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Abstract

In this paper, we consider a common solution of three problems in real Hilbert spaces
including the split generalized equilibrium problem, the variational inequality problem and
the fixed point problem for nonexpansive multivalued mappings. For finding the solution,
we present a modified viscosity approximation method and prove a strong convergence the-
orem under mild conditions. Moreover, we also provide a numerical example to illustrate
the convergence behavior of the proposed iterative method.
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1 Introduction

Let H, and H, be real Hilbert spaces with inner product (-, -) and induced norm | - ||. Let C
and Q be nonempty closed convex subsets of H, and H,, respectively. We denote the strong
convergence and the weak convergence of the sequence {x, } to a point x in a Hilbert space
by x, — x and x,, = x, respectively.

The classical variational inequality problem is the problem to find u € C such that

(Du,v—u) >0, YveC, (1.1)

where D : C — H;is a bounded linear operator. The solution set of the variational inequal-
ity problem (1.1) is denoted by VI(C, D). It is well known that the variational inequality
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problem (1.1) has a unique solution when the operator D is a strongly monotone and Lip-
schitz continuous mapping on C.
The equilibrium problem for a bifunction F : C X C — Riis to find a point x* € C such that

F(x*,x) >0, VxeC. (1.2)

The solution set of the equilibrium problem (1.2) is denoted by EP(F). It is easy to see
that EP(F) = VI(C, D) when F(x,y) = (Dx,y —x) forall x,y € C.Letgp : CXC — Rbea
nonlinear bifunction, then the generalized equilibrium problem is to find x* € C such that

F(x*,x)+ @(x*,x) >0, Vxe C. (1.3)

The solution set of the generalized equilibrium problem (1.3) is denoted by GEP(F, ¢). In
particular, if ¢ = 0, this problem reduces to the equilibrium problem (1.2).

In this paper, we are interested to find the solution of the split generalized equilib-
rium problem which is introduced by Kazmi and Rizvi [16] in 2013 as the following
problem; find x* € C such that

Fi(x",0) + ¢, (x",x) 20, Vxe C (1.4)
and such that
y* = Ax" € Q solves F,(y*,y) + ¢,(v",y) >0, Vy € Q, (1.5)

where Fj,p;, : CXC—-R and F,,p, : 0X 0 — R are nonlinear bifunctions and
A : H; — H,is abounded linear operator.

The solution set of the split generalized equilibrium problem (1.4)—(1.5) is denoted
by

SGEP(Fy, ¢, F,, ;) := {x* € C : x* € GEP(F,, ¢,) and Ax* € GEP(F,, ¢,)}.

If @, = 0 and ¢, = 0, the split generalized equilibrium problem reduces to the split equi-
librium problem; see [27]. If F, = 0 and @, = 0, the split generalized equilibrium problem
reduces to the generalized equilibrium problem considered by Cianciaruso et al. [9].

The split generalized equilibrium problem generalizes multiple-sets split feasibility prob-
lem. It also includes as special case, the split variational inequality problem [3] which is the
generalization of split zero problems and split feasibility problems, see for details [4-6, 8, 11,
12, 15, 19, 20, 25, 27, 30, 32, 33]. This formalism is also at the core of modeling of many
inverse problems arising for phase retrieval and other real world problems; for instance, in sen-
sor networks in computerized tomography and data compression; see, e.g., [1, 2, 7, 10].

A single-valued mapping S : C — C is called nonexpansive if

1Sx = Syl < llx=yll. x.yeC.

A point x € C is called a fixed point of a mapping S if Sx = x and denote by F(S) the set
of all fixed points of S. A single-valued mapping g : C — C is called contraction if there
exists a constant k € (0, 1) such that ||g(x) — g()|| < k||x — y|| for all x,y € C. There are
some algorithms for approximation of fixed points of a nonexpansive single-valued map-
ping. In 2000, Moudafi [26] introduced the following iterative algorithm, which is known
as the viscosity approximation method, for finding a fixed point of a nonexpansive single-
valued mapping in Hilbert spaces under some suitable conditions:

X = 0,8(x,) + (1 —a,)Sx,, n€N, (1.6)
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where {a, } is a sequence in [0, 1], g is a contraction and S is a nonexpansive single-valued
mapping on C. We note that the Halpern approximation method [14],

Xn

a=aqu+1—-a)8, neN, (1.7)

where u is a fixed element in C, is a special case of (1.6).

Viscosity approximation methods are very important because they are applied to lin-
ear programming, convex optimization and monotone inclusions. In Hilbert spaces, many
authors have studied the fixed points problems of the fixed points for the nonexpansive
single-valued mappings and monotone mappings by the viscosity approximation methods,
and obtained a series of good results (see [12, 22, 23, 26, 29, 34, 38]).

Recently, Kazmi and Rizvi [17] introduced the iterative process combined with Halp-
ern approximation method (1.7) for finding a common solution of the split equilibrium
problem, the variational inequality problem and the fixed point problem for nonexpansive
single-valued mapping in real Hilbert spaces.

Motivated by the works of Kazmi and Rizvi [16, 17] and Moudafi [26], we introduce and
study a modified viscosity approximation method for approximating a common solution of three
problems in real Hilbert spaces including the split generalized equilibrium problem, the vari-
ational inequality problem for a z-inverse strongly monotone mapping and the fixed point prob-
lem for a nonexpansive multivalued mapping. We prove the strong convergence of the purposed
iterative method under mild conditions. Our results extend and improve recent results announced
by many others. Moreover, we give a numerical example to illustrate our main result.

2 Preliminaries

In this section, we recall some concepts and results which are needed in sequel. Let C be a
nonempty closed convex subset of a real Hilbert space H. We denote by CB(C) and K(C)
the collections of all nonempty closed bounded subsets and nonempty compact subsets of
C, respectively. The Hausdorff metric H on CB(C) is defined by

H(B,,B,) := max { sup dist(x, B,), sup dist(y,Bl)}, VB,,B, € CB(C),

XEB, YEB,

where dist(x, B,) = inf{d(x,y) : y € B, } is the distance from a point x to a subset B,. Let
S : C - CB(C) be a multivalued mapping. An element x € C is called a fixed point of a
multivalued mapping S if x € Sx. The set of all fixed points of S is denoted by F(S). Recall
that a multivalued mapping S : C — CB(C) is called nonexpansive if

H(Sx, Sy) < |lx—=yll, Vx,y € C.

If S is a nonexpansive single-valued mapping on a closed convex subset of a Hilbert space,
then F(S) is always closed and convex. The closedness of F(S) can be easily extended to
the multivalued case. But the convexity of F(S) cannot be extended (see, e.g., [18]). How-
ever, if § is a nonexpansive multivalued mapping and Sp = {p} for each p € F(S), then
F(S) is always closed and convex.

