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Abstract

The main purpose of this paper is to present the conditions under which every (y, ¢)-deri-
vation is continuous on topological algebras such as normed algebras, Banach algebras and
C*-algebras.
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1 Introduction and preliminaries

Let A and B be two algebras, let 9 be a B-bimodule and let yw,¢ : A — B be
two mappings. A linear mapping d : A — I is called a (y,¢p)-derivation if
d(ab) = d(a)y(b) + ¢p(a)d(b) for all a,b € A. If A C B and ¢p = = y, the identity map-
ping on A, then we reach an ordinary derivation. The main objective of this study is to
investigate the automatic continuity of (y, ¢)-derivations on some topological algebras.
Generally, the automatic continuity of a certain class of mappings, e.g. (v, ¢)-deriva-
tions, is the study of (algebraic) conditions on a category, e.g. Banach algebras, which
guarantee that every (y, ¢)-derivation is continuous. Let us give a brief background in
this regard. The theory of automatic continuity of derivations has a long history. Results
on automatic continuity of linear mappings defined on Banach algebras comprise a
fruitful area of research developed during the last sixty years. The reader is referred to
[2, 3, 14] for a deep and extensive study on this subject. In 1958, Kaplansky [11] con-
jectured that every derivation on a C*-algebra is continuous. Two years later, Sakai [15]
answered to this conjecture. Indeed, he proved that every derivation on a C*-algebra is
automatically continuous and later in 1972, Ringrose [13], by using the pioneering work
of Bade and Curtis [1] concerning the automatic continuity of a module homomorphism
between bimodules over C(K)-spaces, showed that every derivation from a C*-algebra A
into a Banach A-bimodule is automatically continuous. Also, Johnson and Sinclair [10]
investigated the continuity of derivations on semisimple Banach algebras. In [12], it is
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shown that if y, ¢ are continuous *-linear mappings, then every (v, ¢p)-derivation from a
C*-algebra into B(H) is automatically continuous, and in [8] the assumption of linearity
of y, ¢ were deleted. Moreover, Hou et al. [9] proved that if X is simple and y, ¢ are
surjective and continuous mappings on B(X), then every (v, ¢)-derivation on B(X) is
continuous. For more material concerning the automatic continuity of mappings, see,
e.g. [4-6, 16].

This paper consists of two sections. The main results of the paper are presented in
the second section. In this section, e denotes the identity element of any unital alge-
bra. First, we obtain a characterization of (y, ¢p)-derivations as follows: Let A and 5 be
two unital algebras and let d : A — B be a (y, ¢p)-derivation such that d(e) € Inv(B),
where Inv(B) denotes the set of all invertible elements of B. If either [y(e),d(e)] =0
or [¢(e),d(e)] = 0, where [a,b] = ab — ba (a,b € A), then d(ab) = d(a)(d(e))~'d(b) for
all a,b € A. In particular, if d(e) = e, then d is a homomorphism. Using this result,
we prove that if .4 and B are two topological unital algebras and d : A - Bis a (w,¢
)-derivation such that d(e) = e and also if we have all the conditions under which every
homomorphism from .4 into B is continuous, then d, y and ¢ are continuous map-
pings. In addition, we obtain some results concerning the continuity of (y, ¢)-deriva-
tions on unital involutive topological algebras. Suppose that (A, %) and (B, x) are two
unital, involutive topological algebras and d : A — B is a (w, ¢p)-derivation such that
d, v and ¢ are (%, %)-mappings and d(e) € Inv(3). Assume that either [y (e),d(e)] =0
or [¢(e),d(e)] = 0. If we have all the conditions under which every homomorphism
from A into B is continuous, then d, y and ¢ are continuous mappings. Another result
in this regard reads as follows: Let (A, %) and (3, x) be two unital involutive algebras
and let d;,d, : A — B be two (x, x) — (y, ¢)-derivations such that d,(e 4)d,(a,) = ez or
d,(ag)d,(e 4) = eg for some a, € A. Suppose that [y(a), d,(b)] = 0 = [¢(a),d;(b)] for all
a,b € A. Then, the mappings y and ¢ are linear. Moreover, suppose we have the condi-
tions under which every homomorphism from A into 5 is continuous. Then, d,, d,, v
and ¢ are continuous linear mappings.

