e.g. Banach algebras, which guarantee that every  $(\psi, \phi)$ -derivation is continuous. Let us give a brief background in this regard. The theory of automatic continuity of derivations has a long history. Results on automatic continuity of linear mappings defined on Banach algebras comprise a fruitful area of research developed during the last sixty years. The reader is referred to [2, 3, 14] for a deep and extensive study on this subject. In 1958, Kaplansky [11] conjectured that every derivation on a C\*-algebra is continuous. Two years later, Sakai [15] answered to this conjecture. Indeed, he proved that every derivation on a C\*-algebra is automatically continuous and later in 1972, Ringrose [13], by using the pioneering work of Bade and Curtis [1] concerning the automatic continuity of a module homomorphism between bimodules over C(K)-spaces, showed that every derivation from a C\*-algebra  $\mathcal{A}$ into a Banach A-bimodule is automatically continuous. Also, Johnson and Sinclair [10] investigated the continuity of derivations on semisimple Banach algebras. In [12], it is

Amin Hosseini amh.math82@gmail.com; a.hosseini@kashmar.ac.ir

<sup>&</sup>lt;sup>1</sup> Kashmar Higher Education Institute, Kashmar, Iran

shown that if  $\psi$ ,  $\phi$  are continuous \*-linear mappings, then every ( $\psi$ ,  $\phi$ )-derivation from a *C*\*-algebra into *B*( $\mathcal{H}$ ) is automatically continuous, and in [8] the assumption of linearity of  $\psi$ ,  $\phi$  were deleted. Moreover, Hou et al. [9] proved that if  $\mathcal{X}$  is simple and  $\psi$ ,  $\phi$  are surjective and continuous mappings on *B*( $\mathcal{X}$ ), then every ( $\psi$ ,  $\phi$ )-derivation on *B*( $\mathcal{X}$ ) is continuous. For more material concerning the automatic continuity of mappings, see, e.g. [4–6, 16].

This paper consists of two sections. The main results of the paper are presented in the second section. In this section, e denotes the identity element of any unital algebra. First, we obtain a characterization of  $(\psi, \phi)$ -derivations as follows: Let  $\mathcal{A}$  and  $\mathcal{B}$  be two unital algebras and let  $d: \mathcal{A} \to \mathcal{B}$  be a  $(\psi, \phi)$ -derivation such that  $d(e) \in Inv(\mathcal{B})$ , where  $Inv(\mathcal{B})$  denotes the set of all invertible elements of  $\mathcal{B}$ . If either  $[\psi(e), d(e)] = 0$ or  $[\phi(e), d(e)] = 0$ , where [a, b] = ab - ba  $(a, b \in A)$ , then  $d(ab) = d(a)(d(e))^{-1}d(b)$  for all  $a, b \in A$ . In particular, if d(e) = e, then d is a homomorphism. Using this result, we prove that if  $\mathcal{A}$  and  $\mathcal{B}$  are two topological unital algebras and  $d: \mathcal{A} \to \mathcal{B}$  is a  $(\psi, \phi)$ )-derivation such that d(e) = e and also if we have all the conditions under which every homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$  is continuous, then  $d, \psi$  and  $\phi$  are continuous mappings. In addition, we obtain some results concerning the continuity of  $(\psi, \phi)$ -derivations on unital involutive topological algebras. Suppose that  $(\mathcal{A}, *)$  and  $(\mathcal{B}, \star)$  are two unital, involutive topological algebras and  $d: \mathcal{A} \to \mathcal{B}$  is a  $(\psi, \phi)$ -derivation such that d,  $\psi$  and  $\phi$  are  $(*, \star)$ -mappings and  $d(e) \in Inv(\mathcal{B})$ . Assume that either  $[\psi(e), d(e)] = 0$ or  $[\phi(e), d(e)] = 0$ . If we have all the conditions under which every homomorphism from A into B is continuous, then d,  $\psi$  and  $\phi$  are continuous mappings. Another result in this regard reads as follows: Let  $(\mathcal{A}, *)$  and  $(\mathcal{B}, \star)$  be two unital involutive algebras and let  $d_1, d_2 : \mathcal{A} \to \mathcal{B}$  be two  $(*, \star) - (\psi, \phi)$ -derivations such that  $d_1(e_{\mathcal{A}})d_2(a_0) = e_{\mathcal{B}}$  or  $d_1(a_0)d_2(e_A) = e_B$  for some  $a_0 \in A$ . Suppose that  $[\psi(a), d_2(b)] = 0 = [\phi(a), d_1(b)]$  for all  $a, b \in \mathcal{A}$ . Then, the mappings  $\psi$  and  $\phi$  are linear. Moreover, suppose we have the conditions under which every homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$  is continuous. Then,  $d_1, d_2, \psi$ and  $\phi$  are continuous linear mappings.