For every point x in a real Hilbert space H, there exists a unique nearest point of C,
denoted by Px, such that||x — Pox|| < ||x — y||forall y € C. Such a P is called the metric
projection from H onto C. It means that z = Px if and only if ||x — z|| < ||x — y|| for all
y € C. Moreover, it is equivalent to
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(x—2z,y-2)<0, VyeC. 2.1)

It is well known that P is a nonexpansive mapping and is characterized by the following
properties:

(i) ||Pex—Pc ” <(x - y,ch Pcy> Vx,y € H,
(i) |lx- ch|| +|ly - ch” <|lx—=y|’ VxeH,ye C
Gii) [lx =yl = ||Pex = Poy||” < || =) = Pex = Pey)| s Vx,y € H.

For more properties of P can be found in [13, 21].
We now give some concepts of the monotonicity of a nonlinear mapping.

Definition 2.1 Let H be a real Hilbert space and C be a nonempty closed convex subset of
H. A mapping D : C — H is said to be:

(i)  monotone if (Dx — Dy,x —y) > 0, Vx,y € C;
(ii) z-inverse strongly monotone if there exists a constant z > 0 such that

(Dx — Dy,x —y) > t||Dx — Dy||?, Vx,y € C.

It is easy to observe that every z-inverse strongly monotone mapping D is monotone.

Lemma 2.2 ([36]) Let H be a real Hilbert space, C be a nonempty closed convex subset of
H, and D be a mapping of C into H. Let u € C. Then, for A > 0, u = P-(I — AD)u if and
only ifu € VI(C, D).

Lemma 2.3 ([28]) Let {x,} be any sequence in a Hilbert space H. Then, we have {x,} satis-
fies Opial’s condition, that is, if x, — x, then the inequality

limsup ||x, — x|| < limsup ||x, — y||

n—0o0 n—oo

holds for every y € H with 'y # x.

Lemma 2.4 ([39]) Let H be a Hilbert space. Let x,y,z € H and a, f,y € [0, 1] such that
a+ f+y = 1. Then, we have

llax + By + yzll* = allxll* + BIyI* + vllzll* = @Blix = yII* = ayllx = zII* = By lly - zII”.

Lemma 2.5 In a real Hilbert space H, the following inequalities hold:
()l =ylI> < lIxl” = lIyl* = 2¢x =y, ), Vx,y € H;
(i) llx+ I < lIxl® +2(n,x +y), Vx,y € H.

Lemma 2.6 ([37]) Let { sn} be a sequence of nonnegative real numbers satisfying
Sppl = (1 - an)sn +96,, Vn>1,

where {an} is a sequence in (0, 1) and {5n} is a sequence in R such that
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(i) Yo, @, =00

(ii) limsup, = <0or Y 6,| < co.

Q,

ea

n

Then lim,,_,, s, = 0.
Lemma 2.7 ([35]) Let {x } and {w } be bounded sequences in a Banach space X and
let {ﬁn} be a sequence in [0, 1] with 0 < liminf,_ g, < limsup,_ B, < 1. Suppose

X1 = (1= 5, )w + f,x, for all integer n > 1 and
tim sup (w1 =W, | = [lxnss =5} <0
Then lim,_, ||w, —x,|| =0

For solving the generalized equilibrium problem, we assume that the bifunctions
F,:CxXC—- Randg, : CXC — Rsatisfy the following assumption:

Assumption 2.8 Let C be a nonempty closed convex subset of a Hilbert space H,. Let
F,:CxC—- Randg, : CXC — R be two bifunctions satisfy the following conditions:

(Al) F,(x,x)=0forall x € C;

(A2) F,is monotone, i.e., F;(x,y) + F,(y,x) <0, Vx,y € C;

(A3)

F\is upper hemicontinuous, i.e., for each x,y,z € C, limtw Fitz+ (1 =1tx,y) < F(x,y);
(A4) Foreachx € C,y— F(x,y)is convex and lower semicontinuous;

(AS5) @,(x,x) >0forallx € C;

(A6) Foreachy e C,x~ @,(x,y)is upper semicontinuous;

(A7) Foreachx € C,y — ¢,(x,y)is convex and lower semicontinuous,

and assume that for fixed r > 0 and z € C, there exists a nonempty compact convex subset
K of H and x € C n K such that

Fiy,x)+¢,(y,x)+ %(y -x,x—2) <0, Vye C\K.

Lemma 2.9 ([24]) Let C be a nonempty closed convex subset of a Hilbert space H,. Let

:CXC—->Rand g, : CXC— R be two blfunctlons satl {'y Assumption 2.8. Assume
gol is monotone. Forr > 0 and x € H,. Define a mapping T Fro H, = C as follows:

1
TroD(x) = {z €C:FEN+o@nN+—(y-22-0)20 Ve C},

Jor all x € H,. Then, the following conclusions hold:
(1) For each x € H, T(Fl 1) + 0;
(2) T Fre0 i single- valued

(3) T, Fre ig firmly nonexpansive, i.e., for any x,y € H|,

2
[T — TFeny||” < (T — Ty, x - y);
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(4) F(TfF"”')) = GEP(F,, ¢));
(5) GEP(F,, ®,)is compact and convex.

Further, assume that F, : O X 0 — R and ¢, : O X QO — R satisfying Assumption 2.8,
where Q is a nonempty closed and convex subset of a Hilbert space H,. For each s > 0 and
w € H,, define a mapping TS(FZ’("Z) : H, — Q as follows:

102000) = {w e 0 : Fyw.d)+ gywd)+ (d —wow—1) 20, Vd € 0.

Then we have the following:

(6) Foreachv e H,, TS(FZ’%) £ 0;

(7)  T">%? s single-valued;

(8) TS(FZ’%) is firmly nonexpansive;

9) F(TS(FZ"”Z)> = GEP(F,, 0,);

(10) GEP(F,, ¢,) is closed and convex, where GEP(F,, ¢,) is the solution set of the fol-
lowing generalized equilibrium problem:

Find y* € Q such that F,(y*,y) + ¢,(y*,y) > 0forall y € Q.

Further, it is easy to prove that SGEP(F |, ¢, F,, ¢,) is closed and convex.

