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Abstract
In this paper, we consider an iterative system of singular multipoint boundary value prob-
lems on time scales. The sufficient conditions are derived for the existence of infinitely 
many positive solutions by applying Krasnoselskii’s cone fixed point theorem in a Banach 
space.

Keywords  Iterative system · Time scale · Singularity · Cone · Krasnoselskii’s fixed point 
theorem · Positive solutions

Mathematics Subject Classification  Primary 34N05 · Secondary 34B18

1  Introduction

Differential equations with state-dependent delays have attracted a great deal of interest to 
the researchers since they widely arise from application models, such as population models 
[4], mechanical models [19], infection disease transmission [28], the dynamics of econom-
ical systems [5], position control [9], two-body problem of classical electrodynamics [15], 
etc. As special type of state-dependent delay-differential equations, iterative differential 
equations have distinctive characteristics and have been investigated in recent years, e.g. 
equivariance [30], analyticity [31], convexity [27], monotonicity [16], smoothness [12]. 
Recently [17], Feckan, Wang and Zhao established the maximal and minimal nondecreas-
ing bounded solutions of the following iterative functional differential equations
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where �(i)(t) ∶= x(�(i−1))(t) indicates the i-th iterate of � , where i = 1, 2,… , n, by the 
method of lower and upper solutions.

On the other hand, the theory of time scales was created to unify continuous and dis-
crete analysis. Difference and differential equations can be studied simultaneously by stud-
ying dynamic equations on time scales. A time scale is any closed and nonempty subset of 
the real numbers. So, by this theory, we can extend the continuous and discrete theories 
to cases ”in between.” These types of time scales play an important role for applications, 
since most of the phenomena in the environment are neither only discrete nor only continu-
ous, but they possess both behaviours. Research in this area of mathematics has exceeded 
by far a thousand publications, and numerous applications to literally all branches of sci-
ence such as statistics, biology, economics, finance, engineering, physics, and operations 
research have been given. Moreover, basic results on this issue have been well documented 
in the articles [1, 2] and monographs of Bohner and Peterson [7, 8]. There is a great deal of 
research activity devoted to positive solutions of dynamic equations on time scales, see for 
example [14, 20, 21, 24–26] and references therein.

In [22], Liang and Zhang studied countably many positive solutions for nonlinear singu-
lar m−point boundary value problems on time scales,

by using the fixed-point index theory and a new fixed-point theorem in cones.
In [13], Dogan considered second order m–point boundary value problem on time 

scales,

and established existence of multiple positive solutions by applying fixed-point index 
theory.

Many researchers have concentrated on studying first order iterative differential equa-
tions by different approaches such as fixed point theory, Picard’s successive approximation 
and the technique of nonexpansive operators. But the literature related to the equations of 
higher order is limited since the presence of the iterates increases the difficulty of studying 
them. This motivates us to investigate the following second order dynamical iterative sys-
tem of boundary value problems with singularities on time scales,

��(t) = �
(
t, �(1)(t), �(2)(t),… , �(n)(t)

)
,

(
�(�Δ(t))

)∇
+ a(t)f

(
�(t)

)
= 0, t ∈ [0, a]

�

�(0) =

m−2∑
i=1

ai�(�i), �
Δ(a) = 0,

(
ϕp(�

Δ(t))
)∇

+ ω(t)f
(
t, �(t)

)
= 0, t ∈ [0, T]

�

�(0) =

m−2∑
i=1

ai�(�i), ϕp(�
Δ(T)) =

m−2∑
i=1

biϕp(�
Δ(�i)),

(1)
�Δ∇
�

(t) + λ(t)�
�

(
�
�+1(t)

)
= 0, 1 ≤ � ≤ n, t ∈ (0, σ(a)]

�

�n+1(t) = �1(t), t ∈ (0, σ(a)]
�
,

}

(2)�Δ
�
(0) = 0, �

�
(σ(a)) =

n−2∑
k=1

ck��(ζk), 1 ≤ � ≤ n,
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where n ∈ ℕ , ck ∈ ℝ
+ ∶= [0,+∞) with 

∑n−2

k=1
ck < 1, 0 < ζk < σ(a)∕2, 

k ∈ {1, 2,… , n − 2, }, λ(t) =
∏m

i=1
λi(t) and each λi(t) ∈ L

pi
∇
((0, σ(a)]

�
)(pi ≥ 1) has a sin-

gularity in the interval (0, σ(a)∕2]
�
. By applying Hölder’s inequality and Krasnoselskii’s 

cone fixed point theorem in a Banach space, we establish the existence of infinitely many 
positive solutions for the system (1). Equation (1) in real continuous time scales describes 
diffusion phenomena with a source or a reaction term. For instance, in thermal conduction, 
it can be interpreted as the one-dimensional heat conduction equation which models the 
steady-states of a heated bar of length a with a controller at � = a that adds or removes heat 
according to a sensor, while the left endpoint is maintained at 0◦ C and � is the distributed 
temperature source function depending on delayed temperatures. We refer the interested 
reader to [10, 11] and the references therein for more details.

We assume the following conditions are true throughout the paper: 

(H1)	� �
�
∶ [0,+∞) → [0,+∞) is continuous.

