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Abstract
We consider two new classes of contractions and obtain some new fixed point results in 
complete metric spaces. The mapping considered herein are not necessarily continuous on 
their domains. Many, well-known generalizations and extensions of the classical Banach 
contraction theorem have been extended and generalized. We present some illustrative 
examples to show the genuineness of our results. Finally, an application of our results to 
nonlinear integral equations is discussed.

Keywords Banach contraction · Quasi-contraction · Proinov–Suzuki contraction · Fixed 
point · Metric space
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1 Introduction

In 1922, Stefan Banach obtained the following classical fixed point theorem known as 
Banach contraction theorem (BCT) which is very simple, useful, and has become a classi-
cal tool in nonlinear analysis.

Theorem 1 Let (X, d) be a complete metric space and let f ∶ X → X be a contraction, 
that is, there exists a number k ∈ [0, 1) such that for all x, y ∈ X,

Then f has a unique fixed point z in X. Moreover, for an arbitrary point x0 ∈ X we have 
limn→∞ f n(x0) = z.

d(f (x), f (y)) ≤ kd(x, y).
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The BCT has been extended and generalized by several mathematicians in various ways. 
Some of the earliest notable generalizations of the BCT can be found in [1, 3, 4, 8–10, 
13–15, 18, 19].

In 1972, Ćirić [4] introduced the notion of quasi-contraction and obtained a very impor-
tant result which generalizes the BCT and many generalizations and extensions of it.

Theorem 2 Let (X, d) be a complete metric space and let f ∶ X → X be a quasi-contrac-
tion, that is, there exists a number k ∈ [0, 1) such that for all x, y ∈ X,

Then f has a unique fixed point in X.

The above theorem is considered as the best generalization, amongst various type of 
contraction conditions compared by Rhoades [20].

Definition 1 [2] Let (X, d) be a metric space. A mapping f ∶ X → X is said be asymptoti-
cally regular at some u ∈ X if

The mapping f is said to be asymptotically regular on X if for all x ∈ X,

In 2006, Proinov [17] proved the following interesting generalization of the BCT.

Theorem 3 [17] Suppose (X, d) is a complete metric space and f ∶ X → X is a continu-
ous and asymptotically regular mapping such that:

(a) d(f (x), f (y)) ≤ �(D(x, y)) for all x, y ∈ X;
(b) d(f (x), f (y)) < D(x, y), whenever D(x, y) ≠ 0.

where and � ∶ ℝ
+
→ ℝ

+ is a function such that: for any 𝜀 > 0 there exists 𝛿 > 𝜀 such that 
𝜀 < t < 𝛿 implies �(t) ≤ �.

Here ℝ+ is the set of all non-negative real numbers, and

Then there exists a unique fixed point z ∈ X for f.
Further, if � = 1 and � is continuous with 𝜓(t) < t for all t > 0, then f need not be 

continuous.

A mapping satisfying (a) and (b) is called a Proinov contraction [21]. The Proinov con-
traction is more general than the quasi-contraction:

Example 1 [21] Let X = {1, 2, 3} be equipped with the usual metric d. Suppose f ∶ X → X 
is a mapping defined as

(1)d(f (x), f (y)) ≤ kmax{d(x, y), d(x, f (x)), d(y, f (y)), d(x, f (y)), d(y, f (x))}.

lim
n→∞

d(f n(u), f n+1(u)) = 0.

lim
n→∞

d(f n(x), f n+1(x)) = 0.

D(x, y) = d(x, y) + �[d(x, f (x)) + d(y, f (y))], � ≥ 0.

f (1) = 1, f (2) = 3, f (3) = 1.
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Then the mapping f does not satisfy the condition (1). However, for �(t) =
2t

1+�
 and 𝜂 > 1 

the mapping f satisfies the conditions (a) and (b).

In the BCT and most of its extensions and generalizations, the contraction condition 
is required to hold for all points of the underlying space. So, a natural question arises 
that “Can this requirement be relaxed considerably without affecting the outcome of the 
theorem”?