Lemma 2.10 ([9]) Let C be a nonempty closed convex subset of a Hilbert space H,. Let
F8 CXC—>Rand @, : CxC — R be two bifunctions satisfy Assumption 2.8 and let
7520 pe defined as in Lemma 2.9 forr > 0. Let x,y € H, and ry,ry, > 0. Then,

r

- <o

Ty _yH.

rz—rl“

3 Main results

In this section, we prove the strong convergence theorems for finding a common element of
the set of solutions of the split generalized equilibrium problem, the variational inequality
problem for a z-inverse strongly monotone mapping and the fixed point problem for a non-
expansive multivalued mapping in real Hilbert spaces.
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Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H, and
Q be a nonempty closed convex subset of a real Hilbert space H,. Let A : H; — H, be
a bounded linear operator, D : C — H, be a t-inverse strongly monotone mapping,
and S : C — K(C) be a nonexpansive multivalued mapping. Let F,p, : CX C = R,
F,,¢, : QX Q = R be bifunctions satisfying Assumption 2.8. Let @, @, be monotone,
@, be upper hemicontinuous, and F, and @, be upper semicontinuous in the first argu-
ment. Assume that I = F(S) N SGEP(F,, ¢, F,, 9,) N VI(C,D) # @ and Sp = {p} for all
p € F(S). Let g be a contraction of C into itself with coefficient k € (0, 1). Let {x,} be a
sequence generated by x; € C and

uy = TEO( — A1 = T A)x,,

Yo = Pclu, — 4,Du,), (3.1)
xn+1 = ang(xn) + ﬁnxn + Ynlp> 1 € N’

where z,, € Sy, such that ||z, — z,|| < H(SY,41,5y,) + €, lim,_ €, =0, andr, € (0,1),
A, € la, b] for some a, b with 0 < a < b <2z, and & € (0, l) with L is the spectral radius
of the operator A*A and A* is the adjoint of A and {a,,}, {ﬂnL} and {y, } are the sequences in
(0, 1) satisfy a, + B, + v, = 1for all n € N. Suppose the conditions are satisfied:

(CI) lim, @, =0and) >~ a, = c;

(C2) O0<liminf,_  f, <limsup,_ B, <1;
(C3) vy, €lc, 1]for some c € (0, 1);

(C4) liminf,_ r,>0and 3 |r,,, —r,| < oo;

(C5) lim,_ |4, — 4,] =0.

Then the sequence {x,, } converges strongly to z € I', where z = Pg(2).
Proof We shall divide our proof into six steps.
Step 1. We will show that {x,, } is bounded. Since D is z-inverse strongly monotone map-
ping, we obtain (x — y, Dx — Dy) > ||Dx — Dy||*>. Then for any x,y € C, we have
I = 4,D)x — (I = 2,D)ylI* = |l(x = y) = 4,(Dx — Dy)|I?

= |lx = yII* = 24,(x = . Dx = Dy) + 4||Dx = Dy|?
< lle = yII? = 274, |Dx = Dyl|* + 4,]|Dx = Dyl|?
= |lx = yII* = 4,27 = A,)|IDx — Dyl|?

< Il =yl
(3.2)
This shows that the mapping (I — 4,D) is a nonexpansive mapping from C to H,.
Let p € I', thatis, p € SGEP(F,, ¢,, F,, @,), we have p = Tﬁf"‘pl)p and Ap = sz"pz)Ap.
Thus, we get that
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e, = pI> = T 00 (1 = ga* (1 = 7202 )a )x, = T 00p 2
<N = €A* U = T2 A)x, — pl)?
< I, = pIP + ENAT = TE DA, +26(p — x,, A* = T>*)Ax,)
< I, = pII? + &3(Ax, — T *)Ax,, AA*(I = T>)Ax, )
+ 26(A(p — x,), Ax, — T{*?)Ax,)
< I, = pII? + LEXAx, — T +?)Ax, , Ax, = T{?Ax, )
+ 26(A(p — x,) + (Ax, = T>")Ax,)
— (Ax, = T\">%)Ax,), Ax, — T/ Ax,)
< b, = pII? + LE | Ax, — T 7 Ax, ||?
+ 2§<(Ap — T00Ax,, Ax, = TF#DAx,) — ||Ax, — Tffz"pz)AanZ)
< llx, = pI? + LE||Ax, — T2 Ax, ||?
+ 2§<%||Axn — T2 Ax, P - ||Ax, - ijzWAxnuz)

= llx, = pII* + &(LE = DIAx, — T Ax, ||,

(3.3)
Since & € (0, %), we obtain
lu, — plI* < lix, = pII*. (3.4)
Now, we estimate
ly, —plI* = |Pc(u, — 4,Du,) = Pc(p — 4,Dp)||?
< llu, = plI* = 2,27 = 4,)|Du,, - Dp||? (3.5)
< lu, —plI?
<llx, —plI*

Further, we estimate
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6,41 =PI = lle,8(x,) + B,x, + 7,2, — I
< a,lligtx,) = pll + B,llx, — pll + 7,llz, — pll
< a,(llglx,) — g@Il + lg®) = plD) + B,llx, — pll + 7, dist(z,, Sp)
< a,(kllx, = pll + lg@) — pl) + B,|Ix, = pll + ,dist(z,, Sp)
= (ka, + B)lIx, — pll + a,lI8(p) — pll + 7, dist(z,, Sp)
< (ka, + B)llx, — pll + a,lIgp) — pll + v, H(Sy,. Sp)
< (ka, + B)llx, — pll + a,lIgP) = pll + 7,1y, — plI
< (ka, + B)llx, — pll + a,llg@) — pll + 7, llx, — plI
= (ka, + B, + v)llx, — pll + a,llg) — pli

= (1 = (a,(1 = )Ix, — pll + a,(1 _k)llg(p) kpll
< max { Ix, = pll, ||g(p)_ kpll }
For every n > 1, we can conclude that
lx, — pll < max { Ilx, = pll. W}

for a fixed element x; € C by using the mathematical induction. Hence {x,, } is bounded; so

are {u,}, {y,} and {z,}.
Step 2. We will show that lim,,_,  [|x,.,; — x,/l =0
From the nonexpansivity of the mapping (I — 4, D), we have

1Yt = Yull = 1PcQtyyy = Apyy Duyyy) — P, — 4,Du,)|
< N@ygy = Ay Dutyyy ) — (u, — 4,Du,) ||
= [y — ) = Ay Dy — D) + (A — A)Du || (3.6)
< Nygy = ) = Ay Dty = Du )| + (A — A D, ||
S Mty = |l + [Ayy = A, 11Dt ]l
Since Ty V(I — EA*(I — T"**)A) is nonexpansive,u, = Ty, "“*(I — EA*(I — T\ **))A)x,
andu,,; = To 01 = EA*(T = TSP A), ., it follows from Lemmma 2.10 that
ity = |l = WTP0U = EA™U = T2 9D A0, 4y = TP = AU = TP A), |
SNTHOI = EA (T = T2 ) A, = T = A = T %) A, |
H T = EATT = T2 A, = TN = SATT = T, )A)x, |