(H2)	� there exists a sequence {tr}∞r=1 such that 0 < tr+1 < tr < σ(a)∕2,

 Further, for each i ∈ {1, 2,… ,m}, there exist δi > 0 such that λi(t) > δi.

2 � Preliminaries

In this section, we introduce some basic definitions and lemmas which are useful for our 
later discussions.

Definition 2.1  [7] A time scale �  is a nonempty closed subset of the real numbers ℝ. �  has 
the topology that it inherits from the real numbers with the standard topology. It follows 
that the jump operators σ, � ∶ � → � , and the graininess � ∶ � → [0,+∞) are defined by 
σ(t) = inf{τ ∈ � ∶ τ > t}, 𝜌(t) = sup{τ ∈ � ∶ τ < t}, and �(t) = σ(t) − t, respectively.

•	 The point t ∈ �  is left-dense, left-scattered, right-dense, right-scattered if �(t) = t, 
𝜌(t) < t, σ(t) = t, σ(t) > t, respectively.

•	 If �  has a right-scattered minimum m, then �� = ��{m} ; otherwise �� = � .

•	 If �  has a left-scattered maximum m, then � � = ��{m} ; otherwise � � = � .

•	 A function f ∶ 𝕋 → ℝ is called rd-continuous provided it is continuous at right-dense 
points in �  and its left-sided limits exist (finite) at left-dense points in � . The set of all 
rd-continuous functions f ∶ 𝕋 → ℝ is denoted by Crd = Crd(𝕋 ) = Crd(𝕋 ,ℝ).

•	 A function f ∶ 𝕋 → ℝ is called ld-continuous provided it is continuous at left-dense 
points in �  and its right-sided limits exist (finite) at right-dense points in � . The set of 
all ld-continuous functions f ∶ 𝕋 → ℝ is denoted by Cld = Cld(𝕋 ) = Cld(𝕋 ,ℝ).

•	 By an interval time scale, we mean the intersection of a real interval with a given time 
scale. i.e., [a, b]

�
= [a, b] ∩ � . Other intervals can be defined similarly.

Definition 2.2  [6] Let �Δ and �∇ be the Lebesgue Δ− measure and the Lebesgue ∇−meas-
ure on � , respectively. If A ⊂ �  satisfies �Δ(A) = �∇(A), then we call A is measurable on � , 
denoted �(A) and this value is called the Lebesgue measure of A. Let P denote a proposi-
tion with respect to t ∈ � .

lim
r→∞

tr = t∗ < σ(a)∕2, lim
t→tr

λi(t) = +∞, i = 1, 2,… ,m.



680	 M. Khuddush et al.

1 3

	 (i)	 If there exists Γ1 ⊂ A with �Δ(Γ1) = 0 such that P holds on A�Γ1, then P is said to 
hold Δ–a.e. on A.

	 (ii)	 If there exists Γ2 ⊂ A with �∇(Γ2) = 0 such that P holds on A�Γ2, then P is said to 
hold ∇–a.e. on A.

Definition 2.3  [3, 6] Let E ⊂ �  be a Δ–measurable set and p ∈ ℝ̄ ≡ ℝ ∪ {−∞,+∞} be 
such that p ≥ 1 and let f ∶ E → ℝ̄ be Δ–measurable function. We say that f belongs to 
L
p

Δ
(E) provided that either

or there exists a constant M ∈ ℝ such that

Lemma 2.4  [29] Let E ⊂ �  be a Δ–measurable set. If f ∶ 𝕋 → ℝ is Δ–integrable on E,   
then

where

IE ∶= {i ∈ I ∶ ti ∈ E} and {ti}i∈I , I ⊂ ℕ, is the set of all right-scattered points of � .

Definition 2.5  [29] Let E ⊂ �  be a ∇–measurable set and p ∈ ℝ̄ ≡ ℝ ∪ {−∞,+∞} be 
such that p ≥ 1 and let f ∶ E → ℝ̄ be ∇–measurable function. Say that f belongs to Lp

∇
(E) 

provided that either

or there exists a constant C ∈ ℝ such that

Lemma 2.6  [29] Let E ⊂ �  be a ∇–measurable set. If f ∶ 𝕋 → ℝ is a ∇–integrable on E,  
then

where IE ∶= {i ∈ I ∶ ti ∈ E} and {ti}i∈I , I ⊂ ℕ, is the set of all left-scattered points of � .

Lemma 2.7  For any �(t) ∈ Cld((0, σ(a)]� ), the boundary value problem,

∫E

|f |p(s)Δs < ∞ if p ∈ [1,+∞),

|f | ≤ M, Δ − a.e. on E if p = +∞.

∫E

f (s)Δs = ∫E

f (s)ds +
∑
i∈IE

(
σ(ti) − ti

)
f (ti) + r(f ,E),

r(f ,E) =

{
��(E)f (M), if � ∈ � ,

0, if � ∉ � ,

∫E

|f |p(s)∇s < ∞ if p ∈ ℝ,

|f | ≤ C, ∇ − a.e. on E if p = +∞.

