

Identities involving generalized derivations in prime rings

V. K. Yadav¹

Received: 28 September 2020 / Accepted: 7 January 2021 / Published online: 2 February 2021 © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2021

Abstract

Let *R* be a prime ring of characteristic different from 2 with Utumi quotient ring *U* and extended centroid *C*, $f(x_1, ..., x_n)$ be a multilinear polynomial over *C*, which is not central valued on *R*. Suppose that *d* is a nonzero derivation of *R* and *G* is a generalized derivation of *R*. If $G^2(u)d(u) = 0$ for all $u \in f(R)$, then one of the following holds:

- (i) there exists $a \in U$ such that G(x) = ax for all $x \in R$ with $a^2 = 0$,
- (ii) there exists $a \in U$ such that G(x) = xa for all $x \in R$ with $a^2 = 0$.

Keywords Prime ring \cdot Derivation \cdot Generalized derivation \cdot Extended centroid \cdot Utumi quotient ring

Mathematics Subject Classification 16W25 · 16N60

1 Introduction

Throughout this paper, unless specifically stated, R always denotes a prime ring of characteristic different from 2. Let U be a Utumi ring of quotients and C be its center known as the extended centroid of R. An additive mapping $d : R \to R$ is said to be a derivation on R if d(xy) = d(x)y + xd(y) for all $x, y \in R$. Motivated by elementry operators in the theory of operators Algebra, Bresar [3] has introduced the concept of generalized derivations, which is a generalization of derivation. A generalized derivation F is an additive mapping on R with F(xy) = F(x)y + xd(y) for all $x, y \in R$, where d is a derivation on R. Clearly, every derivation is generalized derivation but not conversely. A polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z} < X >$ is said to be multilinear if it is linear in every $x_i, 1 \le i \le n$, where \mathbb{Z} is the set of integers.

In [11], Giambruno and Herstien proved that if *R* is a prime ring and *d* is a derivation on *R* such that $d(x)^n = 0$ for all $x \in R$, where *n* is a fixed positive integer, then d = 0. Bresar et al. [2] has extended Herstien result by taking a sequence of different derivations in place

V. K. Yadav iitdvishalny@gmail.com

¹ Department of Mathematics, D.S.(P.G.) College, Aligarh (D.B.R.A. University, Agra), Agra, Uttar Pradesh 202001, India

of single derivation. Precisely, it is proved that, Let *R* be a prime ring with infinite extended centroid. If derivations $d_1, d_2, d_3, ..., d_n$ of *R* satisfy $d_1(x)d_2(x)...d_n(x) = 0$, for all $x \in R$, then $d_i = 0$ for some *i*. Later, similar situations considered in [18, 19].

In this sequence, Fosner and Vukman [10], have proved that if F_1 and F_2 are generalized derivations of a prime ring R of characteristic different from 2, such that $F_1(x)F_2(x) = 0$ for all $x \in R$, then there exist elements p, q of the Martindale quotient ring Q of R such that $F_1(x) = xp$ and $F_2(x) = qx$ for all $x \in R$ and pq = 0 except when at least one F_i is zero. Moreover, above identity studied by Carini et al [5] by taking multilinear polynomial. They have proved the following:

Let *R* be a non-commutative prime ring of characteristic different from 2 with Utumi quotient ring *U* and extended centroid *C*, $f(x_1, x_2, ..., x_n)$ a multilinear polynomial over *C* which is not an identity for *R*, *F* and *G* two non-zero generalized derivations on *R*. If F(u)G(u) = 0 for all $u \in f(R) = \{f(r_1, r_2, ..., r_n) : r_i \in R\}$, then one of the following holds:

- (1) There exist $a, c \in U$ such that ac = 0 and F(x) = xa, G(x) = cx for all $x \in R$;
- (2) $f(x_1, x_2, ..., x_n)^2$ is central valued on *R* and there exist $a, c \in U$ such that ac = 0 and F(x) = ax, G(x) = xc for all $x \in R$;
- (3) $f(x_1, x_2, ..., x_n)$ is central valued on R and there exist $a, b, c, q \in U$ such that (a+b)(c+q) = 0 and F(x) = ax + xb, G(x) = cx + xq for all $x \in R$.