< Py = X1l + 1T = AU = T272)A)x, — (I =A™ = T 7)) A)x, |
+ 1= = ITE 0T = AU = T P) AN, — (I = EA™ U = T2 P)A)x, |
n+1 n+ n n+
< gy = xll + ENANNT ) Ax, = T2 Ax, || + 1,

Fr.0,
< Py = 2,0+ EANTL = = ITEDAx,, — Ax, ||+,

n+l

= s =%l + EllAllK, + 1,
(3.7)
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where
. n (Fyo0y)
Kk, = |1 = —||IT; > Ax, — Ax,||
rn+1 e

and

T ) .

n, = |1- n ”T'EF]I,(p])(I —EA (I - TSFP%))A)X,, — (I - EA* (I - TSFZI,%))A)X””.
il n+ n n+

By using (3.6) and (3.7), we get
1941 = Yull < M1 = X, 11 + SllAllK, + 11, + [y = 4,111 D ]I (3.8)
Setting x,,,; = f,x, + (1 — f,)w,, which implies from (3.1) that

Xn+1 — Pu¥n _ ang(xn) + YnZn

"TTI-p,  1-8,

Therefore, by using (3.8), we obtain that
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an+1g(xn+l)

+ Yn+1Zn+1 ang(xn) + YnZn

L]

1- ﬂn+1

J/n+l
1- ﬁn+l

Xyl

1 _ﬁn+l

+

yn+1
I ﬂn+l

n+1

+

ka

kan+l

1- ﬂn+l
+ Yn+1
- ﬂn+l
kat,
1- ﬁn+1
Yn+1
1- ﬂn+l
kan+1
1- ﬁn+1
Yn+1

1 _ﬂn+l

<1_

+

Il

||xn+

+
||xn+
+

1

Vn+1
1- ﬂn+l

< ||xn+1 _xn” +

yn+l

4
1_ﬂn+l

1 _ﬂn+l

(8(41) — 8(x) + (
(Zn+l - Zn) + < 1

llgCx,s1) — g DIl +

n+1

a- k)an+l
- ﬂn+1

O 1-5,
Xy

1- ﬁn+1

Vn+1

- ﬂn+l

Vn
1_ﬁn
a

n

)

lleCe)ll

Ay
1- .Bn+1 1- ﬂn
Yut1 T
I=f 1=5,

Xy

llz, I

||Zn+1 - Zn” +

Xyl

1= ﬂn+l

||Zn+l - Zr[”

(lgCeIl + iz, D

“n

Xyt

1 _ﬂn+l -

Sy,) +€,)

—x,|l +

(lgCeIl + iz, 1D

(H(SY,415

Xyt

I ﬂn+1

(||yn+1 - yn” + Sn)

l_xn” +

(lgCell + iz, D

Xyl

- ﬂn+1

(%1 = X0l + SlANlK, + 71, + 14,41 = A, 11Du || + €,)

1 _xn” +

(lgCell + iz, D

Xt
1= By Py

ClIAll, + 1, + A1 = A1 Du,y |l + €,)

(gDl + N1z, 1D

Ay

) ”xn+l - ‘xn” +

1

At ay
1- ﬂn+l - ﬂn

CllAllk, +m, + A1 — 4,11 Du, |l + €,).

(gl + Nz, 1D

1

It follows that

Xy
I ﬂn+l
Vnt1
1- ﬁn+1

n

By
(§||A||Kn + rln + I)’n+l - )'nIHDun” + en)'

(04
T4 gl +lIz,1D

W1 = woll = X, = X, < ’

+
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By the conditions (C1), (C2), (C4) and (C5), we have

lim sup(||w

n—oo

n+l — Wn” - “xn+1 _xn”) < 0.

This implies by Lemma 2.7 that lim [[w, —x,|l =0and

n—o00

lim [[x,., = x| = lim (1 = g,)[lw, = x,]| =0, (3.9)

Step 3. We will show that lim,_,  ||x, — u, || = lim,_, ., ||z, — x,|| = 0.

It follows from (3.3), (3.4), (3.5), and Lemma 2.4 that
1,11 = Pl < a,llg(x,) = pII* + B,lIx, = pII* + 7,llz, — plI?
= a,llg(x,) = pII* + B,lIx, — pII* + y,dist(z,, Sp)*
< a,llgx,) = plI* + B,lIx, = pII* + 1, H(Sy,. Sp)*
< a,llgx,) = plI* + B,lIx, = pII* + 1, lly, — I
< a,llgx,) = plI* + B,lIx, — plI* + 7,llu, — pII? (3.10)
< a,llglx,) = plI* + B,lx, — plI?
+ 7., = pII* + ELE = Dl|Ax, — TI>?)Ax,|1%)
<, llgx,) = plI* + (1 = a)llx, —plI?
= &1 = Ly, lAx, — T Ax, |I°.

Then we have
£(1 = LEy, lAx, — TE2Ax, IP) < a,llg(x,) = pI> + (I, = pII? = 1,4 = pIIP)
< a,llgx,) = plI* + (lx, = pll + 1x,41 = PIDIX, = x,1I-

By the conditions (C1), (C3), &(1 — L&) > 0, ||x,.; — x,|/l = 0asn — oo, we have

. F R _
lim [|Ax, — T;">*YAx, || = 0. (3.11)
Forperl, p= Tff""’l)p, Tff"(‘”) is firmly nonexpansive, and I — yA*(I — Tifz’%))A is non-

expansive, we obtain that
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llu, = pII> = IT00 = 6A* (1 = TN, — T-20p?
S (TR0 = AT = T, = T 0p, (= A" =TI, = p)
<, = po( = EA*I = T*D)A)x,, — p)
= %(”l/ln = plI? + 11U = EA* (I = TN Ay, — plI?
Il = x, = EA*(I — Tf”FZ"”Z))AanZ)
= %(llun =pl? + T = EA* I = T,>2)A)x, — pl?
I, = p) = (5, + AU = D5, = p)IP)
< 3 (1, = PIP + I, =PI =l = 3,12 + 114" = T2, P

2, = 3, A" = T7)Ax,)) ),

which implies that
ity = pI? < N, = pII> = N, = x, 117 + 2w, — x,, A" = T\ >*)Ax, )

(3.12)
< 1, = PI? = oty = 2,11 + 281G, = x I = T2 Ax, |-

It follows from (3.10) and (3.12) that

01 =PI < @, llgCx,) = pIP + B, I, =PI + 7, llw, = pII®
< a,llg0e,) =PI + Byl =PI + 2, (1%, =PI = Nl = x, 17
+ 26llAG, = x )T = T *)Ax, )

