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Abstract
The purpose of this work is to study a class of periodic parabolic equations having a criti-
cal growth nonlinearity with respect to the gradient and bounded Radon measure. By the 
main of the sub- and super-solution method, we employ some new technics to prove the 
existence of a nonnegative weak periodic solution to the studied problems.

Keywords  Periodic solution · Weak solution · Radon measure · Sub-solution · Super-
solution

Mathematics Subject Classification  35K59 · 35K55 · 35K57 · 34C25

1  Introduction

Partial differential equations appears naturally in the mathematical modeling of a wide 
variety of phenomena, not only in the natural sciences but also in engineering and eco-
nomics, such as gas dynamics, fusion processes, some biological models, cellular pro-
cesses, and chemical reactions and others. Mathematical analysis of PDEs has gained 
considerable attention in the early literature. For instance, the book by Rădulescu et al. 
[23] presents the most suitable materials for the functional analysis of partial differ-
ential equations (PDEs). This book also makes it possible to introduce the readers to 
the most important topological methods in the case of PDEs described by non-homo-
geneous differential operators. On the other way, several authors have interested in the 
famous question about the existence and uniqueness of the solution to the different cases 
of PDEs such as elliptic or parabolic under either Dirichlet or Neumann boundary con-
ditions, we refer the readers to see the references [1–3, 12, 15, 17, 22, 24, 25]. Mean-
while, the periodic partial differential equations has undergone a great huge amount of 
interest in a wide range of researchers. The importance of periodic PDEs arises in the 
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modeling of many real-world phenomena, see for examples: distributed biological mod-
els and computational physics [4, 8, 18, 19].

In this work, we propose to study a nonlinear periodic equation involving critical 
growth nonlinearity with respect to the gradient modeled as

where � is an open regular bounded subset of ℝN , with smooth boundary �� , T > 0 is 
the period, QT =]0, T[×� , �T =]0, T[×�� , � is a bounded nonnegative Radon measure 
in QT and g ∶ QT×ℝ×ℝ

N
→ [0,+∞[ is a Carathéodory function satisfying some growth 

assumptions. To the best of our knowledge, several authors studied the well-posedness of a 
periodic solution to PDEs (see e.g [5, 9–11, 13, 14, 16, 21]). Hence, to enhance our result 
and relates it to recent studies in the early literature, we propose to recall some periodic 
work that presents particular cases of our problem. Amann [5] studied the existence of a 
classical periodic solution to (1) when � is more regular and g has a subquadratic growth 
on the gradient. Their proof was based on the sub and super-solutions method and involved 
Schauder’s fixed point theorem. When the nonlinearity term g is equal to zero, a major and 
comprehensive existence results still is the book by Lions [20]. The author assumed that 
� belongs to L2(QT ) and proved the existence and uniqueness of a weak periodic solution 
to the considered problem via maximal monotone operator theory. He also established the 
regularity properties and proved some a priori estimates on the obtained solutions. In [14] 
Deuel & Hess extended the results of [5, 20] to the case when � belongs to L2(QT ) and g 
has a sublinear growth with respect to the gradient. The authors assumed the existence 
of an ordered couple of functions (u, u) which are a sub- and super solution to the con-
sidered model. They proved the existence of a weak periodic solution belonging to space 
L2(0, T;H1

0
(�)) ∩ C

(
[0, T];L2(�)

)
 . Alaa et  al. [11] have been interested by Eq. (1) when 

the source � is a nonnegative function belonging to L1(QT ) . Indeed, they used the sub- and 
super-solution method to establish the existence of a weak periodic solution in the dis-
tributional sense. Later, in [9] Charkaoui et al. generalized the work [11] by considering 
a quasilinear periodic system with quadratic growth with respect to the gradient and L1 
data. The authors presented a simple method to construct a weak periodic super-solution 
to the considered system where they based on Schauder’s fixed point theorem. Thereafter, 
by employing the obtained super-solution, the authors established the existence of a weak 
periodic solution in the space L1(0, T;W1,1

0
(�)) ∩ C([0,T];L1(�)) . Contrary to early men-

tioned works, here we investigate the existence of a nonnegative weak periodic solution 
to (1) in the case when � is a nonnegative bounded Radon measure and the nonlinearity g 
has a critical growth with respect to the gradient. The mathematical tools used to prove the 
existence result of our work involves the sub- and super-solution technic combined with the 
truncation method. Note that the difficulties comeback in the presence of the non regular 
data � , but we overcome these difficulties by employing some new techniques. As can be 
viewed the result of our paper generalize the works [5, 9–11, 14].