2 Main results

In this section, without further mention, e denotes the identity element of any unital
algebra. If A is a unital algebra, Inv(A) denotes the set of all invertible elements of
A. Let A and B be two algebras, let 9t be a B-bimodule and let y,¢ : A — B be two
mappings. Recall that a linear mapping d : A — M is called a (y, ¢)-derivation if
d(ab) = d(a)y(b) + ¢p(a)d(b) for all a, b € A. We now provide an example of this notion.

Example 2.1 Let A and B be two algebras (finite dimensional or not). It is easy to see that
A = A X B is an algebra by the following operations:

(017 bl) . (az’ bz) = (0132, blbz);
(a;, b))+ (ay,by) = (a; + a,, by + by);
A(al,bl) = (ial, ib])

for all a;,a, € A, b;,b, € Band 1 € C. Let F,G : B — B be two mappings. Define the
mappings d,y,¢ : A — Aby
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d((a, b)) = (a,0),

w((a,b) = (g,nb)),
a

¢((a.b) = (5. G(b)),

A routine calculation shows that d is a linear (y, ¢p)-derivation on 2I.
We begin with the following theorem, which provides a characterization for (y, ¢)-derivations.

Theorem 2.2 Let A and B be two unital algebras and let d : A — B be a (y, ¢p)-derivation
such that d(e) € Inv(B). If either [w(e), d(e)] = 0 or[¢(e), d(e)] = 0, then both ¢ and y are
linear mappings and d(ab) = d(a)(d(e))~'d(b) for all a,b € A. In particular, if d(e) = e,
then d is a homomorphism.

Proof Suppose that [¢p(e),d(e)] = 0. Then, it is easy to see that [¢(e), (d(e))~'] =0.
So, d(e) =d(e)y(e) + ¢(e)d(e) = d(e)(w(e) + ¢(e)). This equality with the assump-
tion that d(e) is an invertible element of B implies that y(e) + ¢p(e) = e. We have
d(a) =d@wy(e) + p(a)d(e) for any a€ A. So, d(a)e—w(e)) = ¢(a)d(e) and
consequently,

d(a) = d@p(e)d(e) ™, (aeA. 2.0

Similarly, we can get that

w(a) = (d(e)) 'w(e)d(a), (a € A. (2.2)

It follows from (2.1) and (2.2) that both ¢ and y are linear mappings and also we have
d(ab) = d(@)y (b) + ¢p(a)d(b)

= d(a)(d(e))'w(e)d(b) + d(a)p(e)(d(e))™"d(b)

= d(a)(d(e))"'w(e)d(b) + d(a)(d(e))” p(e)d(b)

= d(a)(d(e))”' (w(e) + (e))d(b)

= d(a)(d(e))”"d(b),
which means that

d(ab) = d(a)(d(e))~'d(b), (a,b € A). (2.3)

Clearly, if d(e) = e, then d is a homomorphism. Besides, we can prove that[d(e), y(e)] = 0.
In view of (2.2) and (2.3), we have

w(ab) = (d(e))”'w(e)d(ab)
= (d(e))"'w(e)d(a)(d(e))™"d(b)
= y(a)(d(e)”'d(b).

Letting a = e in the above equations, we get that

w(b) = y(e)d(e))”'d(b), (beA. 2.4
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Comparing (2.2) and (2.4), we obtain that y(e)(d(e))"'d(a) = (d(e)) 'y (e)d(a) for all
a € A. Putting a = e in the previous equation, we get that [d(e), y(e)] = 0. So, each of the
equations [d(e), w(e)] = 0 or [¢(e), d(e)] = O implies the other. O

In the following, there are some consequences of the previous theorem.

Corollary 2.3 Let A and B be two unital normed algebras and let d : A — B be a
(w, p)-derivation such that d(e) € Inv(B). Suppose that either [w(e),d(e)] =0 or
[¢(e),d(e)] = 0. Then, the continuity of d implies the continuity of both w and ¢.