< a,liglx,) = plI* + (1 = a)llx, = plI* = 7, llu, = x, |1
+ 267, lAGt, = x )T = T )Ax, |

S an”g(-xn) _p”2 + ”xn _p”2 - yn”un _‘xn||2
+2&y,1AGu, — x )T — Tﬁf”‘”z))AxnII.
Therefore, we get that

Vullty = 3,17 < @, llg(x,) = pII* + llx, = pII* = 16,41 = pII®)
+ 287, 1A, = x)NIU = T>2)Ax, |
< a,llg(x) = pII* + Uz, = pll + 1%t = PIDIX, = Xl
+ 287, 4G, = x )T = TE9)Ax, ||

By the conditions (C1), (C3), [lx, = X, ]| = 0, and |/ = T}, **))Ax, || - 0 as n — oo, we
have

lim {lu, =2, || = 0. (3.13)

Consider
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”xn - Zn” < ”xn ~ Xn+1 ” + ”xn+1 - Zn”
= ”xn - xn+1 ” + “ang(xn) + ﬁn‘xn + Ynin — Zn”
S ”xn - 'xn+1 ” + an”g('xn) - Zn” + ﬁn”zn - ‘xn”

and then,

1 a,
2 = %l € 7=l = Il + T l8() = 5
n

T 1-5, B
By the conditions (C1), (C2) and ||x,, — X, || = 0 as n — oo, we obtain
lim |z, —x, [ = 0. (3.14)

Step 4. We will show that lim,,_, , ||z, — v, || = 0.
For each p € T', we have

6,1 =PI < @, llgCx,) = plI* + B,llx, — plI* + 7,llz, = pII?

a,llg(x,) = plI* + B, lIx, = pII* + y,dist(z,, Sp)*

a,llg(x,) = plI* + B,lIx, — pII* + 7, H(Sy,, Sp)°*

a,ll8(x,) = plI* + B, lIx, = pII* + 7,lly, — pII”

a,llgCx,) = plI* + B,lIx, — pII* + 7, (1Pc(u, — 4,Du,) = P(p — 2,Dp)I)
,llgCx,) = plI* + B,llx, — plI* + v, (llu, — plI* + 4,(4, — 20)||Du, — Dp||*)
< a,llglx,) = pli* + B,lIx, — plI* + 7,(llx, — plI* + A,(4, — 20)||Du,, — Dp||*)
<a,lligx,) = pli* + (1 = @)lx, = plI* + 7,4,(4, — 20)||Du, — Dp||?

< a,llglx,) = plI* + lIx, = plI* + ¥, 4,(4, — 20)||Du,, — Dp||?

= a,llg(x,) — plI* + lIx, — plI> = v, 4,27 = A,)||Du,, — Dp||?

< a,lligx,) - pli* + lIx, = plI* = v,a@2t — b)||Du, — Dp||*,

IANIA N A

which yields
—1,a27 = b)|Du, — DpI* < ,llgx,) = pII* + lIx, = plI* = 1,4 =PI
< @, llg(x,) = pIIP + (lx, = pll + 1%, = PIDI, = X, 1
By the conditions (C1), (C3), ||lx, — x,,; |l = 0asn — oo, we have
lim {|Du,, — Dpl| = 0. (3.15)
Furthermore, we observe that

Iy, = plI*> = IIPc(u, — 4,Du,) — Pe(p — 4,Dp)|1?
< <yn -P (un - A’nDun) - (p - j'nDp»

1
< =lly, = pI* + I, = 4,Du,) = (p = A,Dp)II* = ||y, — u,) + A,(Du, — Dp)||*)

< =y, = pI* + @, = pII* = I, — u,) + A,(Du,, — Dp)||).

STl ]|

Thus, we have
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1y, = pI? < llw, = plI* = Iy, = w,|I* = A211Dw,, = DplI*> + 22,(y,, = tt,, Du,, = Dp)
< ity =PI = 1y, = w,lI* + 24,11y, = w, |[1Dw, = Dpl|
< %, = PP = 11y, = w, > + 24,11y, = w, || Du,, — Dpl.

It follows that

”xn+l _p”2 < an”g(xn) _p”2 + ﬁn”xn _p”2 + yn”yn _p||2
< a,llgx,) = plI* + B,lIx, = pII* + 7,(llx, = pI* = Iy, — u,II?
+ Zln”yn - un” ”D“n - Dp”)
= a,llg(x,) = plI* + (1 = a)lx, = plI* = v, lly, — u,|I?
+ Zynﬁn”yn - un””Dun - Dp”
< an”g(xn) _p||2 + "xn _p”2 - yn”yn - un”2 + 27/}1}';1”))}1 - un””Dun - Dp”
Therefore, we obtain
Vallyn = w,lI* < @, llgCx,) = plI* + llx, = pII* = 16,41 = PII* + 27, 4,11y, — w, |1 1Dw, — Dpl|

< a,llg(x,) = pII* + (lx, = pll + s = PIDIX, = s
+ 27, 4,1y, = |l Du,, — Dpll.

By the conditions (C1), (C3), ||x,, — x|l = 0,]|Du,, — Dp|| — 0 as n — oo, we obtain
Lim |y, —u,|| = 0. (3.16)
Observe that
2, = yull < llzy = X, 1+ M, = w1l + e, = v,
from (3.13), (3.14) and (3.16), we get
lim |z, =y, [l = 0. (3.17)

Step 5. We will show that limsup,,_, ,(g(z) — z,x,, — z) < 0 where z = Pg(2).
To show this, we choose a subsequence {zni} of {z,} such that

lim Sup<g(2) — 2,3, — Z> = hm(g(Z) -, Zn,» - Z>- (318)

n—oo

Since {zn,_ } is bounded, there exists a subsequence {zn[_‘ } of {Zn,.} which converges weakly to

some w € C. Without loss of generality, we can assume that z, — w. Since ||z, —y,|| = O,
we obtain y, — wasi — oo. l

Next, we show that w € T, that is, w € F(S) N SGEP(F |, ¢, F,, ¢,) N VI(C, D).

