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Abstract

In the present paper, we introduce the Bézier variant of modified a-Bernstein operators
and study the degree of approximation using second order modulus of continuity. We also
establish a direct approximation theorem with the aid of Ditzian-Totik modulus of smooth-
ness and the Peetre’s K-functional. Further, we obtain a quantitative Voronovskaja type
theorem and the rate of convergence for functions with a derivative of bounded variation
on [0, 1]. Finally, we depict the rate of convergence of these operators for certain functions
by graphical illustration using Matlab software.
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1 Introduction

The most consequential result in approximation theory is the Weierstrass theorem, which
affirmed that any continuous function f on the finite interval [a, b] can be approximated
with the help of sequence of polynomials which converges uniformly to f on [a, b]. There
are a number of proofs of this theorem. Bernstein [4] gave the most simplest and construc-
tive proof of Weierstrass theorem using Bernstein polynomials. For f € C(J), the space of
all continuous functions on I = [0, 1], the Bernstein polynomials are defined as follows:
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B,(f:x) = Zf(%)bn’k(x),xel, (1.1)
k=0
where
by () = (Z))H‘(l —xykn=1,2,3,...

Bernstein operators exhibits many noticeable features but its efficient properties get over-
shadowed by its slow convergence which acts as a barrier to its use from the numerical
point of view, inspite of its simplicity and popularity. Thus in order to improve the rate of
approximation by these operators (1.1), Khosravian-Arab et al. [19] presented operators of
Bernstein type with order of approximation one, two and three and studied some theoreti-
cal results concerning the rate of convergence and the asymptotic behaviour together with
some applications of these operators. This new approach to Bernstein operators involving
first-order approximation is given by:

c k
B (i) = Y b o (=) v e . (12)
k=0
where B (x) = a(x, mb,_; 4 (0) + a(l = x, Wb, 1 (x) and  a(x, n) = a,(n)x + ay(n),
n=12,...a;n),i=0,1,2,... are two unknown sequences which are to be determined
later. If we put a;(n) = —1, ay(n) = 1, the operators (1.2) reduce to the classical Bernstein

operators (1.1).
Chen et al. [10] modified Bernstein operators by including a real fixed parameter « as
follows:

B, (f;x) = ;Zobn,k,a(x)f<§>, xel, (1.3)

where « € I and b, , (%) satisfies

nk,a

ba ) = <Z‘2>(1 — )+ <Z:§>(1 —a)(1-x)

+ <Z )ax(l — 01 =) e > 2,

with the recursion relation given by

byra®) =1 =x)b ) +xb,_1 41,6, k=0,1,2,...n.

n—1,k,a

Various reseachers worked on the operators (1.3) and obtained several interesting results in
local and global approximation (cf. [17, 21]). Note that for « = 1, the a-Bernstein operators
given by (1.3) include Bernstein operators.

Cetin and Radu [8] introduced a Stancu type generalization of the a-Bernstein opera-
tors defined by (1.3) and obtained the rate of convergence in terms of the modulus of con-
tinuity, Voronskaja and Griiss-Voronskaja asymptotic results and a Griiss-type inequality
by means of second order modulus of continuity. Acu and Radu [3] constructed a new
family of operators by linking the a—Bernstein operators (1.3) and the genuine a—Bern-
stein Durrmeyer operators and studied the approximation degree by means of modulus of
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Bézier variant of modified a-Bernstein operators 809

continuity, a quantitative Voronskaja type theorem and some Griiss-type inequalities. Acar
and Kajla [2] defined a bivariate extension of a-Bernstein operators and studied concerning
convergence properties. Motivated by [19], Kajla and Acar [18] improved order of approxi-
mation of a-Bernstein operators defined in (1.3) by introducing modified a-Bernstein oper-
ators as:

n

B?Z‘;l(f;X) = Z bﬁ’{,;}a(x)f<s>,x el, (1.4)

k=0

where bf;:a(x) =a(x,mb,_;,)+a(l —x,n)b, 1, ;,(x) and a(x,n) is already defined
above.