#### 2 Main results

In this section, without further mention, *e* denotes the identity element of any unital algebra. If  $\mathcal{A}$  is a unital algebra,  $Inv(\mathcal{A})$  denotes the set of all invertible elements of  $\mathcal{A}$ . Let  $\mathcal{A}$  and  $\mathcal{B}$  be two algebras, let  $\mathfrak{M}$  be a  $\mathcal{B}$ -bimodule and let  $\psi, \phi : \mathcal{A} \to \mathcal{B}$  be two mappings. Recall that a linear mapping  $d : \mathcal{A} \to \mathfrak{M}$  is called a  $(\psi, \phi)$ -derivation if  $d(ab) = d(a)\psi(b) + \phi(a)d(b)$  for all  $a, b \in \mathcal{A}$ . We now provide an example of this notion.

*Example 2.1* Let A and B be two algebras (finite dimensional or not). It is easy to see that  $\mathfrak{A} = A \times B$  is an algebra by the following operations:

$$(a_1, b_1) \bullet (a_2, b_2) = (a_1 a_2, b_1 b_2);$$
  

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2);$$
  

$$\lambda(a_1, b_1) = (\lambda a_1, \lambda b_1)$$

for all  $a_1, a_2 \in A$ ,  $b_1, b_2 \in B$  and  $\lambda \in \mathbb{C}$ . Let  $F, G : B \to B$  be two mappings. Define the mappings  $d, \psi, \phi : \mathfrak{A} \to \mathfrak{A}$  by

$$\begin{split} &d((a,b)) = (a,0), \\ &\psi((a,b)) = (\frac{a}{2},F(b)), \\ &\phi((a,b)) = (\frac{a}{2},G(b)), \end{split}$$

A routine calculation shows that *d* is a linear  $(\psi, \phi)$ -derivation on  $\mathfrak{A}$ .

We begin with the following theorem, which provides a characterization for  $(\psi, \phi)$ -derivations.

**Theorem 2.2** Let  $\mathcal{A}$  and  $\mathcal{B}$  be two unital algebras and let  $d : \mathcal{A} \to \mathcal{B}$  be  $a(\psi, \phi)$ -derivation such that  $d(e) \in Inv(\mathcal{B})$ . If either  $[\psi(e), d(e)] = 0$  or  $[\phi(e), d(e)] = 0$ , then both  $\phi$  and  $\psi$  are linear mappings and  $d(ab) = d(a)(d(e))^{-1}d(b)$  for all  $a, b \in \mathcal{A}$ . In particular, if d(e) = e, then d is a homomorphism.

**Proof** Suppose that  $[\phi(e), d(e)] = 0$ . Then, it is easy to see that  $[\phi(e), (d(e))^{-1}] = 0$ . So,  $d(e) = d(e)\psi(e) + \phi(e)d(e) = d(e)(\psi(e) + \phi(e))$ . This equality with the assumption that d(e) is an invertible element of  $\mathcal{B}$  implies that  $\psi(e) + \phi(e) = e$ . We have  $d(a) = d(a)\psi(e) + \phi(a)d(e)$  for any  $a \in \mathcal{A}$ . So,  $d(a)(e - \psi(e)) = \phi(a)d(e)$  and consequently,

$$\phi(a) = d(a)\phi(e)(d(e))^{-1}, \qquad (a \in \mathcal{A}).$$
 (2.1)