Here in this article, we have studied the identity $G^2(u)d(u) = 0$, for all $u \in f(R) = \{f(r_1, r_2, ..., r_n) : r_i \in R\}$, where *G* is a generalized derivation and *d* is a non zero derivation on prime ring *R* of characteristic different from 2. More preisely, we have proved the following:

Theorem 1.1 Let *R* be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, $f(x_1, ..., x_n)$ be a multilinear polynomial over C, which is not central valued on R. Suppose that d is a nonzero derivation of R and G is a generalized derivation on R. If $G^2(u)d(u) = 0$ for all $u \in f(R)$, then one of the following holds:

- (i) there exists $a \in U$ such that G(x) = ax for all $x \in R$ with $a^2 = 0$,
- (ii) there exists $a \in U$ such that G(x) = xa for all $x \in R$ with $a^2 = 0$.

2 Preliminaries

We will use frequently some important theory of generalized polynomial identities and differential identities. We recall some of the facts.

Fact-1: Every derivation d of R can be uniquely extended to a derivation of U (see Proposition 2.5.1 [1]).

Fact-2: If *I* is a two-sided ideal of *R*, then *R*, *I* and *U* satisfy the same differential identities ([15]).

Fact-3: If *I* is a two-sided ideal of *R*, then *R*, *I* and *U* satisfies the same generalized polynomial identities with coefficients in U([6]).

Fact-4: (Kharchenko [13, Theorem 2]) Let *R* be a prime ring, *d* a nonzero derivation on *R* and *I* a nonzero ideal of *R*. If *I* satisfies the differential identity

$$f(r_1, r_2, \dots, r_n, d(r_1), d(r_2), \dots, d(r_n)) = 0$$

for any $r_1, r_2, \ldots, r_n \in I$, then either

(i) I satisfies the generalized polynomial identity

 $f(r_1, r_2, \dots, r_n, x_1, x_2, \dots, x_n) = 0$

or

(ii) *d* is *Q*-inner i.e., for some $q \in Q$, d(x) = [q, x] and *I* satisfies the generalized polynomial identity

 $f(r_1, r_2, \dots, r_n, [q, r_1], [q, r_2], \dots, [q, r_n]) = 0.$

Fact-5: We shall use the following notation:

$$f(x_1, \dots, x_n) = x_1 x_2 \dots x_n + \sum_{\sigma \in S_n, \sigma \neq id} \alpha_\sigma x_{\sigma(1)} x_{\sigma(2)} \dots x_{\sigma(n)}$$

for some $\alpha_{\sigma} \in C$ and S_n the symmetric group of degree *n*.

Let d be a derivation. We denote by $f^d(x_1, \ldots, x_n)$, $f^{d^2}(x_1, \ldots, x_n)$ the polynomials obtained from $f(x_1, \ldots, x_n)$ replacing each coefficients α_{σ} with $d(\alpha_{\sigma})$ and $d^2(\alpha_{\sigma})$ respectively. Then we have

$$d(f(x_1, ..., x_n)) = f^d(x_1, ..., x_n) + \sum_i f(x_1, ..., d(x_i), ..., x_n)$$

and

$$d^{2}(f(x_{1}, \dots, x_{n})) = f^{d^{2}}(x_{1}, \dots, x_{n}) + 2\sum_{i} f^{d}(x_{1}, \dots, d(x_{i}), \dots, x_{n})$$

+
$$\sum_{i} f(x_{1}, \dots, d^{2}(x_{i}), \dots, x_{n}) + \sum_{i \neq j} f(x_{1}, \dots, d(x_{i}), \dots, d(x_{j}), \dots, x_{n})$$

3 The case when d and G are an inner

First, we study the situation when both *d* and *G* are an inner. Let d(x) = [P, x] for all $x \in R$ be an inner derivation on *R* and G(x) = ax + xb for all $x \in R$ be an inner generalized derivation on *R* for some $P, a, b \in U$. Then $G^2(f(r))d(f(r)) = 0$ for all $r = (r_1, ..., r_n) \in R^n$ implies

$$(a^{2}f(r) + 2af(r)b + f(r)b^{2})Pf(r) - (a^{2}f(r) + 2af(r)b + f(r)b^{2})f(r)P = 0.$$

This gives

$$a'f(r)Pf(r) + 2af(r)b'f(r) + f(r)b''f(r) - a'f(r)^2P$$
$$- 2af(r)bf(r)P - f(r)cf(r)P = 0$$

for any $r = (r_1, ..., r_n) \in \mathbb{R}^n$, where $a' = a^2, b' = bP, b'' = b^2P, c = b^2$.

To prove main results, we need the following.