In 2008, Suzuki [24] made a significant beginning in this direction. He introduced a new 
type of contraction and obtained the following simple and important generalization of the 
BCT:

Theorem 4 Let (X, d) be a complete metric space and let f ∶ X → X be a mapping such 
that for all x, y ∈ X,

where � ∶ [0, 1) → (
1

2
, 1] is a nonincreasing function defined by

Then there exists a unique fixed point z ∈ X for f.

A mapping f satisfying (2) is called as Suzuki contraction [22]. The following example 
shows the generality of Theorem 4 over Theorem 1.

Example 2 [22]. Let X = {(1, 1), (4, 1), (1, 4), (4, 5), (5, 4)} with the metric d defined as 
follows

Define a mapping f ∶ X → X by

Then f satisfies all the hypotheses of Theorem 4 and (1, 1) is the unique fixed point of f. 
However, for x = (4, 5) and y = (5, 4)

Thus f does not satisfy the assumptions in Theorem 1 for any k ∈ [0, 1).

Remark 1 We note that 

1. A mapping satisfying (2) need not be continuous.
2. A metric space X is complete if and only if every Suzuki contraction mapping on X has 

a fixed point.

(2)�(k)d(x, f (x)) ≤ d(x, y) implies d(f (x), f (y)) ≤ kd(x, y),

𝜙(k) =

⎧⎪⎨⎪⎩

1, if 0 ≤ k ≤ (
√
5−1)

2

(1 − k)k−2, if
(
√
5−1)

2
≤ k ≤ 2−

1

2

(1 + k)−1, if 2−
1

2 ≤ k < 1.

d((x(1), x(2)), (y(1), y(2))) =
|||x

(1) − y(1)
||| +

|||x
(2) − y(2)

|||.

f (x(1), x(2)) =

{
(x(1), 1), if x(1) ≤ x(2)

(1, x(2)), if x(1) > x(2).

d(f (x), f (y)) = 6 > 2 = d(x, y).
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Some of the recent extensions and generalizations of the Banach, Proinov and Suzuki 
contractions can be found in [5, 6, 11, 12, 16, 23].

In the present paper, motivated by the results of Proinov [17], Suzuki [24] and others, 
we consider two new classes of contractions and present some existence results in com-
plete metric spaces. Many well-known classical results can be directly obtained from our 
theorems. Some useful examples are discussed to illustrate facts. We also discuss an appli-
cation of our results to nonlinear integral equations.

2  Proinov–Suzuki type contractions

Now, we consider the notion of Proinov–Suzuki contraction as follows:

Definition 2 Let (X,  d) be a metric space. A mappings f ∶ X → X will be called a 
Proinov–Suzuki contraction if for all x, y ∈ X,

where � ∶ ℝ
+
→ ℝ

+ is an upper semicontinuous function from the right such that 𝜓(t) < t 
for all t > 0.

Now we present our first main theorem.

Theorem  5 Let (X,  d) be a complete metric space and let f ∶ X → X be a continuous 
and asymptotically regular Proinov–Suzuki contraction mapping. Then f has a unique fixed 
point.

Further, if � = 1 then f need not be continuous.

Proof Pick x0 ∈ X and define a sequence {xn} by xn = f n(x0) = f (xn−1) for all n ∈ ℕ. Since 
f is asymptotically regular, i.e., limn→∞ d(f n(x0), f

n+1(x0)) = limn→∞ d(xn, xn+1) = 0, there 
exists k ∈ ℕ and 𝜀 > 0 such that for all n ≥ k,

We show that the sequence {xn} is Cauchy. Suppose that {xn} is not Cauchy. Then for any 
k ∈ ℕ there exist mk > nk ≥ k such that

We may assume that

by choosing mk to be the smallest number exceeding nk for which (4) holds. Using the tri-
angle inequality, we get

(PS)
1

2
d(x, f (x)) ≤ d(x, y) implies d(f (x), f (y)) ≤ �(D(x, y)),

(3)d(xn, xn+1) ≤ �.