∫E

f (s)∇s = ∫E

f (s)ds +
∑
i∈IE

(
ti − �(ti)

)
f (ti),

(3)�Δ∇
1

(t) + �(t) = 0, t ∈ (0, σ(a)]
�
,
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has a unique solution

where

Proof  Suppose �1 is a solution of (3), then

where � = �Δ
1
(0) and � = �1(0) . Using conditions (4), we get � = 0 and

So, we have

Plugging t = ζk and multiplying with ck then summing from 1 to n − 2 in the above equa-
tion (7), we obtain

Substituting (8) into (7), we get required solution (5). This completes the proof. 	�  ◻

Lemma 2.8  Suppose (H1)–(H2) hold. Let η ∈ (0, σ(a)∕2)
�
 with ζk ∈ [η, σ(a) − η]

�
, 

k ∈ {1, 2,⋯ , n − 2}, the kernel ℵ(t, τ) have the following properties: 

	 (i)	 0 ≤ ℵ(t, τ) ≤ ℵ(τ, τ) for all t, τ ∈ [0, σ(a)]
�
,

	 (ii)	 η

σ(a)
ℵ(τ, τ) ≤ ℵ(t, τ) for all t ∈ [η, σ(a) − η]

�
 and τ ∈ [0, σ(a)]

�
.

Proof  (i) is evident. To prove (ii), let t ∈ [η, σ(a) − η]
�
 and τ ≤ t. Then

(4)�Δ
1
(0) = 0, �1(σ(a)) =

n−2∑
k=1

ck�1(ζk)

(5)�1(t) = ∫
σ(a)

0

ℵ(t, τ)�(τ)∇τ +
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ)�(τ)∇τ,

(6)ℵ(t, τ) =

{
σ(a) − t, if 0 ≤ τ ≤ t ≤ σ(a),

σ(a) − τ, if 0 ≤ t ≤ τ ≤ σ(a).

�1(t) = −∫
t

0 ∫
τ

0

�(τ1)∇τ1Δτ + �t + �

= −∫
t

0

(t − τ)�(τ)∇τ + �t + �,

� = ∫
σ(a)

0

(σ(a) − τ)�(τ)∇τ +

n−2∑
k=1

ck�1(ζk).

(7)

�1(t) = − ∫
t

0

(t − τ)�(τ)∇τ + ∫
σ(a)

0

(σ(a) − τ)�(τ)∇τ +

n−2∑
k=1

ck�1(ζk)

=∫
σ(a)

0

ℵ(t, τ)�(τ)∇τ +

n−2∑
k=1

ck�1(ζk).

(8)�1(ζk) =
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ)�(τ)∇τ.
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For t ≤ τ,

This completes the proof. 	�  ◻

Notice that an n−tuple (�1(t), �2(t), �3(t),… , �n(t)) is a solution of the iterative boundary 
value problem (1)–(2) if and only if

and

That is

Let � be the Banach space Cld((0, σ(a)]𝕋 ,ℝ) with the norm ‖�‖ = max
t∈(0,σ(a)]

�

��(t)�. For 

η ∈ (0, σ(a)∕2)
�
, we define the cone �η ⊂ � as

For any �1 ∈ �η, define an operator L ∶ �η → � by

ℵ(t, τ)

ℵ(τ, τ)
=

σ(a) − t

σ(a) − τ
≥ η

σ(a)
.

ℵ(t, τ)

ℵ(τ, τ)
=

σ(a) − τ

σ(a) − τ
= 1 ≥ η

σ(a)
.

�
�
(t) = ∫

σ(a)

0

ℵ(t, τ)λ(τ)�
�
(�

�+1(τ))∇τ

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ)λ(τ)��(��+1(τ))∇τ

�
�+1(t) = �1(t), t ∈ (0, a]

�
, 1 ≤ � ≤ n.

�1(t) = ∫
σ(a)

0

ℵ(t, τ1)λ(τ1)�1

�
∫

σ(a)

0

ℵ(τ1, τ2)λ(τ2)�2

�
∫

σ(a)

0

ℵ(τ2, τ3)⋯

× �n−1

�
∫

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
∫

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
∫

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1.

�η =

�
� ∈ � ∶ �(t) is nonnegative and min

t∈[η, σ(a)−η]
�

�(t) ≥ η

σ(a)
‖�(t)‖

�
,
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Lemma 2.9  Assume that (H1)–(H2) hold. Then for each η ∈ (0, σ(a)∕2)
�
, L(�η) ⊂ �η and 

L ∶ �η → �η are completely continuous.

Proof  From Lemma  2.8, ℵ(t, τ) ≥ 0 for all t, τ ∈ (0, σ(a)]
�
. So, (L�1)(t) ≥ 0. Also, for 

�1 ∈ �η, we have

Again from Lemma 2.8, we get

(L�1)(t) = ∫
σ(a)

0

ℵ(t, τ1)λ(τ1)�1

�
∫

σ(a)

0

ℵ(τ1, τ2)λ(τ2)�2

�
∫

σ(a)

0

ℵ(τ2, τ3)⋯

× �n−1

�
∫

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
∫

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
∫

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1.