Proof Using (2.1) and (2.2), we obtain the required result. a
In the following, we present some conditions that provide the continuity of (y, ¢)-derivations.

Corollary2.4 Let A and B be two topological unital algebras and letd : A — B be a(y, ¢)-derivation
such that d(e) = e. If we have all the conditions under which every homomorphism from A into B is con-
tinuous, then d, w and ¢ are continuous mappings.

Proof 1t follows from Theorem 2.2 that d is a homomorphism from A into B. Since
we are assuming all the conditions under which every homomorphism from A into
B is continuous, we deduce that d is continuous. This fact along with (2.1) and
(2.2) implies the continuity of y and ¢. O

Remark 2.5 There are many different conditions under which a homomorphism is continu-
ous. For instance, if .4 is a Banach #-algebra and B is a C*-algebra, then it follows from
[3, Corollary 3.2.4] that every #-homomorphism 6 : A — B is automatically continuous.
For more material about the continuity of homomorphisms and other results, see, e.g. [2,
Proposition 5.1.1, Theorem 5.1.8, Theorem 5.2.4, Coroolary 5.2.5].

Let A be a complex algebra. Recall that an involution over .4 is a map *: A — A sat-
isfying the following conditions for all a,b € A and all A € C:

1. (@)* =a,

2. (ab)* = b*a*,

3. (a+b) =a*+b",
4. (da)* = Aa*.

An algebra A equipped with an involution * is called an involutive algebra or x-alge-
bra and is denoted, as an ordered pair, by (A, *). Let (A, %) and (5, %) be two involutive
algebras. A mapping T : A — B is called a (x, %)-map if T(a) = (T(a*))* for all a € A.

Theorem 2.6 Let (A, %) and (I3, %) be two unital, involutive algebras and letd : A — B be
a (y, ¢p)-derivation such that d, w and ¢ are (x, % )-mappings and d(e) € Inv(B). If either
[w(e),d(e)] =0 or[¢p(e),d(e)] =0, then 0 = ¢+ : A — Bis a homomorphism and fur-
ther, d(a) = d(e)0(a) = 6(a)d(e) for all a € A.

Proof Tt follows from Theorem 2.2 that ¢(e) + w(e) = e and also it follows from (2.1) that
¢(a) = d(a)¢p(e)(d(e))"' for all a € A. Since ¢ and d are (*, x)-mappings, we have
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P(a) = (P(@*)* = (d(@)p(e*)(d(e*)™)* = (d(e)) p(e)d(a) (2.5
Considering 8 = ¢ + y and using (2.2) and (2.5), we have
0(a) = y(a) + Pp(a) = (d(e))"'w(e)d(a) + (d(e)) ' p(e)d(a) = (d(e))"'d(a). (2.6)

It is observed that

d(a) = d(e)0(a), (a € A. 2.7
Similarly, we get that

0(a) = d(a)d(e))™", (ae A
and so, we have

d(a) = 6(a)d(e), (@€ A.

Our next task is to show that 0 is a homomorphism. Using (2.3) and (2.7), we get that
d(a)(d(e))~'d(b) = d(ab) = d(e)8(ab),  (a,b € A). (2.8)
Left multiplication of (2.8) by (d(e))~" and using (2.6) give
0(ab) = (d(e))”'d(a)(d(e))"'d(b) = 0(a)0(b),  (a,b € A).

which means that 0 is a homomorphism. This proves the theorem, completely. O
An immediate corollary reads as follows:

Corollary 2.7 Suppose that (A, x) and (B, %) are two unital, involutive topological alge-
bras and d : A — B is a (y, ¢)-derivation such that d, w and ¢ are (x, *)-mappings and
d(e) € Inv(B). Assume that either [y(e),d(e)] =0 or [¢(e),d(e)] = 0. If we have all the
conditions under which every homomorphism from A into B is continuous, then d, w and ¢
are continuous mappings.

