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Abstract
We recall and prove some basic properties of both the Schouten and Wagner curvature ten-
sors. We consider—in some detail—the construction of the Wagner tensor, and then dis-
cuss how the vanishing of this tensor characterizes the flat structures, i.e., those for which 
the parallel translation is path-independent. (As a special case, we revisit the flatness of 
three-dimensional nonholonomic Riemannian manifolds.) In order to facilitate our presen-
tation, we employ an extension of the notion of a connection to a “restricted connection.” 
Such connections are equivalently viewed as horizontal lifts (or horizontal distributions); 
hence we revisit the Schouten and Wagner tensors from this perspective. In particular, it 
turns out that the construction of the Wagner tensor may be equivalently formulated as a 
flag of horizontal distributions.

Keywords  Nonholonomic Riemannian structure · Jacobi field · Schouten curvature tensor · 
Wagner curvature tensor

Mathematics Subject Classification  70G45 · 37J60

1  Introduction

A nonholonomic Riemannian structure is a quadruple (�,D,D⟂, �) , consisting of a mani-
fold � equipped with a nonintegrable distribution D , a complementary distribution D⟂ , 
and a (positive definite) fibre metric � on D . Similar to a Riemannian structure, a nonho-
lonomic Riemannian structure has a unique connection associated to it, referred to as the 
“nonholonomic connection.” The admissible curves are those tangent to D ; among these 
are the so-called nonholonomic geodesics, which are the geodesics of the nonholonomic 
connection. It turns out that these geodesics are precisely the solutions of the Chetaev 
equations for a nonholonomic mechanical system with constraints linear-in-velocities and a 
kinetic energy Lagrangian; accordingly, the chief motivation for the study of nonholonomic 
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Riemannian structures comes from mechanics. From a mathematical perspective, nonholo-
nomic Riemannian geometry is a natural generalization of Riemannian geometry; in this 
sense, it may be viewed as a counterpart to sub-Riemannian geometry. (A sub-Riemannian 
structure is simply a triple (�,D, �) , i.e., a nonholonomic Riemannian structure sans the 
choice of a complementary distribution.) Sub-Riemannian geometry generalizes the “met-
ric” aspect of Riemannian geometry (the central object in sub-Riemannian geometry is the 
Carnot–Carathéodory distance), whereas nonholonomic Riemannian geometry generalizes 
the “connection” aspect (the nonholonomic connection is the central object). Along these 
lines, it was Hertz [16] (see also [28]) who essentially recognized that sub-Riemannian 
geometry studies the “shortest” curves, while nonholonomic Riemannian geometry stud-
ies the “straightest” curves. In general, “shortest” ≠ “straightest” , although the two classes 
of curves coincide for a Riemannian structure. (We note that, in the past, the term nonho-
lonomic Riemannian geometry was used to refer to both of the above generalizations of 
Riemannian geometry. However, we shall use it to refer exclusively to the first; the term 
sub-Riemannian geometry has now also become fairly standard.) For more information on 
nonholonomic Riemannian geometry and sub-Riemannian geometry, see, e.g., [6, 9, 20, 
28, 29].

Curvature plays a central rôle in Riemannian geometry, and as such has been exten-
sively studied: presently many aspects of it are very well understood. In sharp contrast, 
the curvature of nonholonomic Riemannian structures has received very little attention. 
Although some elements of the curvature of nonholonomic Riemannian structures can be 
found in Synge [26], it was Schouten [25] who first explicitly considered curvature in the 
nonholonomic Riemannian context. In particular, Schouten introduced a curvature tensor 
associated to every nonholonomic Riemannian structure; this tensor is now referred to as 
the “Schouten curvature tensor” [10]. Nevertheless, the main development in the study of 
curvature of nonholonomic Riemannian structures was due to Wagner, who observed that 
(the vanishing of) the Schouten tensor does not characterise the flat nonholonomic Rie-
mannian structures, i.e., those structures for which the parallel translation (induced by the 
nonholonomic connection) is path-independent. In a series of papers [30, 33, 34], Wagner 
extended Schouten’s work, defining a curvature tensor (now called the “Wagner curvature 
tensor”), the vanishing of which does characterise the flat structures (see also [31, 32, 35]). 
(This resulted in Wagner being awarded Kazan University’s 1937 Lobachevskii prize for 
young Soviet mathematicians.) Nevertheless, Wagner’s construction has its limitations; in 
particular, it does not depend only on the data (�,D,D⟂, �) , but also on some additional 
assumptions. As a result, it is not generally intrinsic, and so only provides a partial solution 
to the problem of flatness.

We briefly mention some more recent papers of interest that discuss and/or make 
use of the Schouten or Wagner curvature tensors. The two papers [1] and [3] are con-
cerned with nonholonomic Riemannian structures in three dimensions, particularly 
left-invariant structures on Lie groups. The former paper classifies all such structures, 
and the latter considers the flat structures. Both papers make use of scalar invariants 
extracted from the Schouten curvature tensor. (Later in this paper we discuss some of 
the results of [3] in the context of the present paper.) Berestovskii [5] reviews various 
notions of curvature in sub-Riemannian geometry (which also apply to nonholonomic 
Riemannian structures), including the special case of sub-Riemannian structures with 
“rigged” distributions, i.e, those with a complementary distribution—the same data 
as for a nonholonomic Riemannian structure. (See also references in [5].) Galaev 
and coauthors have studied curvature (in particular, the Schouten and Wagner curva-
ture tensors) in the context of (almost) contact metric structures [7, 11, 12] (see also 
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references therein); as well as the metrizability of nonholonomic connections in three 
dimensions [13] (making use of the Schouten tensor). Zhao and Jiao [36] study con-
formal transformations (of sub-Riemannian structures with “rigged” distribution), and 
from the Schouten tensor calculate the “nonholonomic” Weyl tensor. Leites [19] (see 
also [15]) calculates a nonholonomic analogue of the Riemann tensor, using algebraic 
techniques. However, the notion of flatness that Leites introduces is different from that 
which we consider here. Indeed, for Leites, every contact manifold is flat; however, 
every three-dimensional nonholonomic Riemannian manifold is contact, yet there are 
many such structures whose parallel transport is path-dependent (see [3]). Lastly, we 
mention the paper of Dragović and Gajić [10] and that of Gorbatenko [14], both of 
which discuss the motivation for, and construction of, Wagner’s curvature tensor. (For 
the construction of Wagner’s tensor in this paper, see Sect. 4.1.)

In this paper we consider in some more detail the two curvature tensors mentioned 
above, with a view to understanding better the curvature of nonholonomic Riemann-
ian structures. The paper is organized as follows. In Sect. 3 we introduce the Schouten 
curvature tensor, which is canonically associated to every nonholonomic Riemannian 
structure. We prove some symmetries of this tensor, and attempt to relate it (at least on 
an algebraic level) to a Riemannian-type curvature tensor. We do this by decompos-
ing the Schouten tensor (in fact, the associated tensor obtained by using the metric 
to “lower an index”) into two components: a “Riemannian” component—which satis-
fies all the symmetries of a Riemannian curvature tensor—and a “remainder” that can 
be viewed as a deviation of the Schouten tensor from a Riemannian curvature tensor. 
Using the “Riemannian” component of the Schouten tensor, we are able to introduce 
notions of sectional curvature, a Ricci tensor, and a scalar curvature, analogous to the 
corresponding concepts in Riemannian geometry.

In Sect. 4 we consider the Wagner curvature tensor. The construction of this tensor 
is quite sophisticated, and relies on the flag of the distribution; however, the construc-
tion is not intrinsic, in that it relies on some additional assumptions. (Having said that, 
if the distribution is strongly nonholonomic, then these assumptions are automatically 
satisfied.) We define the Wagner tensor in Sect. 4.1, and prove some basic properties: 
in particular, how the vanishing of the Wagner tensor characterizes the flat structures, 
i.e., those whose parallel translation is path-independent. In Sect.4.2 we consider an 
“algebraic” interpretation of a collection of curvature tensors that arise in the con-
struction of the Wagner tensor. (Briefly, these curvature tensors measure the extent to 
which certain maps fail to be homomorphisms.) Lastly, Sect. 4.3 considers the Wag-
ner curvature tensor in the case of three-dimensional nonholonomic Riemannian struc-
tures. The flatness of such structures was recently treated in [3]; in particular, we find a 
new characterization of flatness in three dimensions, and relate it to that in [3].

Finally, in Sect. 5 we revisit both the Schouten and Wagner curvature tensors from 
an alternative viewpoint. The nonholonomic connection, as well as a collection of 
connections arising in the construction of Wagner’s curvature tensor, are equivalently 
viewed as horizontal lifts (or horizontal distributions). We express the Schouten ten-
sor and the Wagner tensor in terms of horizontal lifts of vector fields. (The vanishing 
of these tensors then translates to involutivity conditions on the associated horizontal 
distributions.) A significant contribution of this section is also to show that Wagner’s 
construction is equivalently formulated as a flag of horizontal distributions.
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2 � Preliminaries

In this section we revisit some basic concepts and constructions in tensor analysis and the 
theory of connections; these are slightly extended (or rather, adapted) to a particular class of 
objects pertaining to our line of inquiry into nonholonomic Riemannian geometry. Specifi-
cally, we first consider derivations of tensors on a distribution. If there exists a projection onto 
the distribution, then there exists a natural generalization of the Lie derivative (essentially a 
“projected Lie derivative”); this will lead on to a natural notion of a “restricted” tensor deriva-
tion. Next, we consider a class of affine connections whose associated parallel translation is 
restricted to a subclass of curves. We consider two approaches to these “restricted” connec-
tions: as a covariant derivative operator, and as a horizontal lift. Following this we present 
some necessary elements of nonholonomic Riemannian geometry. Apart from some defini-
tions, we recall the fundamental existence and uniqueness result for the nonholonomic con-
nection (a restricted connection) and introduce its associated exterior covariant derivative.