Step 5.1. We will show that w € F(S). Since Sw is compact, we can choose ¢/ € Sw
such that ||z, — ¢/ || = dist(z,,, Sw) and the sequence {q’ } has a convergent subsequence {ql’1 ,}

with lim,_,, ¢/, = q' € Sw. By nonexpansiveness of S, we obtain that
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1y, = 'l < v, = 20 Il + 1z, = @), 1+ llg], =
< llyp, = 2| + dist(z,.. Sw) + 14, = o'l
< Wy, = 20 [l + HCSy,,.SW) + g, = 4|
<, = 2l + Ny, = Wil + 11, = Il

This implies by (3.17) and lim; = ¢’ that

=00 q

limsup ||y, —¢'ll <limsup [y, —wl.
By Opial’s condition, we get w = ¢’ € Tw. Hence, w € F(S).
Step 5.2. We will show that w € SGEP(F,, ¢ % @,). First, we will show that
w € GEP(F,, ). Since u,, = T(F1 ‘p‘)(l yA*( — T e )A)x,,, we have

1 *
Fi(u,y)+o,(u,,y) + r—<y — U, u, —x, —yA (I — T;an‘ﬂz))A,xn) >0,

n

for all y € C, which implies that

1 1
Fy (s 3) + @1 Gty y) =y =ty thy = ,) = r—<y - u,,,rA*<1 - Tffz"”z)>Axn> 20,

n n

for all y € C. It follows from the monotonicity of F; and ¢, that
rl<y — Uy Uy — xn) - rl<y — Uy, ]/A* (I - T£f2’¢2) )Axn> 2 Fl(y7 un) + (pl(y7 un)’

for all y e C. Since ||lu, —x,|| = 0, ||z, = x,ll = O, ||z, —y,l = 0, and y, = w, we
have u, —w and u, —x, — 0 as i - oco. It follows by the condition (Cl4), (3.11),
(3.13), Assumption 2.8 (A4) and (A7) that 0 > F,(y,w)+ @,(y,w) for all y € C. Put
y,=ty+ ({1 —tw for all € (0,1] and y € C. Consequently, we get y, € C and hence
Fi(y,w)+ @,(y,w) <0. So, by Assumption 2.8 (A1)-(A7), we have

0<Fny)+ @10 y)
SHF G+ 010:9) + A = DE G w) + 0,0, W)
SHF GpY) + @0 0)) + (1= DF (w,y) + (W, y,))
< Fl(yny) + (pl(ytvy)'
Hence, we have F;(y,,y) + ¢,(y,,y) > 0 for all y € C. Letting t — 0, by Assumption 2.8
(A3) and upper hemicontinuity of ¢, we have F(q,y) + ¢,(g,y) > 0 for all y € C. This
implies that w € GEP(F |, ).
Next, we show that Aw € GEP(F,, @,). Since ||z, —x,|| = 0, |lz, — y,Il = 0, and

Y, = W, we have x, — w. Since A is a bounded linear operator, we get Ax, — Aw.
Now, setting v, = Ax T(F2 wz)Ax It follows from (3.11) that

lim v, =0 and Ax, —v, = T(FZ‘%)Ax, .
i i Tnj i

i—»o0

@ Springer



Strong convergence of the viscosity approximation method for... 55

Therefore, from Lemma 2.9, we have

1
0< Fz(Axn, =V 7))+ qoz(Ax,li Vs 7))+ r—(z - (Axni - vnl), (Axni — vni) — Axni),

n,

for all z € Q. Since F, and @, are upper semicontinuous in the first argument, it follows
that

Fy(Aw,2) + @,(Aw,z) > O for all z € Q.

This means that Aw € GEP(F),, ¢,) and hence w € SGEP(F |, ¢, F,, ¢,).
Step 5.3. We will show that w € VI(C, D). Let U : H, — 21 be a multivalued mapping
defined by

_J Dw+Nw, weC
lM‘{a W C

where Nw is the normal cone to C at w € C. Then U is maximal monotone, and 0 € Uw if
and only if w € VI(C, D). Let G(U) be the graph of U and let (w,y) € G(U). Then we have
y € Uw = Dw + N-w and hence y — Dw € N-w. Since y, € C for all n € N, we have

(W=y,,y—Dw) 2 0. (3.19)
On the other hand, from y, = P-(u,, — 4,Du,), we have

w=y,,y, — (u, — 4,Du,)) >0,

—u
<w—yn,)%+Dun> >0.

W =y,23) Z (W =y, Dw)
Yn, — Uy,
> (w—y,.Dw) - <w = Vu» LI +D”n,>

Y, — Uy,
={(w-y,,Dw-— ‘/1 - — Du,

= (W_yni’Dw_Dyni> + <W_yni’Dyni _Dun’>

yni - uni
- W_yni’ 1
n;

Yn, — Uy,
> <W_yni’Dyni>_<W_yni’ +Duni>

yni - un,-
7 .
i

that is,

Therefore, we have

(3.20)

> [lw =, 1Dy, —Du, |l = llw =, |

n,
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Noting that ||y,,/_ —u, || > 0asi— ooand D is z-inverse strongly monotone, hence from
the inequality (3.20), we have (w — z,y) > 0 as i — oo. Since U is maximal monotone, we
have w € U~'0, and hence w € VI(C, D). By Steps 5.1, 5.2 and 5.3, we can conclude that
w € F(S)NSGEP(F|, ,,F,,9,) N VI(C,D), thatis,w € T.

Since z = Prg(z) and Z, =~ was i — oo, it implies by (2.1) that

lim sup(g(z) — z,x, — z) = limsup(g(z) — 2,2, — 2)

n—oo n—oo

= limsup(g(z) - 2,2, — 2)

i (3.21)
=gl —zw—2)
<0.
Step 6. Finally, we will show that {x, } converges strongly to z.
Consider

1,41 — Z“2 = (X1 = L Xq1 — 2)
= (@,8(x,) + B, x, + 1,2, — (@, + B, + ¥,)2, Xy — 2)
= a,(8(x,) = 2. X1 = 2) + B{x, — 2 X1 — 2) V{2, — 2 X4 — 2)
< a,llgtx,) — 8@ x4y — zll + @, (g(2) — 2, %, — 2)

B 2 2y, 0 2 2
+ En(llxn =zll" + X — 2l + 3"(“2" =zll” + X — 2ll9)
S kan”xn - Z” ”xn+l - Z” + an<g(z) —Z, xn+1 - Z)
B, Y, o
+ S, = 2l + I = 27 + T (dist(z, 2 + Iy = 217

< kay |lx, = 21,40 — 2l + ,(8(2) — 2, %41 — 2)

[/} 7,
+ 7"(len =zl + lIx,p — 2l + 3”(71(8y,,,5z)2 + 1,1 —2l1%)

< kallx, =zl =zl + @,(8(2) — 2. X, — 2)
+ %(le,, —2l? + x40 —2lIP) + y2—"(llyn =2l + 1y — 2l
< kay llx, = zll 1%, — 2ll + ,(8(2) — 2, %,y — 2)
+ @(len =zl + X,y — 2l
= ka,lx, = zll x4 — zll + @,(8(2) = 2, X, — 2)

1-ea,
2

2 2
+ (11, = 2l1” + 1y = 2l1%)

S kan”'xn - Z” ||xn+l - Z” + an<g(z) -2, xn+1 - Z)
1-ea,)

+
2

1
2 2
I, = 212 + S0 = 1%

This implies that
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||xn+1 - Z”2 < (1 - an)llxn - Z”z + Q’an(g(z) — %X — Z>
+ 2ka, |lx, — zll 16,41 — 2l
< (1 - an)”'xn - Z”2 + 511,

where
6, = 2a,(8(2) — 2, %,11 — 2) + 2ka, ||x, — zllllx,4; — zlI.