We have organized this work as follows. In Sect. 2, we state the assumptions involv-
ing our problem, we define the adapted notion of weak periodic solution to (1) and 
we state the main result of our work. Section 3 is devoted to proving the main result. 
We start initially by introducing an approximate problem to (1). Next, we establish 

(1)

⎧
⎪⎨⎪⎩

�tu − �u + g(t, x, u,∇u) = � in QT

u(0, .) = u(T , .) in �

u(t, x) = 0 on �T
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necessaries a priori estimate of the approximate solution. Thereafter, we justify the pas-
sage to the limit in all the terms of the approximate problem.

We close this paragraph by giving the used notation throughout this work.

•	 C
∞

c

(
QT

)
=
{
� ∶ QT → ℝ, indefinitely derivable with compact support inQT

}
•	 Cb(QT ) = {� ∶ QT → ℝ, continuous and bounded in QT}

•	 Mb

(
QT

)
= {� bounded Radon measure in QT

}
•	 M

+

b

(
QT

)
= {� bounded nonnegative Radon measure in QT

}
.

•	 VT = Lr(0, T;W
1,r

0
(�)) , with 1 ≤ r <

N+2

N+1
.

•	 For every k > 0 , we define Tk(s) = min{k, max{s,−k}}.
•	 We note Sk(v) = ∫ v

0
Tk(s)ds.

2 � Main result

This section is devoted to enunciate the main result of our work. First of all, let us now 
introduce the hypothesizes which we suppose throughout this paper. We assume that 

(�1)	� � ∈ M
+

b

(
QT

)
(�2)	� g ∶ QT×ℝ×ℝ

N
→ [0,+∞[ Carathéodory function , which means that 

(�3)	� g(t, x, s, 0) = min
{
g(t, x, s, r), r ∈ ℝ

N
}
= 0.

(�4)	� |g(t, x, s, �)| ≤ H(t, x) + d(|s|r + |�|r), for all (s, �) ∈ ℝ×ℝN and a.e (t, x) ∈ QT

 where H is a nonnegative function belonging to L1(QT ) , d ≥ 0 and r ∈ [1,
N+2

N+1
[ .

Before giving the main result of our work, we need to clarify in which sense we want to 
solve problem (1). For this reason, we introduce the notion of weak periodic solution to (1).

Definition 1  A measurable function u ∶ QT → ℝ is said to be a weak periodic solution to 
the problem (1) if it satisfies

Definition 2  A measurable function u ∶ QT → ℝ is said to be a weak periodic sub-solu-
tion (resp. super-solution) to the problem (1) if it satisfies the conditions of the Definition 1 
with }} =�� replaced by }} ≤�� (resp. }} ≥�� ) in (2) and (3).

Remark 1  We say that u(0, .) = u(T , .) in L1(�) , if for all � ∈ L∞(�) we have

In the following theorem, we state the main result of our work.

(s, �) ↦ g(t, x, s, �) is continuous for a.e (t, x)

(t, x) ↦ g(t, x, s, �) is measurable for all (s, �)

(2)
u ∈ C

(
[0, T], L1(�)

)
∩ L1(0, T;W

1,1

0
(�)), g(t, x, u,∇u) ∈ L1(QT )

�tu − �u + g(t, x, u,∇u) = � in D�
(
QT

)

(3)u(0, .) = u(T , .) in L1(�)

lim
s↦0 ∫�

(u(T − s, x) − u(s, x))�(x)dx = 0.
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Theorem 1  Under the hypotheses (�1)-(�4) , we assume that the problem (1) has a non-
negative weak periodic super-solution w. Then (1) has a weak periodic solution u in the 
sense of the Definition 1 such that: 0 ≤ u ≤ w.