Let � be a (real, n-dimensional) manifold and let D and E be distributions on � , where 
D has rank r. Throughout, we assume that all manifolds, functions, vector fields, etc. are 
smooth (i.e., of class C∞ ) and that all distributions under consideration are regular (i.e., 
the dimension of each fiber does not depend on the base point). Furthermore, we shall fol-
low the summation convention on repeated indices. Unless stated otherwise, the following 
ranges on indices are used: i, j, k = 1,… , n and a, b, c = 1,… , r.

2.1 � Restricted tensor derivations

Let Tk
�
(D) be the bundle of (k,�)-tensors on D , i.e., Tk

�
(D) =

⨆
q∈�

�⨂k
Dq ⊗

⨂�
D

∗

q

�
 , 

and let T k

�
(D) = � (Tk

�
(D)) be the space of tensor fields on D . A derivation of T k

�
(D) (cf. 

[27]) is a collection of ℝ-linear maps �k
�
∶ T k

�
(D) → T k

�
(D) (for every k,� ≥ 0 ), all 

denoted by � when convenient, such that

for all tensor fields S and T. Here tr i
j
 denotes the contraction (trace) on the ith contravariant 

and jth covariant index. The space  of all derivations of T k

�
(D) is a Lie algebra.

If � is a derivation and T is a (k,�)-tensor field on D , then

for �1,… ,�k ∈ � (D∗) and X1,… ,X
�
∈ � (D) . In particular, if � ∈ � (D∗) , then 

�(�)(X) = �(�(X)) − �(�(X)) for X ∈ � (D) . Derivations of Tk
�
(D) are completely specified 

by their action on T �
0
(D) = C

∞(�) and on T 1

0
(D) = � (D) . Accordingly, given a map that 

acts as a derivation of C∞(�) and � (D) , it may be uniquely extended to a derivation of 
T k

�
(D.
Let P ∶ T𝖬 → D be a projection and let [[⋅, ⋅]] = P([⋅, ⋅]) ∶ � (T𝖬) × � (T𝖬) → � (D) . 

If Z ∈ � (T�) , then we define a derivation  by the requirement that

𝛿(S⊗ T) = 𝛿(S)⊗ T + S⊗ 𝛿(T) and 𝛿( tr i
j
T) = tr i

j
𝛿(T)

�(T)(�1,… ,�k,X1,… ,X
�
) = �(T(�1,… ,�k,X1,… ,X

�
))

−

k∑
i=1

T(�1,… , �(�i),… ,�k,X1,… ,X
�
)

−

�∑
j=1

T(�1,… ,�k,X1,… , �(Xj),… ,X
�
)
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for f ∈ C
∞(�) and X ∈ � (D) . We refer to LP

Z
 as the P-Lie derivative along Z. It turns 

out that every element of  decomposes uniquely as the sum of a P-Lie derivative 
and a derivation that vanishes on functions.

Proposition 1  Let ; then: 

	 (i)	 �0
0
= 0 if and only if �1

0
 is C∞(�)-linear, i.e., �1

0
∈ T 1

0
(D).

	 (ii)	 There exists a unique vector field Z ∈ � (T�) and a unique  such that 
� = LP

Z
+ �� , where ��0

0
= 0 and ��1

0
∈ T 1

0
(D).

Let  and LP

T�
= {LP

Z
∶ Z ∈ � (T�)} . We have 

the (vector space) decomposition ; furthermore, 
. We say that a derivation  is an E

-restricted derivation (or simply E-derivation) if , where 
LP

E
= {LP

X
∶ X ∈ � (E)} . Let  denote the space of all E-derivations.

Remark 1  Dual to the P-Lie derivative is the P-exterior derivative 
dP ∶ Ωk(D) → Ωk+1(D) , defined as follows: if f ∈ C

∞(�) , then dPf (X) = X[f ] for every 
X ∈ � (D) ; if � ∈ Ωk(D) , k ≥ 1 , then

for X0,… ,Xk ∈ � (D) (where X̂i indicates the omission of that element). Many properties 
of the usual exterior derivative extend to dP ; however, we do not generally have d2

P
= 0 . 

Indeed, if f ∈ C
∞(�) , then d2

P
f (X, Y) = [X, Y][f ] −P([X, Y])[f ] for X, Y ∈ � (D) . Hence 

d2
P
f = 0 if and only if D is integrable.

2.2 � Restricted connections

In this section we consider so-called “restricted connections,” i.e., connections whose asso-
ciated parallel translation is restricted to precisely those curves that are tangent to a given 
distribution. Firstly, we consider a restricted connection as a covariant derivative. In this 
vein, we then discuss the associated parallel translation map, parallel tensor fields, and par-
allel frames. Secondly, we consider a restricted connection as a horizontal lift, or equiva-
lently, as a horizontal distribution. (Typically, the horizontal distribution will not form a 
full complement to the vertical distribution.) As expected, such a horizontal lift induces 
a unique covariant derivative, and conversely. Restricted connections (in the language of 
covariant derivatives) were first introduced in [17]; the notion of a restricted connection 
(particularly, as a horizontal lift) is also essentially covered in [8].

We assume that any two points of � can be joined by an E-curve, i.e., a curve 
� ∶ [0, 1] → 𝖬 such that 𝛾̇(t) ∈ E𝛾(t) for every t ∈ [0, 1] . (This holds, for instance, when E 
is completely nonholonomic.) An E-restricted covariant derivative ∇ on D (or covariant 

(1)L
P

Z
f = Z[f ] and L

P

Z
X = [[Z,X]]

dP�(X0,… ,X
k
) =

k∑
i=0

(−1)i(LP

X
i

�)(X0,… , X̂
i
,… ,X

k
)
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E-derivative on D ) is an ℝ-linear mapping ∇ ∶ � (E) × � (D) → � (D) , (X,W) ↦ ∇XW 
such that

for every f ∈ C
∞(�) , X ∈ � (E) and W ∈ � (D) . The usual basic properties of covariant 

differentiation extend to the case of a restricted covariant derivative. In particular, the 
expression ∇XW(q) , q ∈ � depends only on the value of X at q, and the value of W along 
any E-curve tangent to X(q). Covariant differentiation may also be uniquely extended to 
arbitrary tensor fields in T k

�
(D) , in the usual fashion: let X ∈ � (E) and define ∇Xf = X[f ] 

for f ∈ C
∞(�) ; then ∇X is a derivation of C∞(�) and � (D) , and hence may be extended to 

a (unique) derivation of T k

�
(D).

A covariant E-derivative ∇ on D induces a parallel translation along E-curves. 
A section V of D along an E-curve � ∶ [0, 1] → 𝖬 is parallel along � if ∇𝛾̇V = 0 . Let 
W ∈ � (D) ; if W◦� is parallel along � for every E-curve � , then W is simply called paral-
lel. Clearly, a necessary and sufficient condition for W to be parallel is that ∇W ≡ 0.

Proposition 2  Let � ∶ [0, 1] → 𝖬 be an E-curve and let V0 ∈ D�(0) . There exists a unique 
parallel section V of D along � such that V(0) = V0 . (V is called the parallel translate of V0 
along �.)

Let � ∶ [0, 1] → 𝖬 be an E-curve. The parallel translation Πt
�
∶ D�(0) → D�(t) , 

t ∈ [0, 1] is specified by setting Πt
�
(V0) = V(t) , where V is the parallel translate of 

V0 ∈ D�(0) along � . A (local) frame (Ua) for D is called parallel if each element Ua is 
parallel. The existence of a parallel frame for D is not guaranteed; in fact, it places quite 
severe restrictions on the connection.

Proposition 3  There exists a parallel frame for D on an open set U ⊆ � if and only if for 
any two points p, q ∈ U and for any E-curve � ∶ [0, 1] → U joining p to q, the parallel 
translation Π1

�
∶ Dp → Dq does not depend on �.

The notion of a parallel vector field is easily extended to arbitrary tensor fields. 
Indeed, a section A of Tk

�
(D) along an E-curve � is called parallel along � if ∇𝛾̇A = 0 . 

A tensor field T ∈ T k

�
(D) is parallel if T◦� is parallel along � for every E-curve � . Evi-

dently, T is parallel if and only if ∇T ≡ 0.
Let �𝖬 ∶ T𝖬 → 𝖬 and �D ∶ TD → D denote the canonical projections of a 

tangent vector onto its base point. Let � = �𝖬|D ∶ D → 𝖬 . The pullback bun-
dle �∗E may be viewed as a vector bundle over D and over E , with projections 
�̃1 ∶ �∗E ∋ (Uq,Xq) ↦ Uq ∈ D and �̃2 ∶ �∗E ∋ (Uq,Xq) ↦ Xq ∈ E , respectively. An E
-restricted connection on D (or E-connection on D ) is a map h ∶ �∗E → TD that is 

	 (i)	 a linear bundle map from �̃1 to �D covering the identity, i.e., �D◦h = �̃1;
	 (ii)	 a bundle map from �̃2 to T� covering the inclusion � ∶ E → T𝖬 , i.e., T� ⋅ h = �◦�̃2.