Similarly, we can get that

$$\psi(a) = (d(e))^{-1}\psi(e)d(a), \qquad (a \in \mathcal{A}).$$
 (2.2)

It follows from (2.1) and (2.2) that both  $\phi$  and  $\psi$  are linear mappings and also we have

$$d(ab) = d(a)\psi(b) + \phi(a)d(b)$$
  
=  $d(a)(d(e))^{-1}\psi(e)d(b) + d(a)\phi(e)(d(e))^{-1}d(b)$   
=  $d(a)(d(e))^{-1}\psi(e)d(b) + d(a)(d(e))^{-1}\phi(e)d(b)$   
=  $d(a)(d(e))^{-1}(\psi(e) + \phi(e))d(b)$   
=  $d(a)(d(e))^{-1}d(b)$ ,

which means that

$$d(ab) = d(a)(d(e))^{-1}d(b), \qquad (a, b \in \mathcal{A}).$$
(2.3)

Clearly, if d(e) = e, then *d* is a homomorphism. Besides, we can prove that  $[d(e), \psi(e)] = 0$ . In view of (2.2) and (2.3), we have

$$\psi(ab) = (d(e))^{-1}\psi(e)d(ab)$$
  
= (d(e))^{-1}\psi(e)d(a)(d(e))^{-1}d(b)  
= \psi(a)(d(e))^{-1}d(b).

Letting a = e in the above equations, we get that

$$\psi(b) = \psi(e)(d(e))^{-1}d(b), \qquad (b \in \mathcal{A}).$$
 (2.4)

П

Comparing (2.2) and (2.4), we obtain that  $\psi(e)(d(e))^{-1}d(a) = (d(e))^{-1}\psi(e)d(a)$  for all  $a \in \mathcal{A}$ . Putting a = e in the previous equation, we get that  $[d(e), \psi(e)] = 0$ . So, each of the equations  $[d(e), \psi(e)] = 0$  or  $[\phi(e), d(e)] = 0$  implies the other.

In the following, there are some consequences of the previous theorem.

**Corollary 2.3** Let  $\mathcal{A}$  and  $\mathcal{B}$  be two unital normed algebras and let  $d : \mathcal{A} \to \mathcal{B}$  be a  $(\psi, \phi)$ -derivation such that  $d(e) \in Inv(\mathcal{B})$ . Suppose that either  $[\psi(e), d(e)] = 0$  or  $[\phi(e), d(e)] = 0$ . Then, the continuity of d implies the continuity of both  $\psi$  and  $\phi$ .

**Proof** Using (2.1) and (2.2), we obtain the required result.

In the following, we present some conditions that provide the continuity of  $(\psi, \phi)$ -derivations.

**Corollary 2.4** Let A and B be two topological unital algebras and let  $d : A \to B$  be  $a(\psi, \phi)$ -derivation such that d(e) = e. If we have all the conditions under which every homomorphism from A into B is continuous, then  $d, \psi$  and  $\phi$  are continuous mappings.

**Proof** It follows from Theorem 2.2 that d is a homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$ . Since we are assuming all the conditions under which every homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$  is continuous, we deduce that d is continuous. This fact along with (2.1) and (2.2) implies the continuity of  $\psi$  and  $\phi$ .

**Remark 2.5** There are many different conditions under which a homomorphism is continuous. For instance, if  $\mathcal{A}$  is a Banach \*-algebra and  $\mathcal{B}$  is a  $C^*$ -algebra, then it follows from [3, Corollary 3.2.4] that every \*-homomorphism  $\theta : \mathcal{A} \to \mathcal{B}$  is automatically continuous. For more material about the continuity of homomorphisms and other results, see, e.g. [2, Proposition 5.1.1, Theorem 5.1.8, Theorem 5.2.4, Coroolary 5.2.5].