3 � Proof of the main result

The purpose of this section is to prove the result of Theorem 1. To do this, we propose to 
approach the weak periodic solution of (1) by an approximate periodic solution which is more 
regular. Thereafter, we establish necessaries estimates to pass to the limit on the approximate 
scheme. Let us introduce the approximate problem associated with Eq. (1).

3.1 � Approximate scheme

Let k > 0 , we can build a truncation function �k ∈ C
2 , such that

A typical construction of the truncation �k can be given as follows

Let w be the nonnegative weak super-solution of problem (1). For all n ∈ ℕ
∗ , we consider 

wn = �n(w) and we introduce the Carathédory function gn as follows

Using the standard convolution arguments, we can construct a nonnegative sequence 
fn ∈ C

2
c
(QT ) , such that (fn) converges to � inM+

b
(QT ) and bounded in L1(QT ) . Let us define

It is clear that the sequence (�n) verifies

Now, we define the approximate problem of (1) as follows

⎧⎪⎪⎨⎪⎪⎩

�k(r) = r if 0 ≤ r ≤ k

�k(r) ≤ k + 1 if r ≥ k

0 ≤ � �
k
(r) ≤ 1 if r ≥ 0

��
k
(r) = 0 if r ≥ k + 1

0 ≤ −���
k
(r) ≤ C(k)

𝜏k(s) =

⎧
⎪⎨⎪⎩

s in [0, k]
1

2
(s − k)4 − (s − k)3 + s in [k, k + 1]

1

2
(k + 1) for s > k + 1

gn(t, x, s, �) =
g(t, x, s, �)

1 +
1

n
|g(t, x, s, �)| .�{w≤n} a.e in QT

�n(t, x) = fn(t, x).�{w≤n} a.e in QT

(4)�n → � inM+

b
(QT ) and ‖�n‖L1(QT )

≤ ‖�‖M+
b
(QT )
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As well known, we need to ensure the existence of a weak periodic solution to the approxi-
mate problem (5). This will be achieved by the following lemma.

Lemma 1  For any n ∈ ℕ
∗ , problem (5) has a weak periodic solution 

un ∈ L2(0, T;H1
0
(�)) ∩ C([0,T], L2(�)) in the sens that

for all � ∈ L2(0, T;H1
0
(�)) . Where ⟨., .⟩ denote the duality pairing between L2(0, T;H−1(�)) 

and L2(0, T;H1
0
(�)) . Furthermore, we have

Proof  To prove the result of Lemma 1, we propose to apply the result of [14]. By using the 
assumptions (�1) and (�3) , it comes that 0 is a weak periodic sub-solution to the approxi-
mate problem 5. On the other hand, by a simple computation we obtain

We recall that 0 ≤ −���
n
(s) ≤ C(n) , then, the fact that w is a weak super solution to (2) per-

mit us to deduce that wn is weak periodic super-solution to the approximate problem  5. 
Since the nonlinearity (gn(t, x, un,∇un)) is bounded, we can apply the result of [14] to 
deduce the existence of a weak periodic solution un ∈ L2(0, T;H1

0
(�)) ∩ C([0,T], L2(�)) to 

(5) such that

for all test function � ∈ L2(0, T;H1
0
(�)) . As a consequence of [14], we have

	�  ◻

3.2 � A priori estimates

In this section, we will state the priori estimates on the approximate solution un.