Stancu [24] proposed the Bernstein type operators based on two parameters and gave its
representation by a convex combination of second-order divided differences. In approxi-
mation theory, examining the smoothness of the approximating function from its order of
approximation is as important as the rate of convergence of the approximation method for
that function. In this context, Bézier of Régie Renault had played an important role. He was
instrumental in developing a powerful system for designing free form curves and surfaces,
popularly known as Bézier curves. These curves are generally used in computer graphics
to produce smooth curves and are well suited to the geometric problems where smoothness
is of utmost importance than any other consideration. Bézier curves make use of Bernstein
polynomials as basis, so in this way Bézier described the mathematical basis for the system
proposed by him and Bézier methods turned out to be an application of Bernstein polyno-
mials (see [5, 6, 14]).

The aim of this paper is to introduce the Bézier variant of modified a-Bernstein oper-
ators (1.4) and to study its rate of convergence in terms of Ditizian-Totik modulus of
smoothness and K-functional. We also obtain quantitative Voronovskaja type theorem and
approximation of functions with a derivative of bounded variation on I. We also depict the
rate of convergence of these operators for some function by graphical illustration using
Matlab.

2 Construction of Bézier variant of modified a-Bernstein operators

Many researchers have worked on finding the Bézier variant of various important positive
linear operators in approximation theory. The study in this direction began in 1972 when
Bézier introduced a new basis function as j, ;(x) = Z]": « b ). Chang [9] introduced Bern-
stein-Bézier operators and studied their convergence properties. Li and Gong [20] studied
their convergence in terms of modulus of continuity. Tremendous contribution has been
made by Zeng and his fellow workers (see e.g. [25, 26, 28]) in finding the Bézier variant of
different operators. Zeng and Piriou [25] were the first, to study the rate of convergence of
classical Bernstein polynomials and Bernstein-Kantorovich operators by considering better
bounds. Zeng and Chen [27] introduced Bézier variant of Bernstein-Durrmeyer operators.
Srivastava and Gupta [23] obtained the Bézier variant of Bleimann-Butzer-Hann opera-
tors defined in [7]. Zeng and Gupta [28] presented Bézier variant of well known Baska-
kov operators. Abel and Gupta [1] mentioned a Bézier variant of Baskakov-Kantorovich
operators. Bézier variant of Baskakov-Durrmeyer operators was introduced by Gupta and
Abel [15]. We refer the reader to the book [16] and the references therein, for a detailed
study of the research work in this direction.
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Inspired by the above research, we introduce the Bézier variant of modified a-Bernstein
operators defined in (1.4), as follows:

n

k
B (fi0 = Y oM yf (;) @.1)
k=0
0 0 :
where 021,00 () = [u10®)]” = V1@ s Ta@ = T B ), for
Jj=k

k=0,1,...,n,are the Bézier basis functions.

3 Basicresults
In order to prove the main results, we will need the following lemmas:

Lemma 1 [18] Let e.(x) =x",r € {0,1,2}. For the operators Bfl’l{;l(f; X) defined in (1.4),
we have

M B%] (eg:x) = 2ay(n) + a,(n);

@) B (e:3) = Cag(n) + aymy + T4,

x(2ay(n)(2 — 3x) + a;(n)(3 — 5x))

B, g1 (ez;x) =x2(2a0(n) +a,(n) +

n
3) + (ay(m) + a;(n)) — 2x(1 —x)Laay(n) + (1 + a)a,(n))

n2

Consequently,

Lemma 2 [18] Let 4;,(x) = Bi‘l{l;l((r—x)i;x),i =1,2,4. For BY'\(f;x) using Lemma 1,
we have

_ (=20)(ag(m)+a,(n) ,
(1) Ay ) = ERHaOm,

x(2ay(n)(2—3x)+a; (n)(3—5x))—2x(1-2x)(ay(n)+a, (n))

(ay(m)+a, () —2x(1-x)2aay(m)+(1+a)a, (n)) ,

2) A= - + —
30,00 =3;«2(1 -x?) (iczzo(n) +a,(n))
. x(1 = x)(12a4(n) + 11a,(n)) — 2x>(1 —3x2) (2ay(n)(7 + 6a) + (17 + 6a)a, (n))
®) . (ap(n) +a,(n)) + x(1 — x)(16(40; - 3)20(11) +2(17 = 25a)a,(n))
. 32 (1-22) (65— 6a)a2(n) + S(Za = Ta,(n)) .
n

Remark 1 In approximation theory, our first concern is to ensure the uniform convergence
of the linear positive operators under consideration which requires to verify the condi-
tions of the well-known Korovkin theorem. So, keeping in view this aspect, we assume
that the sequences a;(n),i = 0, 1 occuring in the operators (1.4), verify the condition that
2ay(n) +a;(n) = 1.
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Bézier variant of modified a-Bernstein operators 811

In our further study throughout, by ||.|| we mean the uniform norm on C(J).