Let  $\mathcal{A}$  be a complex algebra. Recall that an involution over  $\mathcal{A}$  is a map  $*: \mathcal{A} \to \mathcal{A}$  satisfying the following conditions for all  $a, b \in \mathcal{A}$  and all  $\lambda \in \mathbb{C}$ :

- 1.  $(a^*)^* = a$ ,
- 2.  $(ab)^* = b^*a^*$ ,
- 3.  $(a+b)^* = a^* + b^*$ ,
- 4.  $(\lambda a)^* = \lambda a^*$ .

An algebra  $\mathcal{A}$  equipped with an involution \* is called an involutive algebra or \*-algebra and is denoted, as an ordered pair, by  $(\mathcal{A}, *)$ . Let  $(\mathcal{A}, *)$  and  $(\mathcal{B}, \star)$  be two involutive algebras. A mapping  $T : \mathcal{A} \to \mathcal{B}$  is called a  $(*, \star)$ -map if  $T(a) = (T(a^*))^*$  for all  $a \in \mathcal{A}$ .

**Theorem 2.6** Let  $(\mathcal{A}, *)$  and  $(\mathcal{B}, \star)$  be two unital, involutive algebras and let  $d : \mathcal{A} \to \mathcal{B}$  be a  $(\psi, \phi)$ -derivation such that  $d, \psi$  and  $\phi$  are  $(*, \star)$ -mappings and  $d(e) \in Inv(\mathcal{B})$ . If either  $[\psi(e), d(e)] = 0$  or  $[\phi(e), d(e)] = 0$ , then  $\theta = \phi + \psi : \mathcal{A} \to \mathcal{B}$  is a homomorphism and further,  $d(a) = d(e)\theta(a) = \theta(a)d(e)$  for all  $a \in \mathcal{A}$ .

**Proof** It follows from Theorem 2.2 that  $\phi(e) + \psi(e) = e$  and also it follows from (2.1) that  $\phi(a) = d(a)\phi(e)(d(e))^{-1}$  for all  $a \in \mathcal{A}$ . Since  $\phi$  and d are  $(*, \star)$ -mappings, we have

$$\phi(a) = (\phi(a^*))^* = (d(a^*)\phi(e^*)(d(e^*))^{-1})^* = (d(e))^{-1}\phi(e)d(a)$$
(2.5)

Considering  $\theta = \phi + \psi$  and using (2.2) and (2.5), we have

$$\theta(a) = \psi(a) + \phi(a) = (d(e))^{-1} \psi(e) d(a) + (d(e))^{-1} \phi(e) d(a) = (d(e))^{-1} d(a).$$
(2.6)

It is observed that

$$d(a) = d(e)\theta(a), \qquad (a \in \mathcal{A}). \tag{2.7}$$

Similarly, we get that

$$\theta(a) = d(a)(d(e))^{-1}, \qquad (a \in \mathcal{A})$$

and so, we have

$$d(a) = \theta(a)d(e),$$
  $(a \in \mathcal{A}).$ 

Our next task is to show that  $\theta$  is a homomorphism. Using (2.3) and (2.7), we get that

$$d(a)(d(e))^{-1}d(b) = d(ab) = d(e)\theta(ab), \qquad (a, b \in \mathcal{A}).$$
(2.8)

Left multiplication of (2.8) by  $(d(e))^{-1}$  and using (2.6) give

$$\theta(ab) = (d(e))^{-1} d(a)(d(e))^{-1} d(b) = \theta(a)\theta(b), \qquad (a, b \in \mathcal{A}).$$

which means that  $\theta$  is a homomorphism. This proves the theorem, completely.

An immediate corollary reads as follows:

**Corollary 2.7** Suppose that  $(\mathcal{A}, *)$  and  $(\mathcal{B}, \star)$  are two unital, involutive topological algebras and  $d : \mathcal{A} \to \mathcal{B}$  is a  $(\psi, \phi)$ -derivation such that  $d, \psi$  and  $\phi$  are  $(*, \star)$ -mappings and  $d(e) \in Inv(\mathcal{B})$ . Assume that either  $[\psi(e), d(e)] = 0$  or  $[\phi(e), d(e)] = 0$ . If we have all the conditions under which every homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$  is continuous, then  $d, \psi$  and  $\phi$  are continuous mappings.