Such a connection h is called linear if TUq
�t ⋅ h(Uq,Xq) = h(�t(Uq),Xq) for every 

(Uq,Xq) ∈ �∗E , where �t ∶ D → D denotes the canonical dilation �t(Uq) = etUq . Let 
V = ker T� be the vertical distribution and H = im h the horizontal distribution. The 
map v ∶ �∗D → V given by

∇fXW = f∇XW and ∇XfW = X[f ]W + f∇XW
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is a vector bundle isomorphism. If Uq ∈ D , then the linear isomorphism 
vUq

= v(Uq, ⋅ ) ∶ Dq → VUq
 is called the vertical lift over Uq . If X ∈ � (D) , then we define 

the vertical lift of X to be the vertical vector field Xv ∈ � (V) given by

Similarly, the mapping hUq
= h(Uq, ⋅ ) ∶ Dq → HUq

 is called the horizontal lift over Uq (or 
explicitly, the h-lift over Uq ). The horizontal lift (or h-lift) of X ∈ � (E) is the vector field 
Xh ∈ � (H) given by

Projectable horizontal vector fields (i.e., vector fields Z ∈ � (H) for which there exists 
X ∈ � (T�) such that T� ⋅ Z = X◦� ) are exactly the horizontal lifts of vector fields in 
� (E) . The following proposition collects some basic results about restricted connections.

Proposition 4  (cf. [8]) We have: 

	 (i)	 �∗H = E , i.e., TUq
� ⋅HUq

= Eq for every Uq ∈ D.
	 (ii)	 h linear if and only if (�t)∗H = H.
	 (iii)	 V ∩H = {0} , and V +H ⊆ TD with equality if and only if E = T�.

Furthermore, we have that h is uniquely specified by its associated horizontal distri-
bution H:

Proposition 5  (cf. [8]) Let E and D be distributions on � and � = �𝖬
||D ∶ D → 𝖬 . If H is a 

distribution on D such that

then there exists a unique (not necessarily linear) E-connection h on D such that H = im h.

We briefly address the relation between (linear) restricted connections and restricted 
covariant derivatives. Suppose that h is a linear E-connection on D . Let Xq ∈ E and 
YUq

∈ TUq
D , where Uq ∈ Dq and YUq

 satisfies TUq
� ⋅ YUq

= Xq . Then it is easy to see that 
YUq

− h(Uq,Xq) is vertical, and hence we can define ∇ ∶ � (E) × � (D) → � (D) by

∇ is precisely a covariant E-derivative on D . Conversely, given an covariant E-derivative ∇ 
on D , there exists a unique linear E-connection h on D whose associated covariant deriva-
tive is exactly ∇.

Proposition 6  (cf. [8]) Let ∇ be a covariant E-derivative on D ; then ∇ is the covariant 
derivative associated to the unique E-connection h on D given by

v(Uq,Vq) =
d

dt

||||t=0(Uq + tVq), (Uq,Vq) ∈ �∗D

Xv(Uq) = v(Uq,X(q)), Uq ∈ D.

Xh(Uq) = h(Uq,X(q)), Uq ∈ D.

�∗H = E and V ∩H = {0},

∇XU(q) = v−1
U(q)

⋅
[
TqU ⋅ X(q) − h(U(q),X(q))

]
, X ∈ � (E), U ∈ � (D).
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Here U ∈ � (D) satisfies U(q) = Uq . (The definition of h does not depend on the choice of 
U.)

Lastly, we state two technical results (to be used later in the paper). If � ∈ � (D∗) , then 
we shall denote by � ∈ C

∞(D) the function given by �(Uq) = �q(Uq).

Lemma 1  If W ∈ � (V) and � ∈ � (D∗) , then

for every Uq ∈ D.

Lemma 2  If X, Y ∈ � (E) and � ∈ � (D∗) , then: 

	 (i)	 Xh[�] = ∇X�.
	 (ii)	 [Xh, Yh][�] = [∇X ,∇Y ]�.

2.3 � Nonholonomic Riemannian structures

Given a distribution D , its flag is the filtration D1 ⊆ D
2 ⊆ ⋯ given by

We shall always assume that each component of the flag is regular. Evidently, the flag of 
D will stabilise after finitely many steps. If there exists N ≥ 2 such that DN−1 ⊊ T� and 
D

N = T� , then D is said to be completely nonholonomic, in which case N is the degree 
of nonholonomy of D . When N = 2 , D is called strongly nonholonomic. Complete non-
holonomy of D is a sufficient condition for any two points of � to be joined by a D-curve 
(Chow–Rashevskii; see, e.g., [20]). A nonholonomic Riemannian manifold is a quadru-
ple (�,D,D⟂, �) , where � is an n-dimensional manifold, D is a rank r < n completely 
nonholonomic distribution on � , D⟂ is a rank n − r distribution on � complementary to 
D (i.e., T� = D⊕D

⟂ ) and � is a positive definite fiber metric on D . For convenience, 
we also refer to a nonholonomic Riemannian manifold as a nonholonomic Riemann-
ian structure. Let P ∶ T𝖬 → D and Q ∶ T𝖬 → D

⟂ be the projectors corresponding 
to the decomposition T� = D⊕D

⟂ . As before, we denote the projected Lie bracket 
P([⋅, ⋅]) ∶ � (T𝖬) × � (T𝖬) → � (D) by [[⋅, ⋅]].

Remarkably, the existence and uniqueness result for the Levi-Civita connection (in the 
Riemannian case) generalizes to nonholonomic Riemannian geometry; more specifically, 
associated to every nonholonomic Riemannian structure (�,D,D⟂, �) is a unique metric 
and torsion-free D-connection ∇ on D . Here the torsion T of ∇ is given by

∇ is referred to as the nonholonomic connection of (�,D,D⟂, �) . Formally, we have the 
following statement.

h(Uq,Xq) = TqU ⋅ Xq − vUq
⋅ ∇Xq

U, (Uq,Xq) ∈ �∗E.

W[�](Uq) = �q(v
−1
Uq

⋅ W(Uq))

D
1 = D and D

i+1 = D
i + [Di,Di], i ≥ 1.

T(X, Y) = ∇XY − ∇YX − [[X, Y]], X, Y ∈ � (D).
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Proposition 7  (see, e.g., [18]) Let (�,D,D⟂, �) be a nonholonomic Riemannian structure. 
There exists a unique D-connection ∇ on D such that ∇� ≡ 0 and T ≡ 0 , i.e.,

for every X, Y , Z ∈ � (D) . Furthermore, ∇ is characterized by Koszul’s formula:

A nonholonomic Riemannian structure (�,D,D⟂, �) is said to be flat on U (where 
U ⊆ � is open) if there exists a parallel frame for D (with respect to the nonholonomic 
connection) defined on U . If U = � , then we simply say that (�,D,D⟂, �) is flat; on the 
other hand, if (�,D,D⟂, �) is flat on an open neighbourhood about every point in � , then 
we say that it is locally flat.

The P-exterior covariant derivative associated to ∇ , denoted 
d∇
P

∶ Ωk(D,D) → Ωk+1(D,D) , is defined as follows: 

	 (i)	 If U ∈ Ω0(D,D) = � (D) , then d∇
P
U(X) = ∇XU for every X ∈ � (D).

	 (ii)	 If � ∈ Ωk(D,D) , k ≥ 1 , then 

 for X0,… ,Xk ∈ � (D) . (Here X̂i indicates the omission of that element.)
In particular, for a D-valued 1-form � , we have

where X, Y ∈ � (D) . (Note that the torsion of ∇ is exactly the P-exterior covariant deriva-
tive of the identity map id D ∶ D → D.)

3 � The Schouten curvature tensor

Let (�,D,D⟂, �) be a nonholonomic Riemannian manifold, with associated non-
holonomic connection ∇ . As D is nonintegrable, the standard curvature tensor 
(X, Y , Z) ↦ [∇X ,∇Y ]Z − ∇[X,Y]Z is no longer defined. Instead, we have the Schouten cur-
vature tensor K ∈ T 1

3
(D) [10]:

K is clearly skew-symmetric in its first two arguments; hence we may also view it as the 
mapping � (

⋀2
D) → T 1

1
(D) , K(X ∧ Y)Z = K(X, Y)Z . The associated (0, 4)-tensor, which 

we denote K̂ , is given by K̂(W,X, Y , Z) = �(K(W,X)Y , Z).

Z[�(X, Y)] = �(∇ZX, Y) + �(X,∇ZY) and ∇XY − ∇YX = [[X, Y]]

2 �(∇XY , Z) = X[�(Y , Z)] + Y[�(X, Z)] − Z[�(X, Y)]

+ �([[X, Y]], Z) − �([[X, Z]],Y) − �([[Y ,Z]],X).

d∇
P
𝜑(X0,… ,Xk) =

k∑
i=0

(−1)i∇Xi
𝜑(X0,… , �Xi,… ,Xk)

+
∑

0≤i<j≤k

(−1)i+j𝜑([[Xi,Xj]],X0,… , �Xi,… , �Xj,… ,Xk)

d∇
P
�(X, Y) = ∇X�(Y) − ∇Y�(X) − �([[X, Y]]),

K(X, Y)Z = [∇X ,∇Y ]Z − ∇[[X,Y]]Z − [[Q([X, Y]), Z]].
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The symmetries of the Riemannian curvature tensor are well known (see, e.g., [22]). In 
contrast, not all of those symmetries hold for the Schouten curvature tensor. A straightfor-
ward computation yields the following result.

Lemma 3  Let X, Y , Z ∈ � (D) ; then: 

	 (i)	 (d∇
P
)2Z(X, Y) = K(X, Y)Z + [[Q([X, Y]),Z]].

	 (ii)	 (d∇
P
)2 id D(X, Y , Z) = K(X, Y)Z + K(Y , Z)X + K(Z,X)Y .

Since ∇ is torsion free, the first Bianchi identity holds; i.e., (d∇
P
)2 id D ≡ 0 , or 

equivalently,

Remark 2  The second Bianchi identity does not generally hold for the Schouten tensor. 
Indeed, we may view K as an element of Ω2(D, T1

1
(D)) . Furthermore, the nonholonomic 

connection extends to a connection ∇∗ ∶ � (D) × T 1

1
(D) → T 1

1
(D) , which has an associ-

ated P-exterior covariant derivative d∇∗

P
∶ Ωk(D, T 1

1
(D)) → Ωk+1(D, T 1

1
(D)) . The classi-

cal identity is d∇∗

P
K ≡ 0 (see, e.g., [23]); however, in this case we have

Here 
∑

↺(X,Y ,Z) indicates the sum over the cyclic permutations of (X, Y, Z) and JP and JQ are 
the Jacobiators of [[⋅, ⋅]] and Q([⋅, ⋅]) , respectively (i.e., JP(X, Y , Z) =

∑
↺(X,Y ,Z)[[[[X, Y]], Z]] 

and similarly for JQ).