Lemma 3 For every f € C(I), we have

B < il
Proof Applying the definition (1.4) and Lemma 1, the result is obvious. O

Lemma 4 [18] For B%’xl (f; x), there hold the following results:
(1) im n4, ,(x) = x(1 —x);
(2) lim n? 2, ,(x) = 3x%(1 — x)°.

Consequently, for sufficiently large n, we have

Ay (%) SM; (3.1)
n
C0x2(1 - )c)2
Ay o(X) S————, 3.2)
n

where C, is a positive constant not necessarily the same.

Lemma 5 If f e C{), then for the modified a -Bernstein- Bézier operators defined
by (2.1, for each x € I we have |Bi:! (f)| < |[f]].

Proof From Lemma 1 and our assumption that 2a,(n) + a,(n) = 1, we obtained
BM! (eg:x) = 1. Hence,

n,a,0
BM 16(60#) ZQ;9£A:1( )
k=0
= Z { [‘]n,k,a(x)] [ K+l a(x)] }
k=0
= [Jn,O,a(x)]e
n 0
= <Z by la(x))
=0
=1
Thus, ) mg(fx)| Zp ieznzl
< Il Z A
“f”Bn a, g(eo,x)
= |IF1l-
This completes the proof. a
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Lemma 6 If f € C(), then for each x € I we have

B0 <

< OllfIl.

Proof From (2.1), we know that Q;elzﬁs’l(x) = [Jn,k,a(x)]g - [ank +1,a(x)] ‘

Using the fact that 0 < [J,Lk’a(x)]e - [Jn’k +1,a(x)]9 and the well known inequality

la* — b*| < ala — b|, where 0 < a,b < land a > 1, we get

[ nka('x)] [ nk+1 a('x)] < 0[ nka('x) nk+1 a(x)]
=0p""! ().

nk,a

Hence, by the definition (2.1), we have

B (f0| < Z p

(9)M1
< Il 2 QM (x

(H)Ml
nka

<olfl ZbM‘

Applying Lemma 1, we obtain |Bft’l"g(f;x)| < 9|lfIl- a

4 Rate of approximation

Before discussing about the rate of convergence of the operators (2.1) , let us recall some
important definitions which are needed to establish the main results.
For f € C(I), the appropriate Peetre’s K-functional [22] is given by

Ky(f:8) = inf {|If — hll + 8||'|| + 8*||"|| - h € W?},6 >0, (4.1)

where W2 = {h € C(I) : W', W' € C(I)}. From [11], the relation between the K-functional
and the second order modulus of continuity is given by

Ko(f.8) < Coon (£, V), 2)

where

@,(f,6) = sup sup  |f(x+2h) = 2f(x + h) + f(x)]. 4.3)

0<h<é  xx+hx+2hel
The usual modulus of continuity is given by

o(f,6) = sup sup |f(x+h) —f(x)]. 4.4)

0<h<é xx+hel
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Bézier variant of modified a-Bernstein operators 813

Now, we establish an approximation theorem for the operators (2.1), using classical modu-
lus of continuity and Peetre’s K-functional.

Theorem 2 For f € C(I), a € I, there exists a positive constant Cy(0) such that

B30 = £0)] < CoOn(F:1/01 27,9,

where x (x) = (Aq() 5.

Proof Let h € W?. By Taylor’s formula, we have

r

h(r) = h(x) + I (x)(r = x) + / (r =" (y)dy. (4.5)

X

Applying B 9( ;X) to both sides of (4.5) and using the linearity of the operators, we get

B! (i) = h)B (1) + 1 (B! (r — x, ) + B, / (r =" (r)dy:x |

n,a,0

As B)l\! (13%) = 1, we have B!, (i) = hx) + W ()B)%!(r = x:) + B)\:) (f (r— y)h~<y)dy;x).