**Proof** It follows from Theorem 2.6 that there exists a homomorphism  $\theta : \mathcal{A} \to \mathcal{B}$  such that  $d(a) = d(e)\theta(a) = \theta(a)d(e)$  for all  $a \in \mathcal{A}$ . Since we are assuming all the conditions under which every homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$  is continuous, we obtain the continuity of d. Now, Eqs. (2.1) and (2.2) imply the continuity of  $\phi$  and  $\psi$ , respectively.

In the following, we provide an example that shows that the conditions of Theorem 2.6 are not superfluous.

*Example 2.8* Let  $(\mathcal{A}, *)$  be an involutive algebra. Set  $\mathcal{U} = \mathbb{C} \bigoplus \mathcal{A}$ . Consider  $\mathcal{U}$  as an algebra with pointwise addition, scalar multiplication and the product defined by

$$(\alpha, a) \bullet (\beta, b) = (\alpha \beta, \alpha b + \beta a), \qquad (\alpha, \beta \in \mathbb{C}, a, b \in \mathcal{A}).$$

 $\mathcal{U}$  is also an involutive algebra when we define  $\star : \mathcal{U} \to \mathcal{U}$  as follows:

$$(\alpha, a)^{\star} = (\overline{\alpha}, a^{\star}), \qquad (\alpha \in \mathbb{C}, a \in \mathcal{A}).$$

Furthermore, e = (1,0) is the identity of  $\mathcal{U}$ . Let  $R, S, T : \mathcal{A} \to \mathcal{A}$  be \*-linear mappings. We define the mappings  $d, \psi, \phi : \mathcal{U} \to \mathcal{U}$  by  $d((\alpha, a)) = (0, T(a)), \psi((\alpha, a)) = (\alpha, S(a))$  and  $\phi((\alpha, a)) = (\alpha, R(a))$  for all  $(\alpha, a) \in \mathcal{U}$ . It is clear that  $d, \psi, \phi$  are  $\star$ -mappings and also d is a  $(\psi, \phi)$ -derivation. A straightforward verification shows that  $(\alpha, a)^{-1} = (\alpha^{-1}, \frac{-a}{a^2})$  for all  $(\alpha, a) \in \mathbb{C} \setminus \{0\} \bigoplus \mathcal{A}$ . So,  $Inv(\mathcal{U}) = \mathbb{C} \setminus \{0\} \bigoplus \mathcal{A}$  and obviously,  $d(e) \notin Inv(\mathcal{U})$ . As can be seen,  $\theta = \psi + \phi$  is not a homomorphism and further  $d \neq d(e)\theta$ . Note that if  $\mathcal{A}$  is a normed algebra, then so is  $\mathcal{U}$  with the following norm:

$$\|(\alpha, a)\| = |\alpha| + \|a\|, \qquad (\alpha \in \mathbb{C}, a \in \mathcal{A}).$$

**Theorem 2.9** Suppose that  $\mathcal{A}$  and  $\mathcal{B}$  are two unital algebras such that  $\mathcal{B}$  is commutative. Let  $d : \mathcal{A} \to \mathcal{B}$  be  $a(\psi, \phi)$ -derivation such that  $d(e) \in Inv(\mathcal{B})$ . Then,  $\theta = \phi + \psi : \mathcal{A} \to \mathcal{B}$  is a homomorphism and also  $d(a) = d(e)\theta(a)$  for all  $a \in \mathcal{A}$ .

**Proof** By using an argument similar to the proof of Theorem 2.6, we get the desired result.  $\Box$ 

**Corollary 2.10** Suppose that  $\mathcal{A}$  and  $\mathcal{B}$  are two unital topological algebras such that  $\mathcal{B}$  is commutative. Let  $d : \mathcal{A} \to \mathcal{B}$  be a  $(\psi, \phi)$ -derivation such that  $d(e) \in Inv(\mathcal{B})$ . If we have all the conditions under which every homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$  is continuous, then  $d, \psi$  and  $\phi$  are continuous mappings.