‖L�1‖ = max
t∈(0,σ(a)]

�
�

σ(a)

0

ℵ(t, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

≤ �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1.
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It follows from the above two inequalities that

So, L�1 ∈ �η and thus L(�η) ⊂ �η. Next, by standard methods and Arzela-Ascoli theorem, 
it can be proved easily that the operator L  is completely continuous. The proof is com-
plete. 	�  ◻

3 � Infinitely many positive solutions

For the the existence of infinitely many positive solutions for iterative system of boundary 
value problem (1)–(2). We apply following theorems.

Theorem 3.1  (Krasnoselskii’s [18]) Let B be a cone in a Banach space E and �1, �2 are 
open sets with 0 ∈ �1, �1 ⊂ �2. Let K ∶ B ∩ (�2��1) → B be a completely continuous oper-
ator such that 

(a)	� ‖Kv‖ ≤ ‖v‖, v ∈ B ∩ ��1, and ‖Kv‖ ≥ ‖v‖, v ∈ B ∩ ��2, or
(b)	� ‖Kv‖ ≥ ‖v‖, v ∈ B ∩ ��1, and ‖Kv‖ ≤ ‖v‖, v ∈ B ∩ ��2.

 Then K has a fixed point in B ∩ (�2��1).

Theorem  3.2  (Hölder’s Inequality  [3, 23]) Let f ∈ L
p

∇
(I) with p > 1, g ∈ L

q

∇
(I) with 

q > 1, and 1
p
+

1

q
= 1. Then fg ∈ L1

∇
(I) and ‖fg‖L1

∇
≤ ‖f‖Lp

∇
‖g‖Lq

∇
. where

and I = [a, b]
�
. Moreover, if f ∈ L1

∇
(I) and g ∈ L∞

∇
(I). Then fg ∈ L1

∇
(I) and 

‖fg‖L1
∇
≤ ‖f‖L1

∇
‖g‖L∞

∇
.

Consider the following three possible cases for λi ∈ L
pi
Δ
(0, σ(a)]

�
∶

min
t∈[η,a−η]

�

�
(L�1)(t)

� ≥ η

σ(a)

�
�

σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

�
.

min
t∈[η,a−η]

�

�
(L�1)(t)

� ≥ η

σ(a)
‖L�1‖.

‖f‖Lp
∇
∶=

⎧⎪⎨⎪⎩

�
�I

�f �p(s)∇s
� 1

p

, p ∈ ℝ,

inf
�
K ∈ ℝ ∕ �f � ≤ K ∇ − a.e., on I

�
, p = ∞,
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Firstly, we seek infinitely many positive solutions for the case 
m∑
i=1

1

pi
< 1.

Theorem  3.3  Suppose (H1)–(H2) hold, let {ηr}∞r=1 be a sequence with tr+1 < ηr < tr. Let 
{Γr}

∞
r=1

 and {Λr}
∞
r=1

 be such that

where

Assume that �
�
 satisfies 

(�1)	� �
�
(�) ≤ �1Γr

2
 ∀ t ∈ (0, σ(a)]

�
, 0 ≤ � ≤ Γr, where 

(�2)	� �
�
(�) ≥ θΛr

2
 ∀ t ∈ [ηr, σ(a) − ηr]� ,

ηr

σ(a)
Λr ≤ � ≤ Λr.

 Then the iterative boundary value problem (1)–(2) has infinitely many solutions 
{(�

[r]

1
, �

[r]

2
, ⋅ ⋅ ⋅, �[r]

n
)}∞

r=1
 such that �[r]

�
(t) ≥ 0 on (0, σ(a)]

�
, 𝓁 = 1, 2, ⋅ ⋅ ⋅, n and r ∈ ℕ.

Proof  Let

be open subsets of �. Let {ηr}∞r=1 be given in the hypothesis and we note that

for all r ∈ ℕ . For each r ∈ ℕ, we define the cone �ηr by

Let �1 ∈ �ηr ∩ ��1,r. Then, �1(τ) ≤ Γr = ‖�1‖ for all τ ∈ (0, σ(a)]
�
. By (�1) and for 

τm−1 ∈ (0, σ(a)]
�
, we have

m∑
i=1

1

pi
< 1,

m∑
i=1

1

pi
= 1,

m∑
i=1

1

pi
> 1.

Γr+1 <
ηr

σ(a)
Λr < Λr < θΛr < Γr and

ηr

σ(a)
<

1

2
, r ∈ ℕ,

θ = max

��
η1

σ(a)

m�
i=1

δi ∫
σ(a)−η1

η1

ℵ(τ, τ)Δτ

�−1
,

� ∑n−2

k=1
ck

1 −
∑n−2

k=1
ck

η1

σ(a)

m�
i=1

δi ∫
σ(a)−η1

η1

ℵ(τ, τ)∇τ

�−1�
.