Lemma 3.1 [7, Lemma 1] Let C be an infinite field and $m \ge 2$. If A_1, \ldots, A_k are not scalar matrices in $M_m(C)$ then there exists some invertible matrix $B \in M_m(C)$ such that any matrices $BA_1B^{-1}, \ldots, BA_kB^{-1}$ have all non-zero entries.

The following lemma is a particular case of Theorem 1.1 of [4].

Lemma 3.2 Let *R* be a prime ring of characteristic different from 2, Q_r its right Martindale quotient ring, and *C* its extended centroid. Suppose that *F* is a generalized derivation and *d* is a non zero derivation on *R* and $f(x_1, ..., x_n)$ a noncentral multilinear polynomial over *C* with *n* noncommuting variables, such that $F(f(r_1, ..., r_n))d(f(r_1, ..., r_n)) = 0$ for all $r_1, r_2, ..., r_n \in R$, then F = 0.

Proposition 3.3 Let $R = M_m(C)$ be the ring of all $m \times m$ matrices over the field C, $f(x_1, ..., x_n)$ a non-central multilinear polynomial over C and $a, b, c, P, a', b', b'' \in R$. If $a'f(r)Pf(r) + 2af(r)b'f(r) + f(r)b''f(r) - a'f(r)^2P - 2af(r)bf(r)P - f(r)cf(r)P = 0$ for all $r = (r_1, ..., r_n) \in \mathbb{R}^n$, then either P or a or b is central.

Proof By our assumption, R satisfies the generalized identity

$$\begin{aligned} a'f(r_1, \dots, r_n)Pf(r_1, \dots, r_n) + 2af(r_1, \dots, r_n)b'f(r_1, \dots, r_n) \\ + f(r_1, \dots, r_n)b''f(r_1, \dots, r_n) - a'f(r_1, \dots, r_n)^2P - 2af(r_1, \dots, r_n)bf(r_1, \dots, r_n)P \quad (1) \\ - f(r_1, \dots, r_n)cf(r_1, \dots, r_n)P = 0. \end{aligned}$$

We shall prove it by contradiction. Suppose that $a \notin Z(R)$, $b \notin Z(R)$ and $P \notin Z(R)$.

Case-I: Suppose that *C* is infinite field. Since $a \notin Z(R)$, $b \notin Z(R)$ and $P \notin Z(R)$, by Lemma 3.1 there exists a *C*-automorphism ϕ of $M_m(C)$ such that $a_1 = \phi(a)$, $b_1 = \phi(b)$ and $P_1 = \phi(P)$ have all non-zero entries. Clearly a_1 , b_1 , P_1 , $c_1 = \phi(c)$, $a'_1 = \phi(a')$, $b'_1 = \phi(b')$ and $b''_1 = \phi(b'')$ must satisfy the condition (1). Without loss of generality we may replace a, b, c, P, a', b', b'' with $a_1, b_1, c_1, P_1, a'_1, b'_1, b''_1$ respectively.

Here e_{ij} denotes the matrix whose (i, j)-entry is 1 and rest entries are zero. Since $f(x_1, \ldots, x_n)$ is not central, by [15] (see also [16]), there exist $u_1, \ldots, u_n \in M_m(C)$ and $\gamma \in C - \{0\}$ such that $f(u_1, \ldots, u_n) = \gamma e_{st}$, with $s \neq t$. Moreover, since the set $\{f(r_1, \ldots, r_n) : r_1, \ldots, r_n \in M_m(C)\}$ is invariant under the action of all *C*-automorphisms of $M_m(C)$, then for any $i \neq j$ there exist $r_1, \ldots, r_n \in M_m(C)$ such that $f(r_1, \ldots, r_n) = e_{ij}$. Hence by (1) we have

$$a'e_{ii}Pe_{ii} + 2ae_{ii}b'e_{ii} + e_{ii}b''e_{ii} - 2ae_{ii}be_{ii}P - e_{ii}ce_{ii}P = 0.$$

Right and left multiplying by e_{ij} , we obtain $2a_{ji}b_{ji}P_{ji}e_{ij} = 0$. Since char $(R) \neq 2$, thus we have $a_{ji}b_{ji}P_{ji}e_{ij} = 0$. It implies either $a_{ji} = 0$ or $b_{ji} = 0$ or $P_{ji} = 0$. By Lemma 3.1, it gives a contradiction, since *a*, *b* and *P* have all non-zero entries. Thus we conclude that either *a* or *b* or *P* is central.