The (0, 4)-tensor K̂ satisfies the following symmetries: 

	(S1)	 K̂(W,X, Y , Z) + K̂(X,W, Y , Z) = 0.
	(S2)	 K̂(W,X, Y , Z) + K̂(W,X, Y , Z) + K̂(W,X, Y , Z) = 0.

However, in contrast to the Riemannian (0, 4)-tensor, K̂ is generally not skew-symmet-
ric in the final two arguments, nor is it symmetric if one swaps the first two arguments 
with the last two. We decompose K̂ into two tensors R̂ and Ĉ , where R̂ is the component 
of K̂ that is skew-symmetric in the last two arguments and Ĉ is the component that is 
symmetric in the last two arguments. Specifically, we define R̂, Ĉ ∈ T 0

4
(D) as

R̂ and Ĉ both satisfy the same two symmetries as K̂ (i.e., (S1) and (S2)); furthermore, we 
have 

	(S3)	 R̂(W,X, Y , Z) + R̂(W,X, Z, Y) = 0.
	(S4)	 R̂(W,X, Y , Z) = R̂(Y , Z,W,X) . (This follows from the first three symmetries.)
	(S5)	 Ĉ(W,X, Y , Z) = Ĉ(W,X, Z, Y).

K(X, Y)Z + K(Y , Z)X + K(Z,X)Y = 0.

d∇
∗

P
K(X, Y , Z) = ∇JP(X,Y ,Z) −L

P

JQ(X,Y ,Z)
−

∑
↺(X,Y ,Z)

[∇X ,L
P

Q([Y ,Z])
].

R̂(W,X, Y , Z) =
1

2
[K̂(W,X, Y , Z) − K̂(W,X, Z, Y)], Ĉ = K̂ − R̂.
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Proposition 8  Let W,Y ,X, Z ∈ � (D) . Then

Proof  From the definition of Ĉ , we have

The first two terms are

Consequently,

Similarly, we have −�(∇[[W,X]]Y , Z) − �(Y ,∇[[W,X]]Z) = −[[W,X]][�(Y , Z)] and

Substituting back into the expression for 2 Ĉ(W,X, Y , Z) yields the result. 	�  ◻

It turns out–at least, when D is strongly nonholonomic–that the curvature tensor Ĉ may 
be interpreted to measure the “geodesic invariance” of D , i.e., the invariance (in a specific 
sense) of D under the geodesic flow. For further details (both on geodesic invariance and 
the aforementioned interpretation of Ĉ ), refer to [2].

Since R̂ satisfies all of the symmetries of the Riemannian (0, 4)-tensor, it has analogous 
algebraic properties. (Heuristically, we may thus view the Schouten tensor K̂ as consisting 
of a “Riemannian” component R̂ and a “remainder” Ĉ .) Hence we shall define a sectional 
curvature, a Ricci tensor, and a scalar curvature analogous to the corresponding tensors in 
Riemannian geometry.

Ĉ(W,X, Y , Z) =
1

2
(L

P

Q([W,X])
�)(Y , Z).

2 Ĉ(W,X, Y , Z) = K̂(W,X, Y , Z) + K̂(W,X, Z, Y)

= �(K(W,X)Y , Z) + �(Y ,K(W,X)Z)

= �([∇W ,∇X]Y , Z) + �(Y , [∇W ,∇X]Z)

− �(∇[[W,X]]Y , Z) − �(Y ,∇[[W,X]]Z)

− �([[Q([W,X]), Y]],Z) − �(Y , [[Q([W,X]), Z]]).

�([∇W ,∇X]Y , Z) = �(∇W∇XY , Z) − �(∇X∇WY , Z)

= W[�(∇XY , Z)] − �(∇XY ,∇WZ) − X[�(∇WY , Z)]

+ �(∇WY ,∇XZ)

= [W,X][�(Y , Z)] −W[�(Y ,∇XZ)] − �(∇XY ,∇WZ)

+ X[�(Y ,∇WZ)] + �(∇WY ,∇XZ),

�(Y , [∇W ,∇X]Z) = [W,X][�(Y , Z)] −W[�(∇XY , Z)] − �(∇WY ,∇XZ)

+ X[�(∇WY , Z)] + �(∇XY ,∇WZ).

�([∇W ,∇X]Y , Z) + �(Y , [∇W ,∇X]Z)

= 2 [W,X][�(Y , Z)] −W[�(Y ,∇XZ) + �(Z,∇XY)] + X[�(∇WY , Z)

+ �(Y ,∇WZ)]

= 2 [W,X][�(Y , Z)] −W[X[�(Y , Z)]] + X[W[�(Y , Z)]]

= [W,X][�(Y , Z)].

− �([[Q([W,X]), Y]], Z) − �(Y , [[Q([W,X]), Z]])

= −Q([W,X])[�(Y , Z)] + (L
P

Q([W,X])
�)(Y , Z).
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Let Sq , q ∈ � be a two-dimensional subspace of Dq and let (Xq, Yq) be a basis for Sq . We 
define the sectional curvature of Sq , denoted R̃(Sq) , as

Here R̂ is viewed as the tensor (W ∧ X, Y ∧ Z) ↦ R̂(W,X, Z, Y) and �̂ is the metric induced 
on 

⋀2
D by � , i.e., �̂(W ∧ X, Y ∧ Z) = �(W, Y)�(X, Z) − �(W, Z)�(X, Y) . We shall also 

write R̃(Sq) as R̃(Xq ∧ Yq) . As in the Riemannian case (see, e.g., [21]), one can show that R̃ 
is well defined (i.e., does not depend on the choice of Xq ∧ Yq ). Furthermore, R̃ determines 
R̂ , in the following sense: suppose F ∈ T 0

4
(D) satisfies the symmetries (S1)–(S4); in par-

ticular, F can be viewed as the tensor F ∶ (W ∧ X, Y ∧ Z) ↦ F(W,X, Z, Y) . If

for every nonzero Xq ∧ Yq ∈
⋀2

D , then R̂ = F.
The Ricci tensor Ric ∈ T 0

2
(D) is defined as Ric = tr 1

1
R , i.e.,

where (Xa) is an orthonormal frame for D . The Ricci tensor is clearly symmetric. The trace 
of the endomorphism �♯◦Ric ♭ ∶ 𝛤 (D) → 𝛤 (D) is called the scalar curvature, denoted 
Scal . (Here S♭ denotes the map X ↦ S(X, ⋅) , while S♯ denotes the map (S♭)−1 whenever the 
tensor S is nondegenerate.) In terms of the orthonormal frame (Xa) , we have

In a similar fashion to the Ricci tensor, let A ∈ T 0

2
(D) be defined as A = tr 1

1
C , i.e.,

where (Xa) is an orthonormal frame for D . In general, A is not symmetric; thus we define 
two tensors Asym and Askew to be the symmetric and skew-symmetric parts of A, respec-
tively. In terms of (Xa) , we then have

(Note that Askew = −
1

2
tr 1

3
C .) It is not difficult to see that both Asym and Askew are trace-free.

R̃(Sq) =
R̂q(Xq ∧ Yq,Xq ∧ Yq)

�̂q(Xq ∧ Yq,Xq ∧ Yq)
.

R̃(Xq ∧ Yq) =
Fq(Xq ∧ Yq,Xq ∧ Yq)

�̂q(Xq ∧ Yq,Xq ∧ Yq)

Ric (X, Y) = tr (Z ↦ R(Z,X)Y) =
∑
a

�(R(Xa,X)Y ,Xa) =
∑
a

R̂(Xa,X, Y ,Xa),

Scal =
∑
a

Ric (Xa,Xa) =
∑
a,b

R̂(Xb,Xa,Xa,Xb) =
∑
a≠b

R̃(Xa ∧ Xb).

A(X, Y) =
∑
a

Ĉ(Xa,X, Y ,Xa),

Asym(X, Y) =
1

2

∑
a

[
Ĉ(Xa,X, Y ,Xa) + Ĉ(Xa, Y ,X,Xa)

]
,

Askew(X, Y) = −
1

2

∑
a

Ĉ(X, Y ,Xa,Xa).
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4 � The Wagner curvature tensor

We briefly describe Wagner’s approach to the construction of his curvature tensor. 
Although Wagner originally expressed his construction using the language of the Ricci 
calculus, there have also been some more modern expositions of his results, most nota-
bly [10]. Our approach largely follows the latter paper, presenting Wagner’s ideas in the 
language of modern differential geometry. (In Sect. 4.1 we discuss in more detail the dif-
ferences between [10] and this paper.) Let (�,D,D⟂, �) be a nonholonomic Riemannian 
structure and let D = D

1 ⊊ ⋯ ⊊ D
N = T� be the flag of D . The nonholonomic connection 

∇1 = ∇ induces a parallel translation along D1-curves. For each component Di+1 of the flag, 
one constructs a Di+1-connection ∇i+1 on D . Such a connection induces a parallel transla-
tion along Di+1-curves; furthermore, ∇i+1 is defined in such a way that it extends ∇i and the 
set of parallel tensors of ∇i+1 coincides with that of ∇i . Finally, one gets a vector bundle 
connection ∇N on D (whose corresponding parallel translation is along any curve in � ), 
with an associated curvature tensor KN ; this is the Wagner curvature tensor. The vanishing 
of KN characterizes the flatness of ∇N , and hence (by construction of ∇2,… ,∇N−1 ), the 
flatness of (�,D,D⟂, �).