Using Cauchy-Schwarz inequality and Lemma 6, we have

B (hx) — h(x)| <|w

n,a,

0(|r—x|x>|
B / = Py || < 1B 1 - 210

hl/ %
PN gt (= w20) < I [B252 (- 0730)|

h" 1 h”
+ || “BMl ((I'— X)Z;X) S ||h,||\/§[j,2’a(x)] 2+ euj’la(x)

2 n,a,0

< W) Vox:, 00+ ol ” 2. 4.6)
As B (30 = 0| < B = hio)| + Bff’a1€<h;x>—h(x>|+lf<x>—h(x)|,

using Lemma 6 and (4.6), we have

n’
12,

B30 = f0| < O+ DI = hll + VO | 17,00 + 0=

Taking infimum over all 7 € W? on the right side of the above inequality, we get

0 0| < 0+ DK, 7V, ).

Using relation (4.2), there exists a constant C,(6), such that
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814 P.N. Agrawal et al.

B0 —f)] < CoO)o, <f \/m>

This completes the proof. a

Remark 3 Using Lemma 4, for sufficiently large n, the above result can also be expressed
as

In our next result, we obtain an estimate of error for the operators (2.1) using Ditzian-
Totik first order modulus of smoothness and the associated K-functional.
The Ditzian-Totik first order modulus of smoothness [12] is given by

h h h
‘”W;’):oiiE,{P(”@) —f(x— dﬁ”)‘*“ (bz(x)e’}’ 47

where ¢(x) = \/x(1 —x) and f € C(/). The K-functional corresponding to w,(f;r) is
denoted by K, (f;r) and is defined as

Ky(f:r) = inf {IIf = Al + rllgn'|| = h € Hy)}. “8)

where r > 0 and H,(I) = {h the ACD, ||oN || < oo}, AC(]) is the class of absolutely
continuous functions on I. Further from [12], the relation between K-functional and the
Ditzian-Totik first order modulus of smoothness is given by

Ky(f3r) < Cooy(fir), Cp > 0. (4.9)

Theorem 4 For f € C(I),x € (0, 1) and ¢p(x) = \/x(1 — x), we have

2v20
Byoo () —f(x)‘ < CO(G)wd)(f;W)(n,a)’

where C(0) is a positive constant depending on 0.

Proof Leth € H ,(I) be arbitrary. Then,

h(r) = h(x) + / W (y)dy.

X

Applying Bz’[; (%) to both sides of the above equation, we get

B, < / r h'(Y)dy;x>

Now we will estimate the value of fx " (y)dy. For any x,r € (0, 1), we have

|Bf;,f€(h;x) - h(x)| = : (4.10)
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Bézier variant of modified a-Bernstein operators 815

/ h’(y)dy‘ansh’n / %dy‘

= l¢#|

1
/x Vr(1 —y)dy

< Jon| / ( T )dr

< 2on' (|7 - - Vi)
= 2||¢h’“|r—x|< L ! )
VrtvE VT—r+yl—x
< 2||¢h'|||r—x|< ! >
w Vi
<2 4
V| |
. 2V2I1H | v,
Thus, [Bo% (i) = h)| < DB =
Using Cauchy-Schwarz inequality and Lemma 6, we have
2\/_ ||¢h'||\/—12a<x
d(x)

. 21201100 || )
d(x) '
As|BM (i) — f(x)| B (f - hx)|+[f(x) hx)| +

using (4.11) and Lemma 6, we have

4.11)

B! () — hx),

24/20||ph
B (20 = £0) < 0+ DI - hl) + A
$(x) ’
Taking infimum on the right side of the above inequality over all h € H (1), we get
24/26
B (f0) —f0| < 0+ 1)K¢(f 00 % )
Using relation (4.9), we get
24/26
B (%) ()] < CuO)o, <f;mz;‘,a>-
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816 P.N. Agrawal et al.

This completes the proof. a

Remark 5 Using Remark 1 and Lemma 4, for sufficiently large n, the result of the above

theorem can also be expressed as
2 / 29x(l—x)

¢()

26
< Co(9)w¢<f;2\/7>.

5 Quantitative Voronovskaja type theorem

B0 = )| < GOy f:

In this section we establish a quantitative Voronovskaja type theorem for the operators
(2.1) with the aid of first order Ditzian Totik modulus of smoothness.