Note that if A is an \*-algebra, then a straightforward verification shows that  $A \times A$  is also an \*-algebra by regarding the following structure:

- 1. (a,b) + (c,d) = (a+c,b+d);
- 2.  $\lambda(a,b) = (\lambda a, \lambda b)$ :
- 3. (a,b).(c,d) = (ac,bd);
- 4.  $(a,b)^* = (a^*,b^*);$

for  $a, b \in \mathcal{A}$  and  $\lambda \in \mathbb{C}$ .

Similar to the  $(*, \star)$ -mappings, a bi-mapping  $\Omega : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$  is a  $(*, \star)$ -mapping if  $\Omega(a, b) = (\Omega(a^*, b^*))^*$  for all  $a, b \in \mathcal{A}$ . Let  $\psi, \phi : \mathcal{A} \to \mathcal{B}$  be two mappings. A bi-linear mapping (i.e., linear in both arguments)  $\Omega : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$  is called a left two variable  $(\psi, \phi)$ -derivation if  $\Omega(ab, c) = \Omega(a, c)\psi(b) + \phi(a)\Omega(b, c)$  for all  $a, b, c \in \mathcal{A}$ . A right two variable  $(\psi, \phi)$ -derivation is defined, similarly. A bi-linear mapping  $\Omega : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$  is said to be a two variable  $(\psi, \phi)$ -derivation if it is both a left-and a right two variable  $(\psi, \phi)$ -derivation. A  $(*, \star)$ -left two variable  $(\psi, \phi)$ -derivation means a left two variable  $(\psi, \phi)$ -derivation  $\Omega : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ , whenever  $\Omega, \psi$  and  $\phi$  are  $(*, \star)$ -mappings.

**Theorem 2.11** Let  $(\mathcal{A}, *)$  and  $(\mathcal{B}, \star)$  be two unital involutive algebras and let  $d_1, d_2 : \mathcal{A} \to \mathcal{B}$ be two  $(*, \star) - (\psi, \phi)$ -derivations such that  $d_1(e)d_2(a_0) = e$  or  $d_1(a_0)d_2(e) = e$  for some  $a_0 \in \mathcal{A}$ . Suppose that  $[\psi(a), d_2(b)] = 0 = [\phi(a), d_1(b)]$  for all  $a, b \in \mathcal{A}$ . Then, the mappings  $\psi$  and  $\phi$  are linear. Moreover, suppose we have the conditions under which every homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$  is continuous. Then,  $d_1, d_2, \psi$  and  $\phi$  are continuous linear mappings.

**Proof** Define  $\Omega$  :  $\mathcal{A} \times \mathcal{A} \to \mathcal{B}$  by  $\Omega(a, b) = d_1(a)d_2(b)$ . It is easy to see that  $\Omega$  is a  $(*, \star)$ -two variable  $(\psi, \phi)$ -derivation. So, we have

$$\begin{split} \Omega(ab,c) &= \left(\Omega(b^*a^*,c^*)\right)^{\star} \\ &= \left(\Omega(b^*,c^*)\psi(a^*) + \phi(b^*)\Omega(a^*,c^*)\right)^{\star} \\ &= \psi(a)\Omega(b,c) + \Omega(a,c)\phi(b) \end{split}$$

Moreover, we know that  $\Omega(ab, c) = \Omega(a, c)\psi(b) + \phi(a)\Omega(b, c)$  for all  $a, b, c \in A$ . Hence, we have the following expressions:

$$\Omega(ab,c) = \frac{1}{2}\Omega(ab,c) + \frac{1}{2}\Omega(ab,c)$$
$$= \frac{\Omega(a,c)\psi(b) + \phi(a)\Omega(b,c)}{2} + \frac{\psi(a)\Omega(b,c) + \Omega(a,c)\phi(b)}{2}$$