(4)d(xmk
, xnk ) ≥ �.

d(xmk−1
, xnk ) < 𝜀,

� ≤ d(xmk
, xnk ) ≤ d(xmk

, xmk−1
) + d(xmk−1

, xnk )

≤ d(xmk
, xmk−1

) + �.
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Hence d(xmk
, xnk ) → �, as k → ∞. Now, by (3) and (4), we have 1

2
d(xnk , xnk+1) ≤ d(xmk

, xnk ). 
Since f is Proinov–Suzuki contraction, (PS) implies

Letting n → ∞, gives

a contradiction unless � = 0. Thus the sequence {xn} is Cauchy. Since X is complete, {xn} 
converges to a point z ∈ X. If f is continuous then z is obviously a fixed point of f.

Now suppose that � = 1 and f is not continuous. We show that for any n ∈ ℕ either

Assume the contrary, that is, we suppose that for some n > k

Then by the triangle inequality, we have

a contradiction and (5) holds. In the case 1
2
d(xn, xn+1) ≤ d(xn, z) by (PS), we have

Letting n → ∞, gives d(z, f (z)) ≤ 𝜓(d(z, f (z))) < d(z, f (z)), a contradiction unless f (z) = z 
is fixed point of f. We get the same conclusion in the other case. The uniqueness of fixed 
point follows easily.   ◻

If we take D(x, y) = d(x, y) in Theorem 5, we obtain following generalization of Boyd 
and Wong [3, Th. 1].

Theorem 6 Let (X, d) be a complete metric space and let f ∶ X → X be a mapping such 
that

Then there exists a unique fixed point z ∈ X for f.

d(xmk+1
, xnk+1) = d(f (xmk

), f (xnk ))

≤ �(d(xmk
, xnk ) + �[d(xmk

, xmk+1
) + d(xnk , xnk+1)]).

𝜀 ≤ 𝜓(𝜀) < 𝜀,

(5)
1

2
d(xn, xn+1) ≤ d(xn, z) or

1

2
d(xn+1, xn+2) ≤ d(xn+1, z).

d(xn, z) <
1

2
d(xn, xn+1) and d(xn+1, z) <

1

2
d(xn+1, xn+2).

d(xn, xn+1) ≤ d(xn, z) + d(xn+1, z)

<
1

2
d(xn, xn+1) +

1

2
d(xn+1, xn+2)

= d(xn, xn+1)

d(xn+1, z) = d(f (xn), f (z)) ≤ �(D(xn, z))

= �(d(xn, z) + d(xn, f (xn)) + d(z, f (z))).

(6)
1

2
d(x, f (x)) ≤ d(x, y) implies d(f (x), f (y)) ≤ �(d(x, y))
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Proof Pick x0 ∈ X and define a sequence {xn} by xn = f n(x0) = f (xn−1) for all n ∈ ℕ. Since 
1

2
d(xn−1, xn) ≤ d(xn−1, xn) by (6), we get

Hence the sequence {d(xn, xn+1)} is decreasing and bounded below, so it has a limit c. Sup-
pose that c > 0 . Then by the above inequality, we get d(xn, xn+1) ≤ �(d(xn−1, xn)) . So that

which a contradiction. Therefore lim
n→∞

d(xn, xn+1) = 0 and f is asymptotically regular. Rest 
of the proof may be completed following the proof of Theorem 5.   ◻

Now, we consider another class of mappings:

Definition 3 Let (X, d) be a metric space and let f ∶ X → X be a mapping such that for 
all x, y ∈ X,

where j ∈ ℕ, M ∈ (0, 1) and � ∈ [0,∞).

The above class of mappings contains many important classes of mappings. A num-
ber of contractions listed in [20] are particular cases of the following mapping:

Definition 4 Let (X, d) be a metric space and let f ∶ X → X be a mapping such that for 
all x, y ∈ X,

where k ∈ [0, 1) is fixed.

Now, we show that a mapping satisfying (8) also satisfies (7).

Proposition 1 Let (X, d) be a metric space and let f ∶ X → X satisfies (8). Then f also 
satisfies (7) but the converse need not be true.