Theorem 6 Let f € W? and x € (0,1), then for sufficiently large n , we have following
results:

n{ B0 = 00 = @B = x50) = 2" QOB ((r = 2752) }‘
< Cowy (. pon™"7?);
n{ B0 = £ = @B = x50) = 27 OB, (7 = 0752) }‘
<Gy (x)a)¢( //§n_1/2)§

where C denotes a positive constant.
Proof Letr € I and x € (0, 1) be arbitrary. Since f € W2, by Taylor’s formula we have
f) —f@) = —xf' )+ /x r=r)f"(rdy. (5.1)
Equation (5.1) can also be written as:
f) = f@) = (r = 0f' () = %(r -0’ (x) = / -l - @l 52)

Applying BY ( ;x) to both sides of (5.2), we get

na9
B0 = 1) = /OB = 50 = S QOB ((r = 2730)|
wi (| (5.3)
SB,“,,Q(/ lr=yllf"(r) = f" )| dy ;x>.

PIF" () = £ @ldy |
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Bézier variant of modified a-Bernstein operators 817

From [13, p. 337], the estimated value can be found and is given by

/ lr=71lf" ) =" @dy | <2|f" = |- = )7 +2||¢H' || ¢~ @Ir =2, (5.4)

where h € Hy(I).
Using Cauchy-Schwarz inequality, Egs. (3.1, 3.2, 5.3, 5.4) and Lemma 6 we have

B () = f) = f 0B (r = xix) — f”(x)Bf,Qg ((r—x%x)

<20 = A8 (= 075x) + 2| ¢h |7 0B,y (Ir = 215%)

<2\ = h||04, (%) + 26| K ||~ () { Ay, (0) } 2 {/14,{1()6)}%

H*@) ) o 1", .,
sco{T"uf i += fnthu}

{¢2< ol - nll + ;‘)uth'n}

Since, ¢p?(x) < ¢p(x) < 1, for all x € (0, 1), we have

ML) = 00 = f OB (r — xi0) — —f”( B ((r = x)7ix)

n,a,0

0 1" 75 ’
< S Ll -+t gtolon] ).
The above inequality can also be written as
|BYL (Fx) — () = f' (0)BY: ‘g(r—xx)——f”(x)ijg((r—x>2;x)|
G 2 1" —5 ’
< =22 o{ 1" — hll+ 73 lon'] |-

Taking infimum on the right side of the above inequalities over h € H (), we have

n,a.0

{Byalg(fx) —fx)—f (x)BM 10(r—xx) —f”(x)BMl ((r—x)z;x)}'

Cok(":p0m ™)
Cot? O (7577 ).

Using the relation (4.9), the theorem is proved. a

6 Rate of approximation for functions with derivatives of bounded
variation

In this section, we estimate the convergence rate of the operators (2.1) for functions with a
derivative of bounded variation on I. Let DBV(I) denote the class of functions with deriva-
tives of bounded variation on the interval I and let f € DBV(I) then f can be represented as:
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fx) = / c@dr +£(0),
0

where ¢ € BV(I), i.e. ¢ is a function of bounded variation on /.

For the operators (2.1), Lesbesgue-Stieltjes integral representation is given by:

B (i) = / 09, TH ),

where
OM.1 .
M ey = 2 O @ if 0<r<1
nag(xar) = k<nr .
0’ lf r = 0
b

Let V(f) denote the total variation of fon [a, b] and fx’ is given by
a

f') = f (x+) ampsif ampyy  gtix
fln=30 ampiif ampy = x
') —f (x=) ampsif amp;0 <y It;x.

We shall need the following lemmas to prove the main result of this section:

Lemma7 Let x € (0, 1), then for sufficiently large n, we have the following results:

4 Cy0x(1 —
<1>ow0(x,y>=/ LT o) < Lf) 0<y<x;
- 0 n(x—7y)
Cy0x(1 —
(2)1—ona9(x,y>=/ TP s Lk AP
- y n(x—y)

Proof Using Lemma 6, we have

y 2
onaﬁ(‘x y) < / <x_ > d Tlll\/Ia]H(x }")
X

/ (x = rd, T (x;r)

(x y)
<——i
w—pr 2t
C09x(1 - x)
T onGx—yp)?

This proves part (i).
Similarly, we can prove part (ii).

6.1)

(6.2)

6.3)

6.4)

(6.5)

|

Lemma 8 Let f € DBV(I) and x € (0, 1), then for sufficiently large n, the following ine-

qualities hold.
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Bézier variant of modified a-Bernstein operators 819

‘ / ) < / xf;<w)dw> d, T (xy)
0 Y

[v]
Cof(1 —x) X x [ =,
< —- Vi)l +—=— v )
< / f(W)dW) d, T (xy)

1 \n —
1—x x+\/’7 . Coex[ ] x+lT .
v+ Yl v
\/E x n = x
Proof In order to estimate the value of L,, we will decompose the interval [0, x] into two

parts.
Ii" = [O,x -

ML,

@ L,

ﬁ]amd I = [x— ﬁx}

Using integration by parts, we get

) < / ) fx'(w)dw>d T ()
</ fl (W)dW) (0naor.y))dy

= ‘— /0 L1000, y)dy‘ (6.6)
< / /Dl onas )y

0
< / i (D] 0n a0 )y + / £, ()| 01,0006 )y

I 1

=P, +P,.