So,

$$\Omega(ab,c) = \Omega(a,c) \left(\frac{\psi(b) + \phi(b)}{2}\right) + \left(\frac{\psi(a) + \phi(a)}{2}\right) \Omega(b,c),$$

for all  $a, b, c \in A$ . Considering  $\frac{\psi+\phi}{2} = \Sigma$ , we see that  $\Omega(ab, c) = \Omega(a, c)\Sigma(b) + \Sigma(a)\Omega(b, c)$ ,

for all 
$$a, b, c \in A$$
. Let  $a_0$  be an element of  $A$  such that  $d_1(e)d_2(a_0) = e$ . So, it is observed that  $\Omega(e, a_0) = e$ . It follows from [7, Theorem 2.16] that there exists a unital homomorphism  $\Theta : A \to B$  defined by  $\Theta(a) = \Omega(a, a_0)$  such that  $\Omega(a, b) = \Theta(ab)(\Theta(a_0))^{-1}$  for all  $a, b \in A$  and also  $\frac{\psi(a) + \phi(a)}{2} = \Sigma(a) = \frac{\Omega(a, a_0)}{2} = \frac{\Theta(a)}{2}$  for all  $a \in A$ . Consequently,  $\Theta = \phi + \psi$ . Since  $d_1(e)d_2(a_0) = e$  and  $[\psi(a), d_2(b)] = 0$  for all  $a, b \in A$ , we have

$$\begin{split} e &= d_1(e)d_2(a_0) = d_1(e)\psi(e)d_2(a_0) + \phi(e)d_1(e)d_2(a_0) \\ &= d_1(e)d_2(a_0)\psi(e) + \phi(e)d_1(e)d_2(a_0) \\ &= \psi(e) + \phi(e). \end{split}$$

So, we have the following statements:

$$\begin{split} \Theta(a) &= \Omega(a, a_0) = d_1(a)d_2(a_0) \\ &= d_1(a)\psi(e)d_2(a_0) + \phi(a)d_1(e)d_2(a_0) \\ &= d_1(a)d_2(a_0)\psi(e) + \phi(a) \\ &= \Theta(a)\psi(e) + \phi(a), \end{split}$$

which means that

$$\phi(a) = \Theta(a)\phi(e), \qquad (a \in \mathcal{A}). \tag{2.9}$$

Reasoning like above, one can easily get that

$$\psi(a) = \psi(e)\Theta(a), \qquad (a \in \mathcal{A}).$$
(2.10)

Putting  $\Theta(a) = \psi(a) + \phi(a)$  ( $a \in A$ ) in Eq. (2.9) and using  $\psi(e) + \phi(e) = e$ , we obtain that

$$\psi(a) = \Theta(a)\psi(e), \qquad (a \in \mathcal{A}). \tag{2.11}$$

Similarly, we get that

$$\phi(a) = \phi(e)\Theta(a), \qquad (a \in \mathcal{A}). \tag{2.12}$$

Since  $\Theta$  is a linear mapping, the above discussion implies that both  $\psi$  and  $\phi$  are linear mappings and further, if  $\psi(e) = \phi(e)$ , then  $\phi = \psi$ . Now, we are going to prove that  $d_1, d_2, \psi$  and  $\phi$  are continuous linear mappings. Note that  $\Theta$  is continuous, since we are assuming the conditions under which every homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$  is continuous. This fact with Eqs. (2.9) and (2.10) (or (2.11) and (2.12)) imply that both  $\psi$  and  $\phi$  are continuous linear mappings. Now, our task is to prove that  $d_1$  and  $d_2$  are continuous. We know that  $\Sigma(a) = \frac{\Omega(a,a_0)}{2} = \frac{\Theta(a)}{2}$  for all  $a \in \mathcal{A}$ . So,  $\Sigma$  is continuous and also  $\Sigma(e) = \frac{e}{2}$ . Using an argument similar to the one given above, it can be shown that

$$d_1(ab) = d_1(a)\Sigma(b) + \Sigma(a)d_1(b)$$
$$d_2(ab) = d_2(a)\Sigma(b) + \Sigma(a)d_2(b)$$

for all  $a, b \in \mathcal{A}$  Thus, we have  $d_1(a) = d_1(a)\Sigma(e) + \Sigma(a)d_1(e) = \frac{d_1(a)}{2} + \Sigma(a)d_1(e)$  for all  $a \in \mathcal{A}$ . Hence,

$$d_1(a) = 2\Sigma(a)d_1(e), \qquad (a \in \mathcal{A})$$
(2.13)

and similarly, we get that

$$d_2(a) = 2\Sigma(a)d_2(e), \qquad (a \in \mathcal{A})$$
(2.14)

Equations (2.13) and (2.14) with the continuity of  $\Sigma$  give that both  $d_1$  and  $d_2$  are continuous. Thereby, our proof is complete.