Proof 1t follows from Theorem 2.6 that there exists a homomorphism 6 : .4 — B such that
d(a) = d(e)(a) = 0(a)d(e) for all a € A. Since we are assuming all the conditions under
which every homomorphism from .4 into B is continuous, we obtain the continuity of d.
Now, Egs. (2.1) and (2.2) imply the continuity of ¢ and y, respectively. O

In the following, we provide an example that shows that the conditions of Theo-
rem 2.6 are not superfluous.

Example 2.8 Let (A, *) be an involutive algebra. Set i/ = C @ A. Consider U as an algebra
with pointwise addition, scalar multiplication and the product defined by

(a,a)s(B,b) = (af,ab + pa), (@, €C,a,b € A.
U is also an involutive algebra when we define % : U/ — U as follows:

(a,0)* = (@,a*), (e C,ae A.
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Furthermore, ¢ = (1,0) is the identity of U/. Let R,S,T : A — A be =-linear mappings.
We define the mappings d,w, ¢ : U — U by d((a,a)) = (0, T(a)), w((a, a)) = (a, S(a)) and
¢((a,a)) = (a,R(a)) for all (a,a) € U. It is clear that d, y, ¢ are *x-mappings and also d
is a (y, ¢)-derivation. A straightforward verification shows that (a,a)™! = (a~!, _—f) for all
(a,a) € C\{0} P A. So, Inv(d) = C\{0} P A and obviously, d(e) & Invlf). As can be
seen, 0 = y + ¢ is not a homomorphism and further d # d(e). Note that if A is a normed
algebra, then so is U with the following norm:

i@, @)l = |l + llall, (@eC,acA).

Theorem 2.9 Suppose that A and B are two unital algebras such that B is commutative. Let
d : A - Bbea(y,p)-derivation such that d(e) € Inv(B). Then,0 =¢dp+w : A—> Bisa
homomorphism and also d(a) = d(e)0(a) for all a € A.

Proof By using an argument similar to the proof of Theorem 2.6, we get the desired result.
O

Corollary 2.10 Suppose that A and B are two unital topological algebras such that B is
commutative. Let d . A — B be a (y, ¢)-derivation such that d(e) € Inv(B). If we have all
the conditions under which every homomorphism from A into B is continuous, then d, v
and ¢ are continuous mappings.

Note that if 4 is an *-algebra, then a straightforward verification shows that 4 X A is
also an x-algebra by regarding the following structure:

(a,b)+ (c,d) =(a+c,b+d)
Ma, b) = (Aa, Ab):

(a,b).(c,d) = (ac, bd),

(a,b)* = (a*,b%);

b o

fora,b € Aand A € C.

Similar to the (*, %)-mappings, a bi-mapping Q : AX A — B is a (%, %)-mapping if
Q(a,b) = (Q(a*,b*))* for all a,b € A. Let w,¢ : A — B be two mappings. A bi-linear
mapping (i.e., linear in both arguments) Q : A x A — B is called a left two variable
(w, ¢)-derivation if Q(ab, c) = Q(a, )y (D) + p(a)Q(b, c) for all a,b,c € A. A right two
variable (y, ¢p)-derivation is defined, similarly. A bi-linear mapping Q : AX A - B is
said to be a two variable (y, ¢)-derivation if it is both a left-and a right two variable
(y, ¢)-derivation. A (x, %)-left two variable (y, ¢p)-derivation means a left two variable
(w, ¢)-derivation Q : A x A — B, whenever Q, y and ¢ are (%, %)-mappings.

Theorem 2.11 Ler (A, *) and (1B, x) be two unital involutive algebras and letd,,d, : A — B
be two (%, %) — (v, ¢)-derivations such that d,(e)d,(a,) = e or d\(ay)d,(e) = e for some
ag € A. Suppose that [y(a),d,(b)] = 0 = [¢(a),d,(D)] for all a,b € A. Then, the map-
pings y and ¢ are linear. Moreover, suppose we have the conditions under which every
homomorphism from A into B is continuous. Then, d,, d,, w and ¢ are continuous linear

mappings.