�1 < min

⎧⎪⎨⎪⎩

�
‖ℵ‖Lq

∇

m�
i=1

��λi��Lpi
∇

�−1

,

� ∑n−2

k=1
ck

1 −
∑n−2

k=1
ck

‖ℵ‖Lq
∇

m�
i=1

��λi��Lpi
∇

�−1⎫⎪⎬⎪⎭
,

�1,r = {� ∈ � ∶ ‖�‖ < Γr}, �2,r = {� ∈ � ∶ ‖�‖ < Λr}

t∗ < tr+1 < ηr < tr <
σ(a)

2
,

�ηr =
�
� ∈ � ∶ �(t) ≥ 0, min

t∈[ηr ,σ(a)−ηr]�
�(t) ≥ ηr

σ(a)
‖�(t)‖

�
.
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1 3

There exists a q > 1 such that 1
q
+

n∑
i=1

1

pi
= 1. So,

It follows in similar manner (for τn−2 ∈ (0, σ(a)]
�
, ) that

Continuing with this bootstrapping argument, we get

Also, we note that

�
σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn ≤ �
σ(a)

0

ℵ(τn, τn)λ(τn)�n(�1(τn))∇τn

≤ �1Γr

2 �
σ(a)

0

ℵ(τn, τn)

m∏
i=1

λi(τn)∇τn.

�
σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn ≤ �1Γr

2
��ℵ��Lq

∇

�����

m�
i=1

λi

�����Lpi
∇

≤ �1Γr

2
‖ℵ‖Lq

∇

m�
i=1

��λi��Lpi
∇

≤ Γr

2
< Γr.

�
σ(a)

0

ℵ(τn−2, τn−1)λ(τn−1)�n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
∇τn−1

≤ �
σ(a)

0

ℵ(τn−2, τn−1)λ(τn−1)�n−1(Γr)∇τn−1

≤ �
σ(a)

0

ℵ(τn−1, τn−1)λ(τn−1)�n−1(Γr)∇τn−1

≤ �1Γr

2 �
σ(a)

0

ℵ(τn−1, τn−1)

m�
i=1

λi(τn−1)∇τn−1

≤ �1Γr

2
‖ℵ‖Lq

∇

m�
i=1

��λi��Lpi
∇

≤ Γr

2
< Γr.

�
σ(a)

0

ℵ(t, τ1)λ(τ1)�1

[
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)�2

[
�

σ(a)

0

ℵ(τ2, τ3)⋯

× �n−1

[
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

]
⋅ ⋅ ⋅ ∇τ3

]
∇τ2

]
∇τ1 ≤ Γr

2
.
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1 3

Thus, (L�1)(t) ≤ Γr

2
+

Γr

2
= Γr. Since Γr = ‖�1‖ for �1 ∈ �ηr ∩ ��1,r, we get

Next, let t ∈ [ηr, σ(a) − ηr]� . Then,

By (�2) and for τn−1 ∈ [ηr, σ(a) − ηr]� , we have

and

1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
⋅ ⋅ ⋅ ∇τ2

�
∇τ1

≤ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1(Γr)∇τ1

≤ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck
�1Γr

2
‖ℵ‖Lq

∇

m�
i=1

��λi��Lpi
∇

≤ Γr

2
.

(9)‖L�1‖ ≤ ‖�1‖.

Λr = ‖�1‖ ≥ �1(t) ≥ min
t∈[ηr ,a−ηr]�

�1(t) ≥ ηr

σ(a)
‖�1‖ ≥ ηr

σ(a)
Λr.

�
σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))
]
∇τn

≥ �
σ(a)−ηr

ηr

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

≥ ηr

σ(a)

θΛr

2 �
σ(a)−ηr

ηr

ℵ(τn, τn)λ(τn))∇τn

≥ ηr

σ(a)

θΛr

2 �
σ(a)−ηr

ηr

ℵ(τn, τn)

m∏
i=1

λi(τn))∇τn

≥ η1

σ(a)

θΛr

2

m∏
i=1

δi �
σ(a)−η1

η1

ℵ(τn, τn)∇τn

≥ Λr

2
.
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1 3

Continuing with bootstrapping argument, we get (L�1)(t) ≥ Λr

2
+

Λr

2
= Λr. Thus, if 

�1 ∈ �ηr ∩ ��2,r, then

It is evident that 0 ∈ �2,k ⊂ �2,k ⊂ �1,k. From (9),(10), it follows from Theorem  3.1 
that the operator L  has a fixed point �[r]

1
∈ �ηr ∩

(
�1,r��2,r

)
 such that �[r]

1
(t) ≥ 0 on 

(0, a]
�
, and r ∈ ℕ. Next setting �m+1 = �1, we obtain infinitely many positive solutions 

{(�
[r]

1
, �

[r]

2
,… , �[r]

m
)}∞

r=1
 of (1)–(2) given iteratively by

The proof is completed. 	�  ◻

For 
m∑
i=1

1

pi
= 1, we have the following theorem.

Theorem  3.4  Suppose (H1)–(H2) hold, let {ηr}∞r=1 be a sequence with tr+1 < ηr < tr. Let 
{Γr}

∞
r=1

 and {Λr}
∞
r=1

 be such that

Assume that �
�
 satisfies (�2) and 

(�3)	� �
�
(�) ≤ �2Γr

2
 ∀ t ∈ (0, σ(a)]

�
, 0 ≤ � ≤ Γr, where 

 Then the iterative boundary value problem (1)–(2) has infinitely many solutions {(
�
[r]

1
, �

[r]

2
,… , �[r]

n

)}∞

r=1
 such that �[r]

�
(t) ≥ 0 on (0, σ(a)]

�
, � = 1, 2,… , n and r ∈ ℕ.