(5)

⎧
⎪⎨⎪⎩

�tun − �un + gn(t, x, un,∇un) = �n in QT

un(0, .) = un(T , .) in �

un(t, x) = 0 on �T

(6)
�tun ∈ L2(0, T;H−1(�)), un(0, x) = un(T , x) in L

2(�)

⟨�tun,�⟩ + ∫QT

∇un∇� + ∫QT

gn(t, x, un,∇un)� = ∫QT

�n�

(7)0 ≤ un ≤ wn ≤ w

�twn = �tw.�
�
n
(w) = �tw.�{w≤n}

∇wn = ∇w.��
n
(w) = ∇w.�{w≤n}

�wn = �w.�{w≤n} + |∇w|2.���
n
(w)

�tun ∈ L2(0, T;H−1(�)), un(0, x) = un(T , x) in L
2(�)

⟨�tun,�⟩ + ∫QT

∇un∇� + ∫QT

gn(t, x, un,∇un)� = ∫QT

�n�

0 ≤ un ≤ wn ≤ w
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Lemma 2  Let un be the weak periodic solution to the approximate problem (5). Then

i)	� for every k > 0

ii)	� there exists constants C1 and C2 independents on n such that

Proof  i)	� By choosing � = Tk(un) as a test function in (6), it follows 

 Since un is periodic with respect to time, one obtains 

 On the other hand, by employing (4) and (7) the relation (8) becomes 

ii)	� Let us remark that 

 By employing the result of i), one gets 

 On the other hand, thanks to the growth assumption (�4) and Hölder’s inequality, we have 

 Hence, the result of i) permit us to deduce that 

�QT

�∇Tk(un)�2 + k �QT∩{k<un}

�gn(t, x, un,∇un)� ≤ k‖𝜇‖M+
b
(QT )

�QT

�gn(t, x, un,∇un)� ≤ C1

‖un‖VT
≤ C2

(8)⟨�tun, Tk(un)⟩ + ∫QT

�∇Tk(un)�2 + ∫QT

gn(t, x, un,∇un)Tk(un) = ∫QT

�nTk(un)

⟨�tun, Tk(un)⟩ = ∫
�

Sk(un(T)) − ∫
�

Sk(un(T)) = 0

�QT

�∇Tk(un)�2 + k �QT∩{k<un}

�gn(t, x, un,∇un)� ≤ k‖𝜇‖M+
b
(QT )

�QT

|gn(t, x, un,∇un)| = �QT∩{1<un}

|gn(t, x, un,∇un)| + �QT∩{un≤1}
|gn(t, x, un,∇un)|

(9)�QT

�gn(t, x, un,∇un)� ≤ ‖�‖M+
b
(QT )

+ �QT∩{un≤1}
�gn(t, x, un,∇un)�

�QT∩{un≤1}
�gn(t, x, un,∇un)� ≤ �QT

H(t, x) + d

�
�QT

�T1(un)�r + �QT

�∇T1(un)�r
�

≤ ‖H‖L1(QT )
+ d

�
T��� + (T���) 2−r

2 ‖T1(un)‖
r

2

L2(0,T;H1
0
(�))

�
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 Consequently, one may conclude that (gn(t, x, un,∇un)) is bounded in L1(QT ) . To prove 
that (un) is bounded in VT , one may use the result of [6], we have 

 such that s, r ≥ 1 and
2

s
+

N

r
> N + 1 . Hence, choosing s = r in the last inequality and 

employing (4), (7) and the boundness of (gn) in L1(QT ) , one obtains 

 where C(�, r) is a constant depending only on � and r. 	�  ◻

Lemma 3  Let un be the sequence defined as above. Then, there exists a sub-sequence of un 
still denoted by un for simplicity such that

Proof  We set �n(t, x) ∶= �n(t, x) − gn(t, x, un,∇un) for a.e (t, x) in QT . Therefore, from the 
result ii) of the Lemma 2 and the relation (4) it is clear that (�n) is bounded in L1(QT ) . 
Furthermore, thanks to the compactness result of [7], we obtain that the application 
(un(0), �n) ⟼ un is compact from L1(�) × L1

(
QT

)
 into L1(0, T;W1,1

0
(�)) . Consequently, 

we can extract a sub-sequence, still denoted by un for simplicity, such that

It remains to prove that (un) converges strongly in VT . To do this, we will show that (∇un) 
is a Cauchy sequence in Lr(QT )