Case-II: Suppose *C* is finite field. Let *K* be an infinite field which is an extension of the field *C*. Let $\overline{R} = M_m(K) \cong R \otimes_C K$. Notice that the multilinear polynomial $f(x_1, \dots, x_n)$ is central-valued on *R* if and only if it is central-valued on \overline{R} . Suppose that the generalized polynomial $Q(r_1, \dots, r_n)$ such that

$$Q(r_1, \dots, r_n) = a'f(r_1, \dots, r_n)Pf(r_1, \dots, r_n) + 2af(r_1, \dots, r_n)b'f(r_1, \dots, r_n) + f(r_1, \dots, r_n)b''f(r_1, \dots, r_n) - a'f(r_1, \dots, r_n)^2P - 2af(r_1, \dots, r_n) bf(r_1, \dots, r_n)P - f(r_1, \dots, r_n)cf(r_1, \dots, r_n)P$$
(2)

is a generalized polynomial identity for R.

Moreover, it is a multi-homogeneous of multi-degree (2, ..., 2) in the indeterminates $r_1, ..., r_n$. Hence the complete linearization of $Q(r_1, ..., r_n)$ is a multilinear generalized polynomial $\Theta(r_1, ..., r_n, x_1, ..., x_n)$ in 2n indeterminates, moreover

$$\Theta(r_1,\ldots,r_n,r_1,\ldots,r_n)=2^nQ(r_1,\ldots,r_n).$$

It is clear that the multilinear polynomial $\Theta(r_1, \ldots, r_n, x_1, \ldots, x_n)$ is a generalized polynomial identity for both *R* and \overline{R} . For assumption $char(R) \neq 2$ we obtain $Q(r_1, \ldots, r_n) = 0$ for all $r_1, \ldots, r_n \in \overline{R}$ and then conclusion follows from Case-I.

Lemma 3.4 Let *R* be a prime ring of characteristic different from 2 with Utumi quotient ring *U* and extended centroid *C*, and $f(x_1, ..., x_n)$ a multilinear polynomial over *C*, which is not central valued on *R*. Suppose that for some $a, b, c, P, a', b', b'' \in R$, $a'f(r)Pf(r) + 2af(r)b'f(r) + f(r)b''f(r) - a'f(r)^2P - 2af(r)bf(r)P - f(r)cf(r)P = 0$ for all $r = (r_1, ..., r_n) \in \mathbb{R}^n$, then either a or b or P is central.

Proof Let $P \notin C$, $a \notin C$ and $b \notin C$. By hypothesis, we have

$$h(x_1, \dots, x_n) = a'f(x_1, \dots, x_n)Pf(x_1, \dots, x_n) + 2af(x_1, \dots, x_n)b'f(x_1, \dots, x_n) + f(x_1, \dots, x_n)b''f(x_1, \dots, x_n) - a'f(x_1, \dots, x_n)^2P - 2af(x_1, \dots, x_n)$$
(3)
$$bf(x_1, \dots, x_n)P - f(x_1, \dots, x_n)cf(x_1, \dots, x_n)P = 0$$

for all $x_1, \ldots, x_n \in R$. Since R and U satisfy same generalized polynomial identity (GPI) (see [6]), U satisfies $h(x_1, \ldots, x_n) = 0$. Suppose that $h(x_1, \ldots, x_n)$ is a trivial GPI for U. Let $T = U *_C C\{x_1, x_2, \ldots, x_n\}$, the free product of U and $C\{x_1, \ldots, x_n\}$, the free C-algebra in noncommuting indeterminates x_1, x_2, \ldots, x_n . Then, $h(x_1, \ldots, x_n)$ is zero element in $T = U *_C C\{x_1, \ldots, x_n\}$. Since $P \notin C$, $a \notin C$ and $b \notin C$, the term $2af(x_1, \ldots, x_n)bf(x_1, \ldots, x_n)P$ appears nontrivially in $h(x_1, \ldots, x_n)$. This gives a contradiction.