By the inequality (3.21) and condition (C1), we get 6, — 0 as n — oo. By using Lemma
2.6, it implies that x, — z as n — oo. This completes the proof. O

Remark 3.2 Theorem 3.1 extends the corresponding one of Kazmi and Rizvi [16, 17] and
Moudafi [26] to a nonexpansive multivalued mapping and to a split generalized equilib-
rium problem. In fact, we present a new viscosity approximation method for finding a com-
mon solution of three problems including the split generalized equilibrium problem, the
variational inequality problem for a z-inverse strongly monotone mapping and the fixed
point problem for a nonexpansive multivalued mapping.

If ¢, = @, =0, then the split generalized equilibrium problem reduces to split equilib-
rium problem. So, the following result can be obtained from Theorem 3.1 immediately.

Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H, and
Q be a nonempty closed convex subset of a real Hilbert space H,. Let A : H, — H, be
a bounded linear operator, D : C — H, be t-inverse strongly monotone mapping,
and S : C — K(C) be a nonexpansive multivalued mapping. Let F| : CxXC = R,
F, : QX0 — R be bifunctions satisfying Assumption 2.8. Let F, be upper semicon-
tinuous in the first argument. Assume that T = F(S)nSEP(F,,F,) N VI(C,D) # @ and
Sp = {p} forall p € F(S). Let g be a contraction of C into itself with coefficient k € (0, 1).
Let {x,} be a sequence generated by x, € C and

u, = TH (I = EA*(I — TF)A)x,,
Yn = PC(un - A’nDun)’
X1 = 6, 8(6) + %, + 1,2, n €N,

where z,, € Sy, such that ||z, — z,|| < H(SY,41,5y,) + €, lim,_ €, =0,andr, € (0,1),
A, € la, b] for some a, b with 0 < a < b <2z, and & € (0, l) with L is the spectral radius
of the operator A*A and A* is the adjoint of A and {a,}, {ﬂnL} and {y, } are the sequences in
(0, 1) satisfy a, + B, + v, = 1for all n € N. Suppose the conditions are satisfied:

(C1) lim,  a,=0and Y~ a,= oo

(C2) O0<liminf,_  f, <limsup,_ B, <1;
(C3) vy, €lc, 1]for some c € (0, 1);

(C4) liminf,_ r,>0and 3 |r,,, —r,| < oo

(C5) hmn—>oo |j’n+l - j’nl = 0

Then the sequence {x, } converges strongly to z € I', where z = Ppg(2).
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Recall that a multivalued mapping S : C € H; — CB(C) is said to satisfy Condition (*)
if |[x — p|| = dist(x, Sp) for all x € H, and p € F(S); see [31]. We see that S satisfies Condi-
tion (*) if and only if Sp = {p} for all p € F(S). Then the following results can be obtained
from Theorem 3.1 and Corollary 3.3 immediately.

Corollary 3.4 Let C be a nonempty closed convex subset of a real Hilbert space H, and
Q be a nonempty closed convex subset of a real Hilbert space H,. Let A : H, — H, be
a bounded linear operator, D : C — H| be a t-inverse strongly monotone mapping,
and S : C — K(C) be a nonexpansive multivalued mapping. Let F,p, : CX C = R,
F,, @, : QX Q = R be bifunctions satisfying Assumption 2.8. Let ¢, ¢, be monotone, @,
be upper hemicontinuous, and F, and @, be upper semicontinuous in the first argument.
Assume that T = F(S) N SGEP(F,, ¢,, F,, 9,) N VI(C,D) # @ and S satisfies Condition (*).
Let g be a contraction of C into itself with coefficient k € (0, 1). Let {x, } be a sequence gen-
erated by x; € C and

u, = TEP(I = EA*(I — TH>2)A)x,,

v, = Pc(u, — A,Du,,),
xn+l = ang(xn) + ﬁnxn + 7nva ne N,

where z,, € Sy, such that ||z, — z,|| < H(SY,41,5y,) + €, lim,_ €, =0,andr, € (0,1),
A, € la, b] for some a, b with 0 < a < b <27, and £ € (0, l) with L is the spectral radius
of the operator A*A and A* is the adjoint of A and {a,}, {,Bnl} and {y, } are the sequences in
(0, 1) satisfy a, + B, + v, = 1for all n € N. Suppose the conditions are satisfied:

(C1) lim, @, =0and Y~ a,= oo

(C2) 0<liminf,_, f, <limsup, . f, <1
(C3) vy, € lc, 1] for some c € (0, 1);

(C4) liminf,_ r,>0and 3 |r,,, —r,| < oo;

(€5) Tim,_ [ Ay — A,| = 0.
Then the sequence {x, } converges strongly to z € I', where z = Prg(2).

Corollary 3.5 Let C be a nonempty closed convex subset of a real Hilbert space H, and
QO be a nonempty closed convex subset of a real Hilbert space H,. Let A : H — H,
be a bounded linear operator, D . C — H| be a t-inverse strongly monotone map-
ping, and S : C — K(C) be a nonexpansive multivalued mapping. Let F| : CXC = R,
F, : O X Q — R be bifunctions satisfying Assumption 2.8. Let F, be upper semicontinuous
in the first argument. Assume that T = F(S) N SEP(F,,F,) N VI(C,D) # @ and S satisfies
Condition (*). Let g be a contraction of C into itself with coefficient k € (0, 1). Let {x,} be a
sequence generated by x; € C and

u, = Tfl (I — EA* (I — T;{:Z)A)xn’
Yn = PC(un - A’nDun)y
X1 = @,8(x,) + Bx, +7,2,, nEN,
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where z,, € Sy, such that ||z, — z,|l £ HSY,41,Sy,) + €, lim,_ €, =0,andr, € (0,1),
A, € la, b] for some a, b with 0 < a < b < 2z, and & € (0, %) with L is the spectral radius
of the operator A*A and A* is the adjoint of A and {a,}, {f, } and {y,} are the sequences in
0, 1) satisfy a,, + B, + v, = 1for all n € N. Suppose the conditions are satisfied:

(CI1) lim,_ @, =0and )~ a, = c;

(C2) O0<liminf,_ g, <limsup,_ B, <1;
(C3) vy, €lc, 1]for some c € (0, 1);

(C4) liminf,_ r, >0and 3 |7, —r,| < oo;

n—oo ' n

(C5) lim,_ |4, — 4,] = 0.