Proof Define Q : AX A — B by Q(a,b) = d,(a)d,(). It is easy to see that Q is a (x, x)—
two variable (y, ¢p)-derivation. So, we have
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*
Q(ab, ¢) = (Q(b*a*,c*))
*
= (Q0". @) + bHa" ")
= y(@)(b, c) + Q(a, c)p(b)
Moreover, we know that Q(ab, c) = Q(a, o)y (b) + ¢p(a)Q(b, ¢) for all a,b,c € A. Hence,
we have the following expressions:
Q(ab,c) = %Q(ab, c)+ %Q(ab, c)

_ Q@ y(b) + p@)Qb.c)  w(@Qb,c) +a, )p(b)
2 2

So,

Qwh@=9@d(wm+am>+<w@+wm

> > ) Q(b, c),

for all a, b, c € A. Considering = X, we see that

v+
2
Q(ab, c) = Q(a, c)Z(b) + Z(a)Q2(b, ¢),

for all a,b,c € A. Let a,, be an element of A such that d,(e)d,(a,) = e. So, it is observed
that Q(e, a;) = e. It follows from [7, Theorem 2.16] that there exists a unital homomor-
phism © : A — B defined by O(a) = Q(a, a,) such that Q(a, b) = O(ab)(©(a,))~! for all
a,b € Aand also %"5(“) =2X(a) = @ = % for all a € A. Consequently, ® = ¢ + y.
Since d,(e)d,(ay) = e and [y(a), d,(b)] = 0 for all a, b € A, we have

e =d,(e)d,y(ay) = d|(e)y(e)dy(ay) + P(e)d, (e)d,(ay)
=d\(e)dy(ag)y(e) + P(e)d,(e)d,(ay)
=y(e) + ¢(e).

So, we have the following statements:

B(a) = Q(a, ay) = d,(a)d,(ay)
=d(@y(e)dy(ay) + P(a)d,(e)dy(ay)
=d\(a)dy(ap)w(e) + Pp(a)
= O(a)y(e) + ¢P(a),

which means that

$(a) = Ba)p(e), (a € A). (2.9)
Reasoning like above, one can easily get that

w(a) = w(e)O(a), (a € A). (2.10)
Putting ©(a) = w(a) + ¢(a) (a € A) in Eq. (2.9) and using w(e) + ¢(e) = e, we obtain that

v(a) = B(@y(e), (a€ A. (2.11)
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Similarly, we get that
@(a) = Pp(e)O(a), (ae A. (2.12)

Since @ is a linear mapping, the above discussion implies that both y and ¢ are linear map-
pings and further, if y(e) = ¢(e), then ¢ = y. Now, we are going to prove that d|, d,,
and ¢ are continuous linear mappings. Note that ® is continuous, since we are assuming
the conditions under which every homomorphism from .A into B is continuous. This fact
with Eqgs. (2.9) and (2.10) (or (2.11) and (2.12)) imply that both y and ¢ are continuous
linear mappings. Now, our task is to prove that d; and d, are continuous. We know that
2(a) = % = % for all a € A. So, X is continuous and also X(e) = g Using an argu-
ment similar to the one given above, it can be shown that

d,(ab) = d,(@)(b) + X(a)d, (b)
dy(ab) = dy(@)E(b) + Z(a)d,(b)

for all a,b € A Thus, we have d,(a) = d;(a)Z(e) + Z(a)d,(e) = @ + X(a)d, (e) for all
a € A. Hence,

d\(a) = 2Z(a)d,(e), (ae A (2.13)
and similarly, we get that
dy(a) =2X(a)dy(e),  (a € A) (2.14)

Equations (2.13) and (2.14) with the continuity of X give that both d, and d, are continuous.
Thereby, our proof is complete. a

An immediate consequence of Theorem 2.11 reads as follows:

Corollary 2.12 Let (A, %) and (B, %) be two unital involutive algebras and letd : A — B be
a (%, %) — (y, p)-derivation such that d(e)d(a,) = e or d(ay)d(e) = e for some a, € A. Sup-
pose that [y(a),d(b)] = 0 = [p(a),d(b)] for all a,b € A. Then, the mappings y and ¢ are
linear. Moreover, suppose we have the conditions under which every homomorphism from
A into B is continuous. Then, d, y and ¢ are continuous linear mappings.
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