N . For m, n ≥ 1 and 0 < 𝛼 < 1 , we can employ Hölder’s 
inequality to obtain

Choosing � ∈]0, 1[ such that r−�
1−�

∈ [1,
N+2

N+1
[ and employing the result ii) of the Lemma 2, 

one has

Since (∇un) is strongly convergent in L1(QT )
N , one may deduce that (∇un) is a Cauchy 

sequence in Lr(QT )
N . Which is equivalent to say that (un) strongly convergent in VT . 	�  ◻

(10)�QT∩{un≤1}
�gn(t, x, un,∇un)� ≤ ‖H‖L1(QT )

+ d

�
T��� + (T���) 2−r

2 ‖�‖
r

2

M
+
b
(QT )

�

‖‖un‖‖Ls(0,T;W1,r

0
(�)

) ≤ C(�, s, r)
[‖‖gn‖‖L1(QT)

+ ‖‖�n
‖‖L1(QT )

+ ‖‖un(0)‖‖L1(�)

]

��un��VT
≤ C(�, r)

�
C1 + ‖�‖M+

b
(QT )

+ ‖w(0)‖L1(�)

�

un ⟶ u strongly in L1(0, T;W
1,1

0
(�))

(∇un, un) ⟶ (∇u, u) a.e in QT

un ⟶ u strongly in VT

un ⟶ u strongly in L1(0, T;W
1,1

0
(�))

(∇un, un) ⟶ (∇u, u) a.e in QT

(11)�QT

∣ ∇un − ∇um ∣r≤
(
�QT

∣ ∇un − ∇um ∣

)�(
�QT

∣ ∇un − ∇um ∣
r−�

1−�

)1−�

‖∇un − ∇um‖rLr(QT )
≤ C‖∇un − ∇um‖�L1(QT )
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3.3 � Passing to the limit

In this section, we are concerned with the passage to the limit in the approximate scheme 
(5). By employing the growth condition (�4) and the result of Lemma 3, it comes that

To prove that the limit u of un is a weak periodic solution to (2), we take � ∈ C
∞

c
(QT ) and 

by employing the convergence results of the Lemma 3, we arrive at

Which implies that u satisfies

It remains to verify the periodicity condition (3). To do this, we propose to apply the semi-
group theory, we have

where S(t) present the semigroup of contractions in L1(�) generated by the Lapla-
cian −� with Dirichlet boundary conditions on �� . Employing the fact that 
un(0, .) = un(T , .) in L

1(�) , we obtain for all � ∈ L∞(�)

We recall that

where �(t, x) ∶= �(t, x) − g(t, x, u,∇u) . On the other hand, by employing the continuity of 
S(t) in L1(QT ) , we can pass to the limit in (12) when n tends to infinity, we obtain

Hence, we deduce that u(0, .) = u(T , .) in L1(�) . Which ends the proof of Theorem 1.

Acknowledgements  The authors are very grateful to the handling editor and the anonymous referee for their 
careful reading of the manuscript and their valuable comments, remarks and suggestions that have improved 
the writing of our paper in several points.

gn(t, x, un,∇un) ⟶ g(t, x, , u,∇u) in L1(QT )

⟨�tun,�⟩ ⟶ ⟨�tu,�⟩

∫QT

∇un∇� ⟶ ∫QT

∇u∇�

∫QT

gn(t, x, un,∇un)� ⟶ ∫QT

g(t, x, u,∇u)�

∫QT

�n� ⟶ ∫QT

�d�

u ∈ C
(
[0, T], L1(�)

)
∩ L1(0, T;W

1,1

0
(�)), g(t, x, u,∇u) ∈ L1(QT )

�tu − �u + g(t, x, u,∇u) = � in D�
(
QT

)

un(T , .) = S(T)un(0, .) + ∫
T

0

S(T − s)�n(s, .)ds

(12)∫
�

un(0, x)�(x) = ∫
�

S(T)un(0, x)�(x) + ∫
�
∫

T

0

S(T − s)�n(s, x)�(x)

�n → � strongly in L1(QT )

∫
�

u(0, x)�(x) = ∫
�

S(T)u(0, x)�(x) + ∫
�
∫

T

0

S(T − s)�(s, x)�(x) = ∫
�

u(T , x)�(x)
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