Proof  For a fixed r,   let �1,r be as in the proof of Theorem  3.3 and let �1 ∈ �ηr ∩ ��2,r. 
Again

1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
⋅ ⋅ ⋅ ∇τ2

�
∇τ1

≥ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck
η1

σ(a) �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1(Γr)∇τ1

≥ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck
η1

σ(a)

θΛr

2

m�
i=1

δi �
σ(a)−η1

η1

ℵ(τ1, τ1)∇τ1

(10)‖L�1‖ ≥ ‖�1‖.

�
�
(t) = ∫

σ(a)

0

ℵ(t, τ)λ(τ)�
�
(�

�+1(τ))∇τ, t ∈ (0, σ(a)]
�
, � = n, n − 1,… , 1.

Γr+1 <
ηr

σ(a)
Λr < Λr < θΛr < Γr and

ηr

σ(a)
<

1

2
, r ∈ ℕ.

�2 < min

⎧
⎪⎨⎪⎩

�
‖ℵ‖L∞

∇

m�
i=1

��λi��Lpi
∇

�−1

,

� ∑n−2

k=1
ck

1 −
∑n−2

k=1
ck

‖ℵ‖L∞
∇

m�
i=1

��λi��Lpi
∇

�−1⎫⎪⎬⎪⎭
.
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1 3

for all τ ∈ (0, σ(a)]
�
. By (�3) and for τ

�−1 ∈ (0, σ(a)]
�
, we have

It follows in similar manner (for τn−2 ∈ (0, σ(a)]
�
, ) that

Continuing with this bootstrapping argument, we get

Also, we note that

�1(τ) ≤ Γr = ‖�1‖,

�
σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn ≤ �
σ(a)

0

ℵ(τn, τn)λ(τn)�n(�1(τn))∇τn

≤ �1Γr

2 �
σ(a)

0

ℵ(τn, τn)

m�
i=1

λi(τn)∇τn

≤ �1Γr

2
��ℵ��L∞

∇

�����

m�
i=1

λi

�����Lpi
∇

≤ �1Γr

2
‖ℵ‖L∞

∇

m�
i=1

��λi��Lpi
∇

≤ Γr

2
< Γr.

�
σ(a)

0

ℵ(τn−2, τn−1)λ(τn−1)�n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
∇τn−1

≤ �
σ(a)

0

ℵ(τn−2, τn−1)λ(τn−1)�n−1(Γr)∇τn−1

≤ �
σ(a)

0

ℵ(τn−1, τn−1)λ(τn−1)�n−1(Γr)∇τn−1

≤ �1Γr

2 �
σ(a)

0

ℵ(τn−1, τn−1)

m�
i=1

λi(τn−1)∇τn−1

≤ �1Γr

2
‖ℵ‖L∞

∇

m�
i=1

��λi��Lpi
∇

≤ Γr

2
< Γr.

�
σ(a)

0

ℵ(t, τ1)λ(τ1)�1

[
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)�2

[
�

σ(a)

0

ℵ(τ2, τ3)⋯

× �n−1

[
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

]
⋅ ⋅ ⋅ ∇τ3

]
∇τ2

]
∇τ1 ≤ Γr

2
.
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1 3

Thus, (L�1)(t) ≤ Γr

2
+

Γr

2
= Γr. Since Γr = ‖�1‖ for �1 ∈ �ηr ∩ ��1,r, we get

Now define �2,r = {�1 ∈ � ∶ ‖�1‖ < Λr}. Let �1 ∈ �ηr ∩ ��2,r and let τ ∈ [ηr, σ(a) − ηr]� . 
Then, the argument leading to (11) can be done to the present case. Hence, the theorem. 	
� ◻

Lastly, the case 
m∑
i=1

1

pi
> 1.

Theorem  3.5  Suppose (H1)–(H2) hold, let {ηr}∞r=1 be a sequence with tr+1 < ηr < tr. Let 
{Γr}

∞
r=1

 and {Λr}
∞
r=1

 be such that

Assume that �
�
 satisfies (�2) and 

(�4)	� �
�
(�) ≤ �2Γr

2
 ∀ t ∈ (0, σ(a)]

�
, 0 ≤ � ≤ Γr, where 

 Then the iterative boundary value problem (1)–(2) has infinitely many solutions 
{(�

[r]

1
, �

[r]

2
,… , �[r]

n
)}∞

r=1
 such that �[r]

�
(t) ≥ 0 on (0, σ(a)]

�
, � = 1, 2,… , n and r ∈ ℕ.

Proof  The proof is similar to the proof of Theorem 3.1. So, we omit the details here. 	� ◻

4 � Example

In this section, we provide two examples to check validity of our main results.

Example 4.1  Consider the following boundary value problem on � = [0, 1].