Then the sequence {x,} converges strongly to z € I', where z = Pr-g(2).
We now present a numerical example to demonstrate the performance and conver-
gence of our theoretical results. All codes were written in Scilab.

Example 3.6 Let H = H, =R, C=Q =[0,15]. Let A : H, — H, be defined by Ax =x
for each x € H,. Then A*y =y for each y € H,. Let D : C — H, defined by Dx = g for
each x € C. For each x € C, we define a multivalued mapping S on C as follows:

se=1o, 7—x]
10
For each x,y € C, define bifunctions F, ¢, : C X C = R by
Fi(x,y) = 3y? + 6xy — 9x* and @,(x,y) = y? — 22
For eachw,v € Q, define F,, ¢, : O X Q — Rby

Fy(w,v) = 4v? 4 2wy — 6w? and oW, V) =w—v.

Choose r, = #, y = i. It is easy to check that S, A, D, F, F,, @, ¢,, and {r, } satisfy all
conditions in Theorem 3.1 with I' = {0}.
For each x € C and each n € N, we compute T;Fz’(”z)Ax. Find w such that

0<F,(w,v) + @,(w,v) + l(v —w,w — Ax)
r

=4v2+2wv—6w2+w—v+%(v—w)(w—x)
S
0 <4rv? +2rwv —6rw?> + rw — rv + (v — w)(w — x)
=47V 4 2rwy — 6rw? + rw — v + wv — vx — w? + wx
=4r? + 2rw —r+w = X)V + (=6rw? + rw — w? + wx)
for all veQ. Let J,(v)=4n?+Qrw—r+w—x)Vv+ (=6rw? +rw — w? + wx).

J,(v) is s a quadratic function of v with coefficient a = 4r, b = 2rw —r —x —w, and
¢ = —6rw? + rw — w? + wx. Determine the discriminant A of J, as follows:
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—t——p x_1=2
——t— x_1=5
—— x_1=12

x_n — Values

0 T T T T T T T T T T T T T T T T T T T T T T T
[ 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of letrations (n)

Fig. 1 Behaviours of x, with three random initial points x,;

——t g(x)=0.1x
2.8 e+ g(x) = 0.5%

—_— () =0.9x

2.6

2.2

x_n - Values
=
!

0.8

0.6

0.4

0.2

o T T f T t t t t t t t t t t t t t t t
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of Iterations (n)

Fig.2 Behaviours of x, with three different contraction mappings g
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A =b* —dac
= Q2w —r+w—x)* — 44r)(=6rw? + rw — w* + wx)
= 100r*w? = 20r%w + 20rw? — 20rwx + 12 — 2rw 4 2rx + w? — 2wx + x°
= (1007* + 20r + Dw? + (—=20r% — 20rx — 2r — 2X)w + (2rx + x> + 17)
= (10r + 1*>w? = 2w(10r + D(x + 1) + (x + r)?
= ((10r + Dw — (x + 1),
We know that J,(v) > 0 for all v € R. If it has at most one solution in R, then A < 0, so we

have w = IHV This implies that

X+r

TERP) Ay = .
r 10r+1

Furthermore, we can get
(I = yA*(I = T>9))A)x = x — yA* (Ax — T>%2) Ax)
1 x+r
= x— —A*( _ >
* 4 10+
— e ( 10rx — r)
h 10r + 1
_ 30xr+4x+r
T 40r+4

Next, we find u € C such that F,(u,z) + @, (1, z) + - (z— u,u—s) > 0forall z € C, where
5= (1 yA*(I 7> “’”)A)x Note that

1
0<F(u,2)+ ¢ u,z)+ ;(z—u,u—s)

= 47% + 6uz — 10u* + %(v—u,u—s)
=3
0 < 4rz? + 6ruz — 10r® + (z — w)u — )
= 4r7> + 6ruz — 10ru* + uz — sz — u* + us
= 412> + (6ru + u — $)z + (= 10ru® — u* + us)
for all z € C. Let J,(z) = 4rz% + (6ru + u — 5)z + (—10ru®> — u? + us). J,(z) is s a quadratic

function of z with coefficient @ = 4r, b = 6ru+u — s, and ¢ = —10ru® — u? + us. Deter-
mine the discriminant A of J; as follows:

= (6ru + u — 5)* — 4(4r)(=10ru® — u?* + us)
= 196r2u? + 28ru® — 28rus + u* — 2us + §2
= ((14r + Du — 5)*.

‘We know that Ji(2) 2 0 for all z € R. If it has at most one solution in R, then A < 0, so we
haveu = — Thls implies that
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u, = T<F""’l)<1 — yA* <I - T(Fz’mz))A>x
n T, r, n’
_ 30x,r, +4x, 471,
T (40r, + 4)(14r, + 1)
_ 30x,r, +4x, +r1,
560r2 + 961, + 4

Weputz, = % for all n € N. Then the algorithm (3.1) becomes:

( r _ n
"on+ U
30x,r, +4x, + 1,
u,=——=
" 560}’5 +96r, +4 (3.22)
Al
7ynPC<un - %)
X+l = ang(xn) + ﬂnxn + T, neN
1 : _ 1 . . 4n
In this exan;gle, we set the parameter on algorithm (3.22) by 4, = ., &, = — B = oo
andy, = T foralln € N.

Figure 1 indicates the behavior of x, for algorithm (3.22) with g(x) = 0.5x that con-
verges to the same solution, that is, 0 € I" as a solution of this example.

Moreover, we test the effect of the different contraction mappings g on the convergence
of the algorithm (3.22). In this test, Figure 2 presents the behaviour of x, by choosing three
different contraction mappings g(x) = 0.1x, g(x) = 0.5x and g(x) = 0.9x. We see that the
sequence {x,} by choosing the contraction g(x) = 0.1x converges to the solution 0 € I"
faster than the others.

4 Conclusion

The results presented in this paper modify, extend, and improve the corresponding
results of Kazmi and Rizvi [16, 17] and Moudafi [26], and others. The main aim of this
paper is to propose an iterative algorithm based on the modified viscosity approxima-
tion method to find an element for solving a class of split generalized equilibrium prob-
lems, the variational inequality problems, and fixed point problems for nonexpansive
multivalued mappings in real Hilbert spaces.
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