4.1 � Definition and basic properties

Let (�,D,D⟂, �) be a nonholonomic Riemannian manifold, where D has degree of non-
holonomy N, and let D1 ⊊ ⋯ ⊊ D

N = T� be the flag of D . In addition, let E1,… , EN−1 be 
distributions on � such that

Let Qi ∶ T𝖬 → E
i denote the projection onto Ei and let Pi ∶ T𝖬 → D

i be the projection 
onto Di = D⊕ E

1 ⊕⋯⊕ E
i−1 defined as P1 = P and Pi+1 = P⊕Q1 ⊕⋯⊕Qi for 

i ≥ 1 . The distributions E1,… , EN−1 play a crucial rôle in the definition of the Wagner cur-
vature tensor, yet in general there is no canonical choice for these distributions. Conse-
quently, the Wagner curvature tensor is not intrinsically defined. (Wagner essentially pro-
posed redefining a nonholonomic Riemannian structure to include E1,… , EN−1 .) For the 
purposes of this paper, by a Wagner structure we shall mean a nonholonomic Riemann-
ian structure (�,D,D⟂, �) , with degree of nonholonomy N ≥ 2 , together with distribu-
tions E1,… , EN−1 such that the Eq. (2) are satisfied. If D is strongly nonholonomic, then 
D

2 = T� = D⊕D
⟂ , i.e., the choice of E1 is canonical. Thus we have the following result.

Proposition 9  Every nonholonomic Riemannian structure (�,D,D⟂, �) with D strongly 
nonholonomic is a Wagner structure.

(Hence, when D is strongly nonholonomic, the Wagner curvature tensor will be intrin-
sic.) Similarly, if � is the restriction �̃|D to D of a Riemannian metric �̃ on � (as in the 
case, for instance, of a nonholonomic mechanical system with kinetic energy Lagrangian 
and constraints linear-in-velocities), then there are canonical choices of the distributions 
E
1,… , EN−1.

Proposition 10  Let (�, �̃) be a Riemannian manifold, D a completely nonholonomic dis-
tribution on � and D⟂ the orthogonal complement of D . Let D = D

1 ⊊ ⋯ ⊊ D
N = T� be 

(2)D
⟂ = E

1 ⊕⋯⊕ E
N−1 and D

i+1 = D
i ⊕ E

i (i = 1,… ,N − 1).
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the flag of D and let Ei be the �̃||Di+1-orthogonal complement of Di in Di+1 , i = 1,… ,N − 1 . 
Then (�,D,D⟂, �̃||D) , together with the distributions E1,… , EN−1 , is a Wagner structure.

Proof  The second part of (2) holds by construction of E1,… , EN−1 . For the first part, since 
D

i = D⊕ E
1 ⊕⋯⊕ E

i−1 and Di
⟂�̃ E

i , we have D ⟂�̃ E
i . That is, D is orthogonal to each 

of E1,… , EN−1 , and hence is orthogonal to E1 ⊕⋯⊕ E
N−1 . Then E1 ⊕⋯⊕ E

N−1 is the 
orthogonal complement of D , whence D⟂ = E

1 ⊕⋯⊕ E
N−1 . 	�  ◻

Let Λi ∶ � (
⋀2

D
i) → � (Ei) , i = 1,… ,N − 1 be the tensors given by 

Λi(X ∧ Y) = Qi([X, Y]) for X, Y ∈ � (Di) . Since D is completely nonholonomic, each 
map Λi is surjective; hence (for a Wagner structure) one can canonically extend � to a 
Riemannian metric.

Theorem 1  (cf. [10]) There exists a unique Riemannian metric �̃ on � satisfying the fol-
lowing conditions: 

	 (i)	 The  decompos i t i on  T� = D⊕ E
1 ⊕⋯⊕ E

N−1 i s  o r thogona l  and 
�� = �⊕ �1 ⊕⋯⊕ �N−1 , where �i = �̃||Ei , i = 1,… ,N − 1.

	 (ii)	 Each map Λi
||(kerΛi)

⟂ ∶ (kerΛi)
⟂ → E

i , i = 1,… ,N − 1 satisfies 

for W ∧ X, Y ∧ Z ∈ (kerΛi)
⟂ , where �̂i is the metric induced 

on 
⋀2

D
i by the metric �i = �⊕ �1 ⊕⋯⊕ �i−1 on D

i , i.e., 
�̂i(W ∧ X, Y ∧ Z) = �i(W,Y)�i(X, Z) − �i(W,Z)�i(X, Y).

Proof  Let �1 = � and let �̂1 be the corresponding metric on 
⋀2

D
1 . Let (ker�1)

⟂ be the 
orthogonal complement of ker𝛥1 ⊆

⋀2
D

1 with respect to �̂1 . As �1 is surjective, we can 
define a metric �1 on E1 by the requirement that the isomorphism �1

||(ker�1)
⟂ ∶ (ker�1)

⟂ → E
1 

is an isometry. Hence we have the metric �2 = �1 ⊕ �1 on D2 = D⊕ E
1 , which 

induces a metric �̂2 on 
⋀2

D
2 . Let �2 be the metric on E2 induced by �2

||(ker�2)
⟂ . Con-

tinuing in this fashion, we get the Riemannian metric �� = �⊕ �1 ⊕⋯⊕ �N−1 on 
T� = D⊕ E

1 ⊕⋯⊕ E
N−1 . 	�  ◻

Fix 1 ≤ i ≤ N − 1 . Let ∇1 = ∇ and let ∇i+1 ∶ � (Di+1) × � (D) → � (D) be the Di+1

-connection on D specified as follows: if Z ∈ � (Di+1) with X = Pi(Z) and A = Qi(Z) , 
then

Here Θi = Λi
||−1(kerΛi)

⟂ and Ki ∶ � (
⋀2

D
i) × � (D) → � (D) is the curvature tensor of ∇i 

defined as

(Note that, as Q([D,D]) = Q1([D,D]) , we have K1 = K .) In particular, for i = N − 1 , we 
have a vector bundle connection ∇N ∶ � (T𝖬) × � (D) → � (D) on D . Let KN be the curva-
ture tensor of this connection:

�i(Λi(W ∧ X),Λi(Y ∧ Z)) = �̂i(W ∧ X, Y ∧ Z)

∇i+1
Z

U = ∇i
X
U + Ki(Θi(A))U + [[A,U]].

Ki(X ∧ Y)U = [∇i
X
,∇i

Y
]U − ∇i

Pi([X,Y])
U − [[Qi([X, Y]),U]].
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KN is called the Wagner curvature tensor of (�,D,D⟂, �).

Theorem 2  (cf. [10]) Given T ∈ T k

�
(D) , we have ∇iT ≡ 0 if and only if ∇i+1T ≡ 0.

Proof  Let T ∈ T k

�
(D) ; we have

where Ki(Θi(A)) is viewed as a derivation in . Suppose that ∇iT ≡ 0 ; then

for every X, Y ∈ � (Di) . We claim that Ki(Θi(A))T +L
P

A
T = 0 for A ∈ � (Ei) . Indeed, sup-

pose that Θi(A) = X ∧ Y  for X, Y ∈ � (Di) ; then

The case when Θi(A) is a C∞(�)-combination of bivector fields follows from the tensorial-
ity of Ki . Hence, if Z ∈ � (Di+1) with X = Pi(Z) and A = Qi(Z) , then

Conversely, suppose ∇i+1T ≡ 0 ; then ∇i
X
T = ∇i+1

X
T = 0 for X ∈ � (Di) , whence ∇iT ≡ 0 . 	

� ◻

Corollary 1 ∇i is metric, i.e., ∇i� ≡ 0 ( i = 1,… ,N).

We have N restricted connections ∇1,… ,∇N on D . The first connection (a nonholo-
nomic, or D-connection on D ) permits parallel translation only along D-curves, whereas 
the last (a vector bundle connection on D ) permits parallel translation along any curve in � . 
In between we have the Di-restricted connections ∇i (for each i = 2,… ,N − 1 ) which per-
mit parallel translation along Di-curves. By Corollary 1, parallel translation (with respect 
to any of the connections ∇1,… ,∇N ) is a linear isometry. For a Di-curve � ∶ [0, 1] → 𝖬 , 
let Πi,t

�
 denote the parallel translation along � with respect to ∇i.

Proposition 11  If � ∶ [0, 1] → 𝖬 is a Di-curve, then Πi,t
�
= Πi+1,t

�
 ( i = 1,… ,N − 1).

Proof  Let � ∶ [0, 1] → 𝖬 be a Di-curve, U0 ∈ D�(0) and V(t) = Πi,t
�
(U0) , W(t) = Πi+1,t

�
(U0) . 

Let (X0
a0
) be an orthonormal frame for D and (Xi

ai
) a frame for Ei , where 1 ≤ a0 ≤ r and 

1 ≤ ai ≤ rank (Ei) . It follows that (X0
a0
,X1

a1
,… ,Xi

ai
) is a frame for Di+1 = D⊕ E

1 ⊕⋯⊕ E
i . 

There exist functions va0 ,wa0 ∈ C
∞([0, 1]) such that V = va0 (X0

a0
◦�) and W = wa0 (X0

a0
◦�) . 

Furthermore, these functions satisfy the ODEs

KN(X ∧ Y)U = [∇N
X
,∇N

Y
]U − ∇N

[X,Y]
U.

∇i+1
Z

T = ∇i
X
T + Ki(Θi(A))T +L

P

A
T , Z = X + A, X ∈ � (Di), A ∈ � (Ei),

Ki(X ∧ Y)T = ∇i
X
∇i

Y
T − ∇i

Y
∇i

X
T − ∇i

Pi([X,Y])
T −L

P

Qi([X,Y])
T

= −L
P

Qi([X,Y])
T

Ki(Θi(A))T = Ki(X ∧ Y)T = [∇i
X
,∇i

Y
]T − ∇Pi([X,Y])

T −L
P

Qi([X,Y])
T

= −L
P

�i(X∧Y)
T = −L

P

�i(Θi(A))
T = −L

P

A
T .