1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
⋅ ⋅ ⋅ ∇τ2

�
∇τ1

≤ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1(Γr)∇τ1

≤ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck
�1Γr

2
‖ℵ‖L∞

∇

m�
i=1

��λi��Lpi
∇

≤ Γr

2
.

(11)‖L�1‖ ≤ ‖�1‖.

Γr+1 <
ηr

σ(a)
Λr < Λr < θΛr < Γr and

ηr

σ(a)
<

1

2
, r ∈ ℕ.

�2 < min

⎧
⎪⎨⎪⎩

�
‖ℵ‖L∞

∇

m�
i=1

��λi��L1
∇

�−1

,

� ∑n−2

k=1
ck

1 −
∑n−2

k=1
ck

‖ℵ‖L∞
∇

m�
i=1

��λi��L1
∇

�−1⎫⎪⎬⎪⎭
.
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1 3

where we take n = 4,m = 2, c1 =
1

2
, c2 =

1

3
, ζ1 =

1

3
, ζ2 =

1

4
 and λ(t) = λ1(t)λ2(t) in 

which

Then 
∑n−2

k=1
ck =

5

6
< 1 and δ1 = δ2 = (4∕3)1∕2. For � = 1, 2, 3, 4, let

for all r ∈ ℕ. Let

then

and

Therefore,

It is clear that

(12)
���
�
(t) + λ(t)�

�
(�

�+1(t)) = 0, t ∈ (0, σ(1)]
�
, � = 1, 2, 3, 4,

�5(t) = �1(t), t ∈ (0, σ(1)]
�
,

}

(13)��
�
(0) = 0, �

�
(1) =

1

2
�
�

(
1

3

)
+

1

3
�
�

(
1

4

)
,

λ1(t) =
1

|t − 1

4
| 1

2

and λ2(t) =
1

|t − 3

4
| 1

2

.

�
�
(�) =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.05 × 10−4, � ∈ (10−4,+∞),
62×10−(4r+3)−0.05×10−4r

10−(4r+3)−10−4r
(� − 10−4r) + 0.05 × 10−8r,

� ∈

�
10−(4r+3), 10−4r

�
,

62 × 10−(4r+3), � ∈

�
1

5
× 10−(4r+3), 10−(4r+3)

�
,

62×10−(4r+3)−0.05×10−8r

0.05×10−(4r+3)−10−(4r+4)
(� − 10−(4r+4)) + 0.05 × 10−8r,

� ∈

�
10−(4r+4),

1

5
× 10−(4r+3)

�
,

0, � = 0,

tr =
31

64
−

r∑
k=1

1

4(k + 1)4
and ηr =

1

2
(tr + tr+1), r ∈ ℕ,

η1 =
15

32
−

1

648
<

15

32

tr+1 < ηr < tr, ηr >
1

5
.

ηr

a
=

ηr

1
>

1

5
, r ∈ ℕ.

t1 =
15

32
<

1

2
, tr − tr+1 =

1

4(r + 2)4
, r ∈ ℕ.
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1 3

Since 
∞∑
j=1

1

j4
=

π4

90
 and 

∞∑
j=1

1

j2
=

π2

6
, it follows that

Also, we have

Thus, we get

Next, let 0 < � < 1 be fixed. Then λ1, λ2 ∈ L1+�[0, 1]. A simple calculations shows that

So, let pi = 1 for i = 1, 2. Then

and also ‖ℵ‖L∞
∇
= 1. Therefore,

Taking �1 =
1

10
. In addition if we take

then

θΛr = 61.35 × 10−(4r+3) <
1

10
× 10−4r = �1Γr, r ∈ ℕ and �

�
(� = 1, 2, 3, 4) satisfies the 

following growth conditions:

t∗ = lim
r→∞

tr =
31

64
−

∞∑
k=1

1

4(r + 1)4
=

47

64
−

π4

360
= 0.46.

∫
σ(a)−η1

η1

ℵ(τ, τ)Δτ = ∫
1−

15

32
+

1

648

15

32
−

1

648

(1 − τ)dτ = 0.03.

θ = max

{
1

0.0163
,

1

5 × 0.0163

}
= 61.35.

∫
σ(1)

0

λ1(t)λ2(t)dt = π − ln(7 − 4
√
3).

m�
i=1

��λi��Lpi
∇

= π − ln(7 − 4
√
3) ≈ 5.78,

�1 <

�
‖ℵ‖∞

m�
i=1

��λi��Lpi
∇

�−1

≈ 0.173.

Γr = 10−4r, Λr = 10−(4r+3),

Γr+1 = 10−(4r+4) <
1

5
× 10−(4r+3) <

ηr

a
Λr

< Λr = 10−(4r+3) < Γr = 10−4r,

�
�
(�) ≤�1Γr =

1

10
× 10−4r, � ∈

[
0, 10−4r

]
,

�
�
(�) ≥ θΛr = 61.35 × 10−(4r+3), � ∈

[
1

5
× 10−(4r+3), 10−(4r+3)

]
,
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1 3

for r ∈ ℕ. Then all the conditions of Theorem  3.3 are satisfied. Therefore, by Theo-
rem  3.3, the iterative boundary value problem (1) has infinitely many solutions 
{(�

[r]

1
, �

[r]

2
, �

[r]

3
, �

[r]

4
)}∞

r=1
 such that �[r]

�
(t) ≥ 0 on [0, 1],  � = 1, 2, 3, 4 and r ∈ ℕ.