Proof We consider the following cases: 

Case (i) d(f (x), f (y)) ≤ kd(x, y). Using the triangle inequality, we get 

Case (ii) d(f (x), f (y)) ≤ k
d(x, f (x)) + d(y, f (y))

2
. Then 

d(xn, xn+1) = d(f (xn−1), f (xn))

≤ 𝜓(d(xn−1, xn)) < d(xn−1, xn).

c = lim sup
t→c+

�(t) ≤ �(c),

(7)d(x, f (y)) ≤ Md(x, y) + �[d(x, f (x)) + d(f j(x), f j+1(x))]

(8)
d(f (x), f (y)) ≤ kmax

{
d(x, y),

d(x, f (x)) + d(y, f (y))

2
, d(x, f (y)), d(y, f (x)),

d(f 2(x), x), d(f 2(x), f (x)), d(f 2(x), y), d(f 2(x), f (y))
}
,

d(x, f (y)) ≤ d(x, f (x)) + d(f (x), f (y))

≤ kd(x, y) + d(x, f (x)).
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 It implies that 

Case (iii) d(f (x), f (y)) ≤ kd(x, f (y)) . Then 

 and 

Case (iv) d(f (x), f (y)) ≤ kd(y, f (x)). Then 

Case (v) d(f (x), f (y)) ≤ kd(f 2(x), x). Then 

Case (vi) d(f (x), f (y)) ≤ kd(f 2(x), f (x)). Then 

Case (vii) d(f (x), f (y)) ≤ kd(f 2(x), y). Then 

Case (viii) d(f (x), f (y)) ≤ kd(f 2(x), f (y)). Then 

 and 

Thus f satisfies (7) with M = k, � = max

{
3,

2

1 − k

}
 and j = 2.   ◻

d(x, f (y)) ≤ d(x, f (x)) + d(f (x), f (y))

≤ d(x, f (x)) + k
d(x, f (x)) + d(y, f (y))

2

≤ 3

2
d(x, f (x)) +

1

2
kd(x, y) +

1

2
d(x, f (y)).

d(x, f (y)) ≤ kd(x, y) + 3d(x, f (x)).

d(x, f (y)) ≤ d(x, f (x)) + kd(x, f (y))

d(x, f (y)) ≤ kd(x, y) +
1

(1 − k)
d(x, f (x)).

d(x, f (y)) ≤ d(x, f (x)) + kd(y, f (x))

≤ d(x, f (x)) + kd(x, y) + kd(x, f (x))

≤ kd(x, y) + (1 + k)d(x, f (x)).

d(x, f (y)) ≤ d(x, f (x)) + kd(f 2(x), x)

≤ d(x, f (x)) + kd(f 2(x), f (x)) + kd(x, f (x))

≤ (1 + k)d(x, f (x)) + kd(f 2(x), f (x)).

d(x, f (y)) ≤ d(x, f (x)) + kd(f 2(x), f (x)).

d(x, f (y)) ≤ d(x, f (x)) + kd(f 2(x), y)

≤ d(x, f (x)) + kd(f 2(x), f (x)) + kd(f (x), y)

≤ kd(x, y) + (1 + k)[d(x, f (x)) + d(f 2(x), f (x))].

d(x, f (y)) ≤ d(x, f (x)) + kd(f 2(x), f (y))

≤ d(x, f (x)) + kd(f 2(x), f (x)) + kd(f (x), x) + kd(x, f (y))

d(x, f (y)) ≤ kd(x, y) +
2

(1 − k)
[d(x, f (x)) + d(f 2(x), f (x))].
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The following example shows that the converse of above proposition need not be 
true.

Example 3 Let X = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (2, 3), (3, 2)} be equipped with the 
metric d defined as follows

Define f ∶ X → X by

It can be easily verified that f satisfies (7) for any M ≥ 0.5 and � ≥ 5. However, for 
x = (2, 3), y = (3, 2) and any k ∈ [0, 1), we have

Hence f does not satisfy (8).

Now, we present a theorem without continuity assumption of the mapping.

Theorem 7 Suppose (X, d) is a complete metric space and f ∶ X → X is an asymptoti-
cally regular mapping satisfying condition (7). Then there exists a unique fixed point p ∈ X 
for f and for any x ∈ X we have limn→∞ f n(x) = p.