∇i+1
Z

T = ∇i
X
T + Ki(Θi(A))T +L

P

A
T = 0.
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where � a0
bic0

,Ω
a0
bic0

∈ C
∞(�) are defined by ∇i

X
j

bj

X0
c0
= �

a0
bjc0

X0
a0

 (where 0 ≤ j ≤ i ) and 

∇i+1

Xk
bk

X0
c0
= Ω

a0
bkc0

X0
a0

 (where 0 ≤ k ≤ i + 1 ). Since ∇i
X
U = ∇i+1

X
U for X ∈ � (Di) and 

U ∈ � (D) , we have � a0
bjc0

= Ω
a0
bjc0

 for j = 0,… , i . Hence V = W , and so Πi,t
�
= Πi+1,t

�
 . 	�  ◻

Lastly, we state the main result of this section: the vanishing of the Wagner curvature 
tensor characterizes the flat Wagner structures.

Theorem 3  (cf. [10]) A Wagner structure (�,D,D⟂, �) is locally flat if and only if KN ≡ 0.

Proof  The Wagner curvature tensor KN is precisely the curvature tensor of the vector bun-
dle connection ∇N , and so there exists a parallel frame for D on an open set in � if and only 
if KN vanishes identically on that set. Since every parallel vector field with respect to ∇N is 
also parallel with respect to ∇ , it follows that (�,D,D⟂, �) is locally flat exactly when KN 
vanishes identically. 	�  ◻

Remark 3  As for the Schouten tensor, one can use � to lower an index of Ki , obtaining the 
tensor K̂i given by K̂i(X, Y ,U,V) = �(K̂i(X ∧ Y)U,V) for X, Y ∈ � (Di) and U,V ∈ � (D) . 
Each tensor K̂i then decomposes into two tensors R̂i and Ĉi:

We then have the following expression for Ĉi (cf. Proposition 8):

Remark 4  Just as Ĉ may be interpreted in terms of geodesic invariance of D (in the strongly 
nonholonomic case), so too may the tensors Ĉi be interpreted in terms of the geodesic 
invariance of the distributions Di (in the case of a Wagner structure) [2].

Remark 5  Regarding the construction of Wagner’s curvature tensor, we have departed 
slightly from the presentation in [10]; we have also filled in a number of missing details. 
For instance, we have made explicit the dependence of Wagner’s construction on the 
complementary distributions Ei (and show that a strongly nonholonomic structure, and a 
structure arising from a nonholonomic mechanical system, always satisfies the additional 
requirements in order to define Wagner’s tensor). We have also presented the construction 
in a more direct fashion (e.g., skipping the quotients of distributions in favour of using the 
projection mappings directly). This serves to simplify the presentation, and makes the con-
struction more natural (particularly of the induced Riemannian metric in Theorem 1). Fur-
thermore, the definition of the connections ∇2,… ,∇N in this paper is different from that in 
[10] (also in [30]). In [10], ∇i+1 is defined as

where Λ†

i
 is the adjoint of Λi , i.e., Λ†

i
= (��i)♯◦Λ∗

i
◦(�i)♭ . In fact, it turns out that the Λ†

i
 can be 

replaced with any right inverse of Λi , and the crucial property of the ∇i ’s (viz., Theorem 2) 

v̇a0 = −𝛤
a0
bic0

(𝛾)𝛾̇bi vc0 and ẇa0 = −Ω
a0
bic0

(𝛾)𝛾̇biwc0 ,

R̂i(X, Y ,U,V) =
1

2

[
K̂i(X, Y ,U,V) − K̂i(X, Y ,V ,U)

]
, Ĉi = K̂i − R̂i.

Ĉi(X, Y ,U,V) =
1

2
(L

P

Qi([X,Y])
�)(U,V).

∇i+1
Z

U = ∇i
X
U + Ki(Λ

†

i
(A))U + [[A,U]], Z = X + A ∈ � (Di+1), U ∈ � (D),
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will still hold. The approach we employ avoids a particular choice of right inverse to Λi , 
and simplifies the construction. Nevertheless, this means that the definition of Wagner’s 
tensor KN in this paper differs from that in [10, 30]. (See also [5, 14], who also present 
another alternative approach to constructing Wagner’s tensor. In particular, the connections 
∇i+1 are instead defined as mappings � (Di+1) × � (Di) → � (Di) , and the tensors Ki+1 as 
� (

⋀2
D

i+1) × � (Di) → � (Di) .) A key result of this section is that ∇i+1 “extends” ∇i (Theo-
rem 2). Hence, regarding the existence of a parallel vector field U ∈ � (D) , rather than con-
sider the equation ∇U = 0 , we can consider the simpler, equivalent equation ∇NU = 0 . In 
[10] one starts from the equation ∇U = � , where � ∈ T 1

1
(D) , and then one takes � = 0 as 

required. On the other hand, Theorem  2 in fact allows one to consider the existence of a 
parallel tensor field, i.e., the equation ∇T = 0 , where T ∈ T k

�
(D) (a consequence of this is 

that each connection ∇i is metric). We also consider the relation between the parallel trans-
port of ∇i+1 and ∇i , which was not addressed in [10].

4.2 � Algebraic interpretation of curvature tensors

For a vector bundle connection ∇̃ on D , the curvature tensor (X, Y) ↦ [∇̃X , ∇̃Y ] − ∇̃[X,Y] 
can be viewed as measuring the extent to which the mapping , X ↦ ∇̃X 
fails to be a homomorphism (of Lie algebras). A similar interpretation holds for the curva-
ture tensors Ki.

Since the tangent bundle of � decomposes as T� = D⊕ E
1 ⊕⋯⊕ E

N−1 , we 
have a corresponding decomposition LP

T�
= L

P

D
⊕L

P

E1
⊕⋯⊕L

P

EN−1
 . Moreover, as 

D
i+1 = D

i ⊕ E
i = D⊕ E

1 ⊕⋯⊕ E
i , we get 

(Consequently,  is completely nonholonomic: if we define the flag S1 ⊊ S
2 ⊊ ⋯ by 

 and Si+1 = S
i + [Si,Si] , i ≥ 1 , then  and  

We shall also use Pi to denote the projection ; likewise, let Qi be 
the projection .

Lemma 4  Fix 1 ≤ i ≤ N and let , where �1 = L
P

X
+ ��

1
 and 

�2 = L
P

Y
+ ��

2
 for X, Y ∈ � (Di) and . Then

Proof  We have [�1, �2] = [L
P

X
,LP

Y
] + [L

P

X
, ��

2
] + [��

1
,LP

Y
] + [��

1
, ��

2
] . Moreover, since 

, it follows that . 
Consider the term [LP

X
,LP

Y
] ; we have [LP

X
,LP

Y
](f ) = [X, Y][f ] for every f ∈ C

∞(�) , and 
so

for some . Moreover, as X, Y ∈ � (Di) , we have [X, Y] ∈ � (Di+1) . Thus 
[L

P

X
,LP

Y
] = L

P

Pi([X,Y])
+L

P

Qi([X,Y])
+ �� , and so

(48)

Pi([�1, �2]) = [�1, �2] −L
P

Qi([X,Y])
.

[L
P

X
,LP

Y
] = L

P

[X,Y]
+ ��
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Consequently, we have

	�  ◻

Clearly, ∇i
X
 for X ∈ � (Di) is a Di-derivation. The following result asserts that the cur-

vature tensor Ki measures the extent to which Γ
(
D

i
)
→ DerDi

(D) , X ↦ ∇i
X
 fails to be a 

homomorphism from (� (Di),Pi([⋅, ⋅])) to . (Note that these struc-
tures are not Lie algebras, as Pi([⋅, ⋅]) does not generally satisfy the Jacobi identity. Instead 
they are so-called almost Lie structures [24], and so “homomorphism” refers to a homo-
morphism of almost Lie structures.)

Theorem 4  We have

Proof  Let X, Y ∈ � (Di) and U ∈ � (D) . There exist derivations  such 
that ∇i

X
= L

P

X
+ �1 and ∇i

Y
= L

P

Y
+ �2 . Hence, by Lemma  4, we have 

Pi([∇
i
X
,∇i

Y
]) = [∇i

X
,∇i

Y
] −L

P

Qi([X,Y])
 . It follows that

	�  ◻

4.3 � Three‑dimensional nonholonomic Riemannian structures

Flat nonholonomic Riemannian structures in three dimensions were considered in [3]; in 
particular, a characterization of flatness (in three dimensions) was given. This characteri-
zation (in fact, characterizing equation) was obtained in a rather direct way by using an 
intrinsic contact form, as well as the P-exterior covariant derivative and contractions of 
the Schouten curvature tensor. (Moreover, it turns out that the vanishing of the Schouten 
tensor is sufficient for flatness in three dimensions.) We shall relate the foregoing charac-
terization with the Wagner curvature tensor.

Let (�,D,D⟂, �) be a nonholonomic Riemannian structure, where � is three-dimen-
sional (and D is a rank two strongly nonholonomic distribution on � ). There exists a 
1-form � on � (a contact form) such that D = ker� ; this 1-form is fixed up to sign by 
imposing the condition |d�(X1,X2)| = 1 , where (X1,X2) is an orthonormal frame for D . 
The connection ∇2 ∶ � (T𝖬) × � (D) → � (D) is given by

for Z ∈ � (T�) , where X = P(Z) and A = Q(Z) . Here Θ = Λ|−1
(kerΛ)⟂

 , where 
Λ ∶ � (

⋀2
D) → � (D⟂) , X ∧ Y ↦ Q([X, Y]) ; in fact, we have kerΛ = {0} . For conveni-

ence, we shall denote ∇̃ = ∇2 . The Wagner curvature tensor K̃ = K2 is given by

Qi([L
P

X
,LP

Y
]) = [L

P

X
,LP

Y
] −L

P

Qi([X,Y])
.