An immediate consequence of Theorem 2.11 reads as follows:

**Corollary 2.12** Let  $(\mathcal{A}, *)$  and  $(\mathcal{B}, \star)$  be two unital involutive algebras and let  $d : \mathcal{A} \to \mathcal{B}$  be  $a(*, \star) - (\psi, \phi)$ -derivation such that  $d(e)d(a_0) = e$  or  $d(a_0)d(e) = e$  for some  $a_0 \in \mathcal{A}$ . Suppose that  $[\psi(a), d(b)] = 0 = [\phi(a), d(b)]$  for all  $a, b \in \mathcal{A}$ . Then, the mappings  $\psi$  and  $\phi$  are linear. Moreover, suppose we have the conditions under which every homomorphism from  $\mathcal{A}$  into  $\mathcal{B}$  is continuous. Then,  $d, \psi$  and  $\phi$  are continuous linear mappings.

Acknowledgements The author thanks the referee for his/her careful reading of the paper and suggesting valuable comments that improved the quality of this work. Moreover, this research has been supported by a grant from Kashmar Higher Education Institute [grant number 28/1348/1400/578].

### References

- Bade, W.G., Curtis, P.C.: Homomorphisms of commutative Banach algebras. Am. J. Math. 82, 589– 608 (1960)
- Dales, H.D.: Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, vol. 24. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (2000)
- 3. Dales, H.D.: Automatic continuity: a survey. Bull. Lond. Math. Soc. 10(2), 129–183 (1978)
- Hosseini, A., Hassani, M., Niknam, A., Hejazian, S.: Some results on σ-Derivations. Ann. Funct. Anal. 2, 75–84 (2011)

- 5. Hosseini, A., Hassani, M., Niknam, A.: Generalized  $\sigma$ -derivation on Banach algebras. Bull. Iranian. Math. Soc. **37**, 81–94 (2011)
- Hosseini, A.: On the image, characterization, and automatic continuity of (σ, τ)-derivations. Arch. Math. 109, 461–469 (2017)
- Hosseini, A., Hassani, M.: Some achievements on two variable -derivations. J. Math. Ext. 8(4), 93–108 (2014)
- Hejazian, S., Janfada, A.R., Mirzavaziri, M., Moslehian, M.S.: Achivement of continuity of (φ, ψ)-derivations. Bull. Belg. Math. Soc. Simon Stevn. 14, 641–652 (2007)
- Hou, C., Ming, Q.: Continuity of (α, β)-derivations of operator algebras. J. Korean Math. Soc. 48, 823– 835 (2011)
- Johnson, B.E., Sinclair, A.M.: Continuity of derivations and a problem of Kaplansky. Am. J. Math. 90, 1067–1073 (1968)
- Kaplansky, I.: Functional Analysis, Some Aspects of Analysis and Probability, Surveys in Applied Mathematics. vol. 4. London (1958)
- Mirzavaziri, M., Moslehian, M.S.: Automatic continuity of σ-derivations in C\*-algebras. Proc. Am. Math. Soc. 134, 3319–3327 (2006)
- Ringrose, J.R.: Automatic continuity of derivations of operator algebras. J. Lond. Math. Soc. 5(2), 432–438 (1972)
- Sinclair, A. M.: Automatic Continuity of Linear Operators. London Mathematical Society. Lecture Note Series, vol. 21. Cambridge University Press, Cambridge (1976)
- 15. Sakai, S.: On a conjecture of Kaplansky. Tôhoku Math. J. 12, 31–33 (1960)
- Villena, A.R.: Automatic continuity in associative and nonassociative context. Irish Math. Soc. Bull. 46, 43–76 (2001)

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.