Proof Let x0 ∈ X and define xn = f n(x0) for all n ∈ ℕ. For any m > 0, by the triangle ine-
quality and from (7), we have

This implies that

By the asymptotically regularity of f,   we obtain d(xn+m, xn) → ∞ as n → ∞. This shows 
that {xn} is a Cauchy sequence. Since X is complete, there exists p ∈ X such that xn → p as 
n → ∞. Next we show that p is a fixed point of f,  from (7), it follows that

It implies that xn → f (p) as n → ∞ and f (p) = p. Suppose q is another fixed point of f. 
Then

d((x(1), x(2)), (y(1), y(2))) = |x(1) − y(1)| + |x(2) − y(2)|.

f (0, 0) = (0, 0), f (1, 0) = (0, 0), f (0, 1) = (0, 0), f (2, 0) = (1, 0), f (0, 2) = (0, 1),

f (2, 3) = (2, 0), f (3, 2) = (0, 2).

d(f (x), f (y)) = 4 > kmax {2, 3, 3, 3, 4, 1, 4, 3}

= kmax

{
d(x, y),

d(x, f (x)) + d(y, f (y))

2
, d(x, f (y)), d(y, f (x)),

d(f 2(x), x), d(f 2(x), f (x)), d(f 2(x), y), d(f 2(x), f (y))
}
.

d(xn+m, xn) ≤ d(xn+m, xn+m+1) + d(xn+m+1, xn)

≤ d(xn+m, xn+m+1) + d(xn, f (xn+m))

≤ d(xn+m, xn+m+1) +Md(xn, xn+m) + �[d(xn, f (xn))

+ d(f j(xn), f
j+1(xn))]

≤ d(xn+m, xn+m+1) +Md(xn, xn+m) + �[d(xn, xn+1) + d(xn+j, xn+j+1)].

(1 −M)d(xn+m, xn) ≤ d(xn+m, xn+m+1) + �[d(xn, xn+1) + d(xn+j, xn+j+1)].

d(xn, f (p)) ≤ Md(xn, p) + �[d(xn, f (xn)) + d(f j(xn), f
j+1(xn))].
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a contradiction unless p = q. This proves the uniqueness of fixed point. Further, for any 
x ∈ X, we have

This implies that

This shows that limn→∞ f n(x) = p for any x ∈ X.   ◻

The following example shows that the asymptotic regularity condition on the map-
ping f can not be dropped in Theorem 7.

Example 4 [7]. X = {0} ∪ [1,∞) be a metric space endowed with the usual metric d. Let 
f ∶ X → X be a mapping defined by

We consider the following two cases: 

Case (a) If x ≠ 0 and y = 0 then 

Case (b) If x = 0 and y ≠ 0 then 

Then f satisfies condition (7) for � ≥ 1 , M > 0 and j = 2. But f is not asymptotically 
regular at any point in X and f is a fixed point free mapping.

The example below shows the validity of our Theorem 7.

Example 5 Let X = [0, 1] × [0, 1] be a metric space endowed with the metric d defined as

Let f ∶ X → X be a mapping defined by

We consider two cases and show that f satisfies condition (7) for � = 5 and M = 0.9 : 

0 < d(p, q) = d(p, f (q)) ≤ Md(p, q) + 𝜇[d(p, f (p)) + d(f j(p), f j+1(p))].

= Md(p, q) < d(p, q),

d(f n(x), p) = d(f n(x), f (p)) ≤ Md(f n(x), p) + �[d(f n(x), f n+1(x) + d(f j+n(x), f j+n+1(x))].

(1 −M)d(f n(x), p) ≤ �[d(f n(x), f n+1(x)) + d(f j+n(x), f j+n+1(x))] → 0 as n → ∞.

f (x) =

{
0, if x ≠ 0,

1, if x = 0.

d(x, f (y)) = x − 1 ≤ Mx + �(x + 1) = Md(x, y) + �[d(x, f (x)) + d(f 1(x), f 2(x))].

d(x, f (y)) = 0 ≤ Md(x, y) + �[d(x, f (x)) + d(f 1(x), f 2(x))].

d((x(1), x(2)), (y(1), y(2))) = |x(1) − y(1)| + |x(2) − y(2)|.

f (x(1), x(2)) =

⎧
⎪⎨⎪⎩

�
1

4
(x(1) +

1

5
)2, 1 −

2

3
x(2)

�
, if x(1) ∈ [0,

2

3
),�

x(1)

7
+

1

3
, 1 −

2

3
x(2)