Pi([�1, �2]) = [�1, �2] −Qi([�1, �2]) = [�1, �2] −Qi([L
P

X
,LP

Y
]) = [�1, �2] −L

P

Qi([X,Y])
.

Ki(X ∧ Y) = Pi([∇
i
X
,∇i

Y
]) − ∇i

Pi([X,Y])
, X, Y ∈ � (Di) (i = 1,… ,N).

Pi([∇
i
X
,∇i

Y
])U − ∇i

Pi([X,Y])
U

= [∇i
X
,∇i

Y
]U − ∇i

Pi([X,Y])
U − [[Qi([X, Y]),U]] = Ki(X ∧ Y)U.

∇2
Z
U = ∇XU + K(Θ(A))U + [[A,U]]
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for X, Y ∈ � (T�) and U ∈ � (D) . Define a tensor R̃ic ∶ � (T𝖬) × � (D) → C
∞(𝖬) as 

follows:

where X ∈ � (T�) , U ∈ � (D) and (X1,X2) is an orthonormal frame for D . (Note that R̃ic 
does not depend on the choice of X1 and X2.)

Theorem 5  Let U ⊆ � be open. (�,D,D⟂, �) is locally flat on U if and only if R̃ic vanishes 
identically on U.

Proof  Let (X0,X1,X2) be a frame on U such that X0 is a frame for D⟂ and (X1,X2) is an 
orthonormal frame for D . We have [Xi,Xj] = ck

ij
Xk for structure constants ck

ij
∈ C

∞(U) 
(where i, j and k take the values 0,  1,  2); moreover, we may assume that c0

21
= 1 . Let 

f01, f02 ∈ C
∞(U) be defined as follows:

Here � =
1

2
Scal =

1

2
(c2

10
− c1

20
) − (c1

21
)2 − (c2

21
)2 − X1[c

2
21
] + X2[c

1
21
] . The expressions for 

f01 and f02 can be found in [3], where it is shown that (�,D,D⟂, �) is flat on U if and only 
if f01 = f02 = 0 . It turns out that f01 and f02 are, up to sign, the only components of K̃ . 
Indeed, a straightforward (but tedious) calculation yields

Accordingly, we have R̃ic (X0,X1) = �(−f01X2,X1) + �(−f02X2,X2) = −f02 . A similar cal-
culation gives R̃ic (X0,X2) = f01 , and so

where (�0, �1, �2) is the coframe dual to (X0,X1,X2) . (Notice that �Ric
♭
◦Λ is completely 

determined by its evaluation on X2 ∧ X1 .) Lastly, if X, Y ∈ � (D) , then R̃ic (X, Y) = 0 . It 
follows that R̃ic vanishes if and only if �Ric

♭
◦Λ vanishes; the result follows. 	�  ◻

Remark 6  We know that (�,D,D⟂, �) is flat if and only if d∇
P
F = F◦� [3], where

K̃(X ∧ Y)U = [∇̃X , ∇̃Y ]U − ∇̃[X,Y]U

R̃ic (X,U) = �(K̃(X1 ∧ X)U,X1) + �(K̃(X2 ∧ X)U,X2),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f01 = (c1
10
− c2

20
)c1

21
+ (c2

10
+ c1

20
)c2

21
+ c0

20
c1
10
−

1

2
c0
10
(c2

10
+ c1

20
) + c0

10
�

+
1

2
X1[c

2
10
+ c1

20
] − X1[�] − X2[c

1
10
]

f02 = (c2
10
+ c1

20
)c1

21
− (c1

10
− c2

20
)c2

21
− c2

20
c0
10
+

1

2
c0
20
(c2

10
+ c1

20
) + c0

20
�

−
1

2
X2[c

2
10
+ c1

20
] − X2[�] + X1[c

2
20
].

K̃(X0 ∧ X1)X1 = f01X2

K̃(X0 ∧ X2)X1 = f02X2

K̃(X1 ∧ X2)X1 = 0

K̃(X0 ∧ X1)X2 = −f01X1

K̃(X0 ∧ X2)X2 = −f02X1

K̃(X1 ∧ X2)X2 = 0.

(�Ric
♭
◦Λ)(X2 ∧ X1) =

�Ric
♭
(X0) = f02𝜈

1 − f01𝜈
2,

F = �♯◦( tr 1
1
K)♭ = �♯◦(Ric ♭ + A♭

sym
+ A♭

skew
)
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and �(X1 ∧ X2) = d�(X1,X2)P(Z) . Here (X1,X2) is an orthonormal frame for D and 
Z ∈ � (T�) is the Reeb vector field of � (i.e., the unique—up to sign—vector field on � 
such that iZ� = 1 and iZd� = 0 ). It turns out that �♯◦�Ric

♭
◦Λ = d∇

P
F − F◦𝜌.

5 � An alternative approach

The nonholonomic connection, as well as the connections ∇2,… ,∇N in the case of a Wag-
ner structure, can be equivalently viewed as horizontal lifts/distributions. Accordingly, we 
shall consider curvature from this alternative perspective. In particular, we shall express the 
Schouten curvature tensor K, as well as the curvature tensors K1,… ,KN , in terms of horizon-
tal lifts of vector fields. (As a corollary, we then characterize the vanishing of the curvature 
tensors in terms of involutivity conditions for the associated horizontal distributions.) We shall 
also show that the connections ∇1,… ,∇N are equivalently formulated as a flag of horizontal 
distributions on D.

5.1 � The Schouten tensor

Let (�,D,D⟂, �) be a nonholonomic Riemannian manifold with associated nonholonomic 
connection ∇ . We can extend ∇ to a vector bundle connection ∇̊ on D as follows (cf. [4]):

(Note that ∇̊ depends only on D , D⟂ and � , hence it is intrinsic to the nonholo-
nomic Riemannian structure.) The curvature tensor of ∇̊ is the (1,  3)-tensor field 
R̊ ∶ 𝛤 (T𝖬) × 𝛤 (T𝖬) × 𝛤 (D) → 𝛤 (D) given by R̊(X, Y)U = [∇̊X , ∇̊Y ]U − ∇̊[X,Y]U . 
Clearly, we have R̊(X, Y) = K(X, Y) whenever X, Y ∈ � (D).

Proposition 12  Let U ⊆ � be open. If R̊ ≡ 0 on U , then (�,D,D⟂, �) is locally flat on U . 
Conversely, if (Ua) is a parallel frame for D defined on U such that [Ua,𝛤 (D⟂)] ⊆ 𝛤 (D⟂) , 
then R̊ ≡ 0 on U.

Proof  Suppose R̊ ≡ 0 on U . Since ∇̊ is a vector bundle connection on D , the vanishing of 
its curvature tensor R̊ implies the existence of a parallel frame (Ua) for D on U . (Here “par-
allel” means “parallel with respect to ∇̊.”) That is, ∇̊ZUa = 0 for every Z ∈ �U(T�) . In par-
ticular, taking Z ∈ �U(D) , it follows that ∇Ua ≡ 0 , and so (�,D,D⟂, �) is locally flat on U.

Conversely, suppose there exists a parallel (with respect to ∇ ) frame (Ua) for D defined 
on U ; then ∇̊XUa = 0 for every X ∈ �U(D) . On the other hand, we have ∇̊AUa = [[A,Ua]] 
for every A ∈ �U(D

⟂) . Accordingly, if [Ua,𝛤 (D⟂)] ⊆ 𝛤 (D⟂) , then ∇̊AUa = 0 , i.e., (Ua) is 
also parallel with respect to ∇̊ . It follows that the curvature tensor of ∇̊ vanishes on U . 	
� ◻

Let � ∶ D → 𝖬 be the natural projection. Associated to the nonholonomic connection ∇ 
and its extension ∇̊ are the restricted connections

and

∇̊ ∶ 𝛤 (T𝖬) × 𝛤 (D) → 𝛤 (D), ∇̊Z = ∇P(Z) +L
P

Q(Z)
.

h ∶ �∗D → TD, h(Uq,Xq) = TqU ⋅ Xq − vUq
⋅ ∇Xq

U(q)
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respectively. Notice that f ||�∗D
= h ; in particular, if X ∈ � (D) , then Xf = Xh (where 

Xf  is the f-lift of X, and Xh is the h-lift of X). Let V = ker T� be the vertical distribu-
tion, H = im h the horizontal distribution of h and F = im f  the horizontal distribution 
of f. We have H ⊊ F  ; moreover, by Proposition 4, it follows that V ∩H = V ∩ F = {0} , 
V +H ⊊ TD and V + F = TD . That is,

Let H
⟂ denote the distribution on D given by H

⟂ = im (f |�∗D⟂ ) , i.e., 
H

⟂

Uq
= span {f (Uq,Xq) ∶ Xq ∈ D

⟂

q
} for each Uq ∈ D . We have �∗H

⟂ = D
⟂ and 

F = H⊕H
⟂.

Remark 7  We have

As noted in, e.g., [11], a nonholonomic connection on D is precisely the specification 
of a �t-invariant complement H to V in (T�)−1(D) , where �t ∶ D → D is the dilation 
�t(Uq) = et Uq . Indeed, given such a complement, we have �∗H = D , V ∩H = {0} and 
(�t)∗H = H . Hence, by Proposition  4 and Proposition  5, there exists a unique linear D
-connection h on D with im h = H.