Using f!(x) = 0, Lemma 7 and putting y = x — i, we get
/ f{(1)]0,06(x, V)dy
I
Cy0x(1 —x)
GO0 [
n IT

C09x(1—x)/ <‘*/ ,) dy
n N7 (x=y)? 6.7)
coe(l—x)/ﬁ v \auw

n 1 X*ix

vl
e,

k=1 \" &

P
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As f/(x) =0and 0, , o(x,7) < 1, we have
Py =/ lfx/(y)|0n,a,0(x’ y)dy
L

= / /() = f1(0)| 0,000, 7)dy
I

x !
‘y/ x > d}/
Hence,

Combining equations (6.6) - (6.8), we get

[vr]
Co0(1 = %) < N x
L < 200X v )+ v
1 n ;<"‘if> ﬁ("‘w)

which proves part (1).

Now, we will estimate the value of L, = | /. : (/] f1waw)d, T%;lg(x;y)|.

Using integration by parts, we have

y Y , a
/x < /x fx(W)dW>5(1—on,a,e(xm))dy
1 ¥ F)
v [ ([ 7o) 20 = opuatin)ar
y x 14

y 1
/ F (1 = 0,000 7))dy +/ L1 = 0,400 7))dy
X y

_ 1
< /y <‘2}Z>d7+ W/ <\Z/f;>(y—x)_2dy.
x y

= L=y = 1=
Now,puty—x+\/;andw y_x,weget

X+ —=
— Vi Cy0x(1—x) [! v
L<? vV f +M/ (V,{>(J/—x)_2d}'
¢ n x+1% x

XL [\/7’] I
n Cy0x o
i3 (77)

k=1

L=

=

B

IA
_
[
=
X

B
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Bézier variant of modified a-Bernstein operators 821

which proves part (2) . a

Theorem7 Let f € DBV(I) and x € (0, 1), then for sufficiently large n, we have
J'eH) + 9f’(x—)‘

M o [ Cpbx(1 — x)
Bn,a,f)(frx) f(x)| S n 9 + 1
Cp0x(1 —
+1/ wl}d()ﬁ) —f(x-)]

vl /.
LGPl - ¥ (Kf,[)

n =1 x—=

x o Z [\/ﬁ] P
+i< Vf’>+l;x Vﬁff +% ( ka’).
Vi) e &

Proof Using (6.3), we can write

/ o 1 / o
=+ 711 (f' ) + 6f' (x-))

Ly , 01
+ 3 et = f'eo) (sgnty =0+ 57 ) 69)
+ 200 =370 +76-) |

Using B (1:x) = 1and (6.1), for every x € (0, 1) we have
B (i) = ) = /0 S, T 109
- /0 )= £, T )
= /0 ’ () —F)d, T (xp)

1
+/ (f()’)—f(x))dyTZ;fg(x;y) (6.10)

—_ / < / f’(w)dw>d,Tjﬁ‘0(x;y)
A a.
1 yy
+ / < / f’(w)dw)drTfo’:e(x;y)

=—A, +A,

Now, we will calculate the values of A; and A,.
Using (6.9), we have
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= / ) ( / ' f’(w)dw)dnyalg(x 7)
! 9 /
/ ( / f(w)dw)dﬂii‘g o+ LD / (=), T2 Cxsp)

f(x+9) +]; S )/ =), T, ().

Similarly,

1

= / < / f’(w)dw)dyT::/Iale(x,y)
1 Y

= / < / f{(w)dw>dyrfa19(x,y)

f’(x+)+0f’(x ) / &

TM]
i — - x)d x,7)

Y na,0
+ Q—H(f’(x+) —f(x-)) / (r = 0d, T (x, 7).