Example 4.2  Let 𝕋 = {0} ∪ [1∕2, 1] ∪
{

1

2k+1
∶ k ∈ ℕ

}
. Consider the boundary value 

problem

where we take n = 3, m = 2, c1 =
1

5
, ζ1 =

1

4
 and λ(t) = λ1(t)λ2(t) in which

Then 
∑n−2

k=1
ck =

1

5
< 1 and δ1 = δ2 = (4∕3)1∕4. For � = 1, 2, 3, let

for all r ∈ ℕ.

Let tr, ηr be the same as in example 4.1. Then η1 =
15

32
−

1

648
<

15

32
, tr+1 < ηr < tr, ηr >

1

5
 

and t1 =
15

32
<

1

2
, tr − tr+1 =

1

4(r+2)4
, r ∈ ℕ. Also, 

t∗ = limr→∞ tr =
31

64
−
∑∞

i=1

1

4(i+1)4
=

47

64
−

π4

360
= 0.46. Also, we have

Thus, we get

By Lemma 2.4, we obtain

(14)
�Δ∇
�

(t) + λ(t)�
�
(�

�+1(t)) = 0, t ∈ (0, σ(1)]
�
, � = 1, 2, 3,

�4(t) = �1(t), t ∈ (0, σ(1)]
�
,

}

(15)��
�
(0) = 0, �

�
(1) =

1

5
�
�

(
1

4

)
,

λ1(t) =
1

|t − 2

5
|1∕4 and λ2(t) =

1

|t − 3

4
|1∕4 .

�
�
(�) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

5
× 10−9, � ∈ (10−9,+∞),

62×10−(8r+3)−
1

5
×10−(8r+1)

10−(8r+3)−10−(8r+1)
(� − 10−(8r+1)) +

1

5
× 10−(8r+1),

� ∈

�
10−(8r+3), 10−(8r+1)

�
,

62 × 10−(8r+3), � ∈

�
1

5
× 10−(8r+3), 10−(8r+3)

�
,

62×10−(8r+3)−
1

5
×10−(8r+4)

1

5
×10−(8r+3)−10−(8r+4)

(� − 10−(8r+4)) +
1

5
× 10−(8r+4),

� ∈

�
10−(8r+4),

1

5
× 10−(8r+3)

�
,

0, � = 0,

∫
σ(a)−η1

η1

ℵ(τ, τ)Δτ = ∫
1−

15

32
+

1

648

15

32
−

1

648

(1 − τ)dτ = 0.03.

θ = max

{
1

0.0161845
,

1

4 × 0.0161845

}
= 61.79.
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So, let pi = 1 for i = 1, 2. Then

and also ‖ℵ‖L∞
∇
= 1. Therefore,

Taking �1 =
1

3
. In addition, if we take

then

and �
�
(� = 1, 2, 3) satisfies the following growth conditions:

for r ∈ ℕ. Then all the conditions of Theorem 3.3 are satisfied. Therefore, by Theorem 3.3, 
the iterative boundary value problem (1) has infinitely many solutions {(�[r]

1
, �

[r]

2
, �

[r]

3
)}∞

r=1
 

such that �[r]
�
(t) ≥ 0 on [0, 1],  � = 1, 2, 3 and r ∈ ℕ.

Acknowledgements  The authors would like to thank the referees for their valuable suggestions and com-
ments for the improvement of the paper

Author Contributions  The study was carried out in collaboration of all authors. All authors read and 
approved the final manuscript.

Declarations 

Funding  Not Applicable.

Data availibility statement  Data sharing not applicable to this paper as no data sets were generated or ana-
lyzed during the current study.

 Conflict of interest  It is declared that authors has no competing interests.

 Ethical approval  This article does not contain any studies with human participants or animals performed by 
any of the authors.

∫
σ(1)

0

λ1(t)λ2(t)dt = ∫
1

1

2

λ1(t)λ2(t)dt +

∞∑
k=1

[
σ
(
1

2k

)
−

1

2k

]
λ1

(
1

2k

)
λ2

(
1

2k

)

≈ 2.311909422

m∏
i=1

‖‖λi‖‖Lpi
∇

≈ 2.311909422,

�1 <

�
‖ℵ‖∞

m�
i=1

��λi��Lpi
∇

�−1

≈ 0.4325428974.

Γr = 10−8r and Λr = 10−(8r+3),

Γr+1 = 10−(8r+8) <
1

5
× 10−(8r+3) <

ηr

a
Λr < Λr = 10−(8r+3) < Γr = 10−8r,

θΛr = 61.79 × 10−(8r+3) <
1

3
× 10−8r = �1Γr, r ∈ ℕ

�
�
(�) ≤�1Γr =

1

3
× 10−8r, � ∈

[
0, 10−8r

]
,

�
�
(�) ≥ θΛr = 61.79 × 10−(8r+3), � ∈

[
1

5
× 10−(8r+3), 10−(8r+3)

]
,
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