Let V ∶ TD → V , P ∶ TD → V⊕H and Q ∶ TD → H
⟂ denote the pro-

jections corresponding to the decomposition TD = V⊕H⊕H
⟂ . Let 

[[⋅, ⋅]] ∶ 𝛤 (TD) × 𝛤 (TD) → 𝛤 (V⊕H) be the projected Lie bracket P([⋅, ⋅]) . If X ∈ � (F) 
is projectable, then P(X) = P(�∗X)

h and Q(X) = Q(�∗X)
f .

Theorem 6  We have

for X, Y ∈ � (D) and Uq ∈ D.

Proof  Let X, Y ∈ � (D) and � ∈ � (D∗) . We may interpret the (1, 1)-tensor field K(X, Y) as 
an element of of . In particular, K(X, Y)� ∈ � (D∗) is given by

for U ∈ � (D) . By Lemma 2, we have Zf [𝜔] = ∇̊Z𝜔 for Z ∈ � (T�) ; hence

Since �∗
(
[Xh, Yh] − [X, Y]f

)
= [�∗X

h,�∗Y
h] − [X, Y] = 0 , we have that [Xh, Yh] − [X, Y]f  

is vertical. Hence

f ∶ 𝜋∗T𝖬 → TD, f (Uq, Zq) = TqU ⋅ Zq − vUq
⋅ ∇̊Zq

U(q),

V⊕H ⊊ V⊕ F = TD.

V⊕H = (T𝜋)−1(D) and V⊕H⟂ = (T𝜋)−1(D⟂).

K(X, Y)Uq = −v−1
Uq

⋅ ([Xh, Yh](Uq) − [X, Y]f (Uq))

= −v−1
Uq

⋅ V([[Xh, Yh]])(Uq)

(K(X, Y)�)(U) = K(X, Y)(�(U)) − �(K(X, Y)U) = −�(K(X, Y)U),

K(X, Y)𝜔 = [∇X ,∇Y ]𝜔 − ∇̊[X,Y]𝜔 = [Xh, Yh][𝜔] − [X, Y]f [𝜔].
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and so K(X,Y)� = V ([[Xh
,Yh]])[�] . Let Uq ∈ D ; then

By Lemma 1, we thus have

Since � is arbitrary, the result follows. 	�  ◻

Corollary 2  K ≡ 0 if and only if  [[H, H]] ⊆ H.

5.2 � The Wagner tensor

Suppose that (�,D,D⟂, �) is a Wagner structure (with degree of nonholonomy N). 
Associated to each ∇i is the restricted connection

We have h1 = h and hi+1||�∗Di = hi ; let Hi = im hi , Qi = im (hi+1|�∗Ei ) and let V be the ver-
tical distribution; then Hi+1 = H

i ⊕Q
i , and hence

Let V ∶ TD → V , P ∶ TD → V⊕H and Qi ∶ TD → Q
i be the projections corresponding 

to the decomposition (3); similarly, let Pi = P⊕Qi ⊕⋯⊕Qi−1 be the projection onto 
V⊕H

i (by convention, we take P1 = P ). If X ∈ � (HN) is projectable, then

A result similar to Theorem 6 holds for each of the curvature tensors K1,… ,KN . Let ∇̊i be 
the Di+1-connection on D given by

Let f i ∶ �∗D
i+1

→ TD be the associated horizontal lift, i.e.,

[Xh
, Yh] − [X, Y]f

= V ([Xh
, Yh] − [X, Y]f )

= V ([[Xh
, Yh]] − [[X, Y]]h) + V (Q([Xh

, Yh]) −Q([X, Y])f )

= V ([[Xh
,Yh]]),

�q(K(X, Y)Uq) = −(K(X, Y)�)q(Uq) = −(K(X, Y)�)(Uq)

= −V ([[Xh
, Yh]])[�](Uq)

= −d�(Uq)(V ([[Xh
, Yh]])(Uq)).

�q(K(X, Y)Uq) = −�q(v
−1
Uq

⋅ V ([[Xh
, Yh]])(Uq)).

hi ∶ �∗D
i
→ TD, hi(Uq,Xq) = TqU ⋅ Xq − vUq

⋅ ∇i
Xq
U(q).

(3)TD = V⊕H
N = V⊕H⊕Q

1 ⊕⋯⊕Q
N−1.

P(X) = P(�∗X), Qi(X) = Qi(�∗X)
hi+1 and Pi(X) = Pi(�∗X)

hi .

∇̊i
X
= ∇i

Pi(X)
+L

P

Qi(X)
, X ∈ 𝛤 (Di+1).

f i(Uq,Xq) = TqU ⋅ Xq − vUq
⋅ ∇̊i

Xq
U(q), (Uq,Xq) ∈ 𝜋∗D

i+1.
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Theorem 7  We have

for X, Y ∈ � (Di) and Uq ∈ D ( i = 1,… ,N).

Proof  (The proof is similar to that of Theorem  6, thus we shall omit some 
details.) Let X, Y ∈ � (Di) and � ∈ � (D∗) ; then [X, Y] ∈ � (Di+1) , and hence 
Ki(X, Y)𝜔 = [∇i

X
,∇i

Y
]𝜔 − ∇̊i

[X,Y]
𝜔 . In fact, by Lemma 2, we have

Clearly, we have that [Xhi , Yhi ] − [X, Y]f
i is vertical; thus 

[Xhi , Yhi ] − [X, Y]f
i

= V(Pi([X
hi , Yhi ])) , and so Ki(X, Y)� = V(Pi([X

hi , Yhi ]))[�] . If 
Uq ∈ D , then

whence Ki(X, Y)Uq = −v−1
Uq

⋅ V(Pi([X
hi , Yhi ]))(Uq) . 	�  ◻

Corollary 3  We have Ki ≡ 0 if and only if Pi([H
i,Hi]) ⊆ H

i . In particular, (�,D,D⟂, �) is 
locally flat (i.e., KN ≡ 0 ) if and only if HN is integrable.

The restricted connections ∇1,… ,∇N are equivalently specified by the horizontal lifts 
h1,… , hN , which are in turn equivalently specified by the horizontal distributions H1,… ,HN . 
It follows that Wagner’s construction of ∇1,… ,∇N is equivalently formulated as the flag of 
horizontal distributions on D

This flag can be constructed iteratively, starting with H1 = H.

Theorem 8  We have

Proof  Let S 1 = H and S i+1 = S
i + span {[Xhi , Yhi ] ∶ X ∧ Y ∈ (ker�

i
)⟂} for i ≥ 1 . We use 

induction on i to prove that Si = H
i ; by definition, we have S1 = H

1 . Suppose that Si = H
i 

for some 1 ≤ i ≤ N − 1 . We claim that �∗S
i+1 = D

i+1 and V ∩ S i+1 = {0} . Let 
WUq

+ [Xhi , Yhi ](Uq) ∈ S
i+1
Uq

 , where Uq ∈ D ; then

and so 𝜋∗H i+1 ⊆ D
i+1 . Conversely, let Wq ∈ D

i
q
 and Xq ∈ E

i
q
 ; then Wq + Xq is an arbitrary 

element of Di+1
q

= D
i
q
⊕ E

i
q
 . Since Si = H

i by the inductive hypothesis, we have �∗S
i = D

i . 
Accordingly, there exists VUq

+ [Y , Z](Uq) ∈ S
i
Uq

 such that TUq
� ⋅ (VUq

+ [Y , Z](Uq)) = Wq . 
Let A ∧ B = Θi(X) ∈ (ker�i)

⟂ , where X ∈ � (Ei) is a smooth extension of Xq . (The case 

Ki(X, Y)Uq = −v−1
Uq

⋅ ([Xhi , Yhi ](Uq) − [X, Y]f
i

(Uq))

= −v−1
Uq

⋅ V(Pi([X
hi , Yhi ]))(Uq)

Ki(X, Y)� = [Xhi , Yhi ][�] − [X, Y]f
i

[�].

�q(K
i(X, Y)Uq) = −V(Pi([X

hi , Yhi ]))(Uq)

= −�q(v
−1
Uq

⋅ V(Pi([X
hi , Yhi ]))(Uq)),

H
1 ⊊ H

2 ⊊ ⋯ ⊊ H
N−1 ⊊ H

N .

H
i+1 = H

i + {[Xhi , Yhi ] ∶ X ∧ Y ∈ (kerΛi)
⟂} (i = 1,… ,N − 1).

TUq
� ⋅

(
WUq

+ [Xhi , Yhi ](Uq)
)
= TUq

� ⋅WUq
+ [X, Y](q) ∈ D

i
q
+ [Di,Di]q = D

i+1
q

,
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when Θi(X) is a C∞(�)-combination of bivector fields from � (Di) can be treated in a simi-
lar fashion.) Then

Hence �∗S
i+1 = D

i+1 . Let WUq
+ [Xhi , Yhi ](Uq) ∈ VUq

∩ S
i+1
Uq

 , Uq ∈ D . We have

Both non-vertical components must vanish; in particular, Qi([X, Y])(q) = 0 , i.e., 
(X ∧ Y)(q) ∈ ker�i,q . Since X ∧ Y ∈ (ker�i)

⟂ , it follows that (X ∧ Y)(q) = 0 ; then

whence V ∩ S
i+1 = {0} . By uniqueness of the connection associated to Hi+1 (Proposi-

tion 5), it follows that Si+1 = H
i+1 . This completes the proof of the inductive case. 	�  ◻

6 � Concluding remark

Further investigation (in the vein of [2]) into geometric interpretations of the Schouten and 
Wagner curvature tensors (including the tensors K2,… ,KN−1 involved in Wagner’s con-
struction) would be a worthwhile undertaking. A natural next step would be to consider 
how curvature affects nonholonomic geodesics; for instance, to generalize the notion of 
a Jacobi field to nonholonomic Riemannian geometry. A thorough study of curvature in 
lower dimensions would also be a topic of interest.

Data availibility  The authors declare that data availability is not applicable
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