Using the values of A and A,, we get

f(x +)+9f’(x—)/( 9
0+1 r=

+/ </ f. (w)dw)d T (6 y)
/ ( / fx(W)dW> d, T (x,7)

+ m(f’(ﬂ) —f'(x-)) / (r —0d, T (x5, 7)

d, T (x,7)

Y na

B (Fx) - f(x) =

() =) /0 (=), T ).

Hence,

B0 — @) < B (I =+

0+1
|0 = £ @) (B 1y = 215

< / f(W)dW> d, 1" (x,7)
( [ o )a 1)
0 Y

Applying Cauchy-Schwarz inequality, Lemma 6 and Lemma 4, we have

(x—) ‘
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! of' L
f(x+)9+ f(x ) naH (}’ x) X))

+ | ) — ()| (Bff;(, (¢ =0%))’
1 Y
/ </ f;(w)dw> v nae(x 7)
/ ) ( / ) f;(w)dw>dyTj4a19(x, |
0 Y
ARPS [ Cofx(1 =) | f'(x4+) + 6f' (x—)
Bnaf)(f?x) _f(x)| S P 9+ 1 ‘
Co0x(1
+ \/Llf'( ) — f (x|

1
(/[ o )a,rts e
( / fx’(w)dw> d, T (x, 7).
14

Using Lemma 8, we get the desired result. O

B0 —f0)| <

+

+

Thus,

7 Graphical analysis

In order to exemplify the theoretical results of previous sections, we exhibit the conver-
gence and error of approximation of (2.1) by choosing different functions with the help of
Matlab software.

In Fig. 1, we illustrate the convergence of our operators to the function
f(x) = =1+ sin(—9x%) for n = 30,60, 80,130,160, 6 =2 and @ = 0.9 . In Table 1, the
absolute error By = |Bn w0 —f (x)| of the above function is computed for certain values
of x in interval / and is shown graphically in Fig. 2. that error decreases to zero with
increase in parameter 6 i.e operator is converging towards function with a faster rate as we
increase the value of 6.

We also signify the convergence of our operators by taking another function
f) = x* + cosrx),n = 30,60,80,100,120,6§ =2 and a=0.9 which is illus-
trated in Fig. 3. In Table 2, the absolute error of the operators (2.1) with the function
F(x) = x* + cos(2zx) is computed and is shown graphically in Fig. 4.
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ol
——=130
- =60
———n=e0 |
15 — = =100
n=120 |
) |
L
05k

1
075

Fig.1 Graph showing convergence of Bézier variant of modified a- Bernstein operators to the function
J() = =1+ sin(—9x?)

25

05

a i i i i i i i i i
0 0.1 02 03 04 05 06 07 08 09 1

|...Ex20 mmmBy mmmBg mm=By By ---E1m|

Fig.2 Graph showing absolute error of Bézier variant of modified a- Bernstein operators for
J() = =1 + sin(—9x?)
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Table 1 Absolute error of
Bézier variant of modified a-

Bernstein operators with function ;1085 00887 0.0713 00572 00537  0.0501

f(x) = =1+ sin(—9x2) for

6 = 20,30, 50,70, 80, 100, = 100 0.11 1.1539 0.9507 0.7261 0.6088 0.6088 0.4892

and a = 0.5, 031 14201 13204 11613 09289 09280  0.9289
041 04877 02461 00775 00513 00513  0.0513

0.71 04078 0.4078 0.4078 0.4078 0.4078  0.4078

X BZO B}O BSO B70 BSO BIOO

Fig.3 Graph showing the convergence of Bézier variant of modified a- Bernstein operators to the function
f(x) = x* + cos(2xx)

45

[---EZD mm=By, mm=Bg =m==Bg Bao ___B1m|

Fig.4 Graph showing absolute error of Bézier variant of modified @- Bernstein operators for
f(x) = x* 4 cos(2xx)
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826 P.N. Agrawal et al.

Table 2 Absolute error of

Bézier variant of modified ! Bao Bao Bso B Byo Biw

a- Bernstein operators with 001 0.1947 01669 0.390 01141 0.1075  0.1009

function f(x) = x* + cos(2zx) for

6 = 20,30, 50, 70, 80, 100, # = 100 0.11 1.9841 1.6945 1.3355 1.1345 1.1345 09218

and a = 0.5. 0.41 1.2304  1.0927 09193 0.7163 0.7163  0.4905
0.51 0.8150 0.6875 0.5555 0.4199 0.4199 0.2816
099 14285 1.1619 0.9350 0.7509 0.7045  0.6581
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