�
, if x(1) ∈ [

2

3
, 1].
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Case (a) Let x(1) ∈
[
0,

2

3

)
 and y(1) ∈

[
0,

2

3

)
. Then 

 By the triangle inequality and above inequality, we get 

 Now, let y(1) ∈
[
2

3
, 1
]
. Then f satisfies (7) if the following condition holds: 

 We split the above inequality into two parts. First, we show the following inequality is 
true: 

 From the considered range of x(1) and y(1), it follows that |||x(1) −
y(1)

7
−

1

3

||| ≤ 10

21
. For 

x(1) ∈
[
0,

26

189

)
, it can be seen that M|y(1) − x(1)| ≥ 10

21
 and (9) is true for this case. For 

x(1) ∈
[

26

189
,
2

3

)
, the function x(1) −

1

4

(
x(1) +

1

5

)2

 is increasing and 
||||x

(1) −
1

4

(
x(1) +

1

5

)2|||| ≥
389639

3572100
. Thus 5

||||x
(1) −

1

4

(
x(1) +

1

5

)2|||| ≥
10

21
 and (9) is true for this 

case too. Moreover, by the triangle inequality 

 Combining (9) and (10), it follows that f satisfies the condition (7) for the case 
considered.

Case (b) Let x(1) ∈
[
2

3
, 1

]
 and y(1) ∈

[
2

3
, 1
]
. Then it is evident that f satisfies condition (7). 

Let y(1) ∈
[
0,

2

3

)
. Then f satisfies condition (7) if the following condition holds: 

 We split the above inequality into two parts. First, we prove the following inequality 
is true: 

d(f (x), f (y)) =
1

4

||||
(
x(1) +

1

5

)2

−

(
y(1) +

1

5

)2|||| +
2

3
|x(2) − y(2)|

≤ 1

4
|(x(1) + y(1))(x(1) − y(1))| + 1

10
|x(1) − y(1)| + 2

3
|x(2) − y(2)|

≤ 13

30
|x(1) − y(1)| + 2

3
|x(2) − y(2)| ≤ Md(x, y).

d(x, f (y)) ≤ d(x, f (x)) +Md(x, y).

|||||
x(1) −

y(1)

7
−

1

3

|||||
+
||||x

(2) − 1 +
2

3
y(2)

|||| ≤ 5

{||||x
(1) −

1

4

(
x(1) +

1

5

)2|||| +
||||x

(2) − 1 +
2

3
x(2)

||||
}

+M|x(1) − y(1)| +M|x(2) − y(2)|.

(9)
|||||
x(1) −

y(1)

7
−

1

3

|||||
≤ 5

||||x
(1) −

1

4

(
x(1) +

1

5

)2|||| +M|x(1) − y(1)|.

(10)

||||x
(2) − 1 +

2

3
y(2)

|||| ≤
||||x

(2) − 1 +
2

3
x(2)

|||| +
2

3
|x(2) − y(2)|

≤ ||||x
(2) − 1 +

2

3
x(2)

|||| +M|x(2) − y(2)|.

||||x
(1) −

1

4

(
y(1) +

1

5

)2|||| +
||||x

(2) − 1 +
2

3
y(2)

|||| ≤ 5

{||||
6

7
x(1) −

1

3

|||| +
||||
5

3
x(2) − 1

||||
}

+M|x(1) − y(1)| +M|x(2) − y(2)|.
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 From the considered range of x(1) and y(1), it can be seen that 
||||x

(1) −
1

4

(
y(1) +

1

5

)2|||| ≤
99

100
 

and |||
6

7
x(1) −

1

3

||| ≥ 5

21
. Therefore, 5|||

6

7
x(1) −

1

3

||| ≥ 99

100
. Further, by the triangle inequality 

 Combining (11) and (12), it follows that f satisfies the condition (7). Therefore f satis-
fies the hypotheses of Theorem 7. We note that f is not continuous on X.

3  Applications to nonlinear integral equations

In this section, we present an application of our results to integral equations.
Now, we consider the following nonlinear integral equation

Theorem 8 Let X = C[a, b] be the space of continuous functions on [a,  b] with metric 
defined by d(x, y) = sup

t∈[a,b]

|x(t) − y(t)|. Suppose that the following assumptions are true:

(i) � ∶ [a, b] → ℝ is a continuous function;
(ii) � ∶ [a, b] × X → X is continuous, �(t, x) ≥ 0 and there is a constant L ≥ 0 such that for 

all x, y ∈ X,

(iii) ϝ ∶ [a, b] × [a, b] → ℝ is continuous for all (t, x) ∈ [a, b] × [a, b] such that �(t, x) ≥ 0 
and ∫ 1

0
�(t, s)ds ≤ K;

(iv) M = 𝜆KL < 1;

(v) f ∶ X → X is a mapping defined by

and f is asymptotically regular. Then, the nonlinear integral equation (13) has a 
unique solution in X. Moreover, for each x0 ∈ X , the Picard sequence {xn} defined as

converges to the unique solution of (13).

(11)
||||x

(1) −
1

4

(
y(1) +

1

5

)2|||| ≤ 5

{||||
6

7
x(1) −

1

3

||||
}

+M|x(1) − y(1)|.

(12)
||||x

(2) − 1 +
2

3
y(2)

|||| ≤
||||
5

3
x(2) − 1

|||| +
2

3
|x(2) − y(2)|.

(13)x(t) = �(t) + �

b

�
a

�(t, s)�(s, x(s))ds, t ∈ [a, b], � ≥ 0.

|�(t, x) − �(t, y)| ≤ L|x(t) − y(t)|;

f (x(t)) = �(t) + �

b

�
a

�(t, s)�(s, x(s))ds, t ∈ [a, b], � ≥ 0

(xn)(t) = �(t) + �

b

∫
a

ϝ(t, s)�(s, xn−1(s))ds for all n ∈ ℕ



644 R. Pant, R. Shukla 

1 3

Proof For x, y ∈ X, we have

Taking supremum over [a, b] on both sides, we get

Thus, the mapping f satisfying condition (7)  and all the hypothesis of Theorem  7 hold. 
Therefore, (13) has a unique solution in X.   ◻

Example 6 Let us consider the following Fredholm integral equation:

It can be seen that the Fredholm integral equation (14) is a particular case of (13) with

For any x, y ∈ ℝ and for t ∈ [0, 1], we have

It can be easily seen that � is a continuous function and t ∈ [0, 1]

Further, L = 1, K =
5

6
 , � =

1

2
 with M = LK𝜆 =

5

12
< 1. Therefore, all the assumptions of 

Theorem 8 are satisfied. Hence, there exists a solution of the Fredholm integral equation 
(14). It can be seen that x(t) = cos

(
�

4
t
)
+

220

719
t +

160

719
t2 is a solution of nonlinear integral 

equation (14).

�x(t) − f (y(t))� =
�������

⎛
⎜⎜⎝
x(t) −�(t) − �

b

�
a

�(t, s)�(s, x(s))ds
⎞
⎟⎟⎠
+ (�(t)

+ �

b

�
a

�(t, s)�(s, x(s))ds −�(t) − �

b

�
a

�(t, s)�(s, y(s))ds
⎞
⎟⎟⎠

�������

≤ �x(t) − f (x(t))� + �

�������

b

�
a

�(t, s)�(s, x(s))ds −
b

�
a

�(t, s)�(s, y(s))ds
�������

≤ �x(t) − f (x(t))� + �

b

�
a

�(t, s)��(s, x(s)) − �(s, y(s))�ds

≤ �x(t) − f (x(t))� + �

b

�
a

�(t, s)L�x(s) − y(s)�ds.

d(x, f (y)) ≤ d(x, f (x)) + �KLd(x, y)

= d(x, f (x)) +Md(x, y).

(14)x(t) =
[
cos

(
�

4
t
)
−

620

719
t
]
+

1

2 ∫
1

0

(ts2 + t2s)x(s)ds, t ∈ [0, 1]

�(t) = cos
(
�

4
t
)
−

6200

719
t; ϝ(t, s) = ts2 + t2s and �(t, x) = x(s).

|�(t, x) − �(t, y)| = |x − y|.

�
1

0

�(t, s)ds = �
1

0

(ts2 + t2s)ds =
t

3
+

t2

2
≤ 5

6
.
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