Next, suppose that $h(x_1, ..., x_n)$ is a non-trivial GPI for U. In case C is infinite, we have $h(x_1, ..., x_n) = 0$ for all $x_1, ..., x_n \in U \otimes_C \overline{C}$, where \overline{C} is the algebraic closure of C. Since both U and $U \otimes_C \overline{C}$ are prime and centrally closed [8, Theorems 2.5 and 3.5], we may replace R by U or $U \otimes_C \overline{C}$ according to C finite or infinite. Then R is centrally closed over C and $h(x_1, ..., x_n) = 0$ for all $x_1, ..., x_n \in R$. By Martindale's theorem [17], R is then a primitive ring with nonzero socle soc(R) and with C as its associated division ring. Then, by Jacobson's theorem [12, p.75], R is isomorphic to a dense ring of linear transformations of a vector space V over C. Assume first that V is finite dimensional over C, that is, $\dim_C V = m$. By density of R, we have $R \cong M_m(C)$. Since $f(r_1, ..., r_n)$ is not central valued on R, R must be noncommutative and so $m \ge 2$. In this case, by Proposition ??, we get that either a or b or P is in C, a contradiction. If V is infinite dimensional over C, then for any $e^2 = e \in soc(R)$ we have $eRe \cong M_t(C)$ with $t = \dim_C Ve$. Since P, a and b are not in C, there exist $h_1, h_2, h_3 \in soc(R)$ such that $[P, h_1] \neq 0$, $[a, h_2] \neq 0$ and $[b, h_3] \neq 0$. By Litoff's Theorem [9], there exists idempotent $e \in soc(R)$ such that $Ph_1, h_1P, ah_2, h_2a, bh_3, h_3b, h_1, h_2, h_3 \in eRe$. Since R satisfies generalized identity

$$e\{a'f(ex_{1}e, \dots, ex_{n}e)Pf(ex_{1}e, \dots, ex_{n}e) + 2af(ex_{1}e, \dots, ex_{n}e)b'f(ex_{1}e, \dots, ex_{n}e) + f(ex_{1}e, \dots, ex_{n}e)b''f(ex_{1}e, \dots, ex_{n}e) - a'f(ex_{1}e, \dots, ex_{n}e)b''f(ex_{1}e, \dots, ex_{n}e)P - 2af(ex_{1}e, \dots, ex_{n}e)bf(ex_{1}e, \dots, ex_{n}e)P - f(ex_{1}e, \dots, ex_{n}e)cf(ex_{1}e, \dots, ex_{n}e)P\}e,$$

the subring eRe satisfies

$$ea'ef(x_1, ..., x_n)ePef(x_1, ..., x_n) + 2eaef(x_1, ..., x_n)eb'ef(x_1, ..., x_n) + f(x_1, ..., x_n)eb''ef(x_1, ..., x_n) - ea'ef(x_1, ..., x_n)^2ePe - 2eaef(x_1, ..., x_n) ebef(x_1, ..., x_n)ePe - f(x_1, ..., x_n)ecef(x_1, ..., x_n)ePe = 0.$$

Then by the above finite dimensional case, either *ePe* or *eae* or *ebe* is central element of *eRe*. This leads a contradiction, since $Ph_1 = (ePe)h_1 = h_1ePe = h_1P$, $ah_2 = (eae)h_2 = h_2(eae) = h_2a$ and $bh_3 = (ebe)h_3 = h_3(ebe) = h_3b$. Thus, we have proved that either *P* or *a* or *b* is in *C*.

Lemma 3.5 Let *R* be a prime ring of characteristic different from 2 with Utumi quotient ring *U* and extended centroid *C*, $f(x_1, ..., x_n)$ be a multilinear polynomial over *C*, which is not central valued on *R*. Suppose that for some *P*, $a, b \in U$, d(x) = [P, x] for all $x \in R$ is a nonzero inner derivation of *R* and G(x) = ax + xb for all $x \in R$ is an inner generalized derivation of *R*. If $G^2(f(r))d(f(r)) = 0$ for all $r = (r_1, ..., r_n) \in R^n$, then one of the following holds:

- (i) G(x) = (a + b)x for all $x \in R$ with $(a + b)^2 = 0$,
- (ii) G(x) = x(a+b) for all $x \in R$ with $(a+b)^2 = 0$.

Proof By hypothesis, we have

$$\left(a^{2}f(r) + 2af(r)b + f(r)b^{2}\right)Pf(r) - \left(a^{2}f(r) + 2af(r)b + f(r)b^{2}\right)f(r)P = 0.$$
(4)

That is

$$a^{2}f(r)Pf(r) + 2af(r)bPf(r) + f(r)b^{2}Pf(r) - a^{2}f(r)^{2}F$$

- 2af(r)bf(r)P - f(r)b^{2}f(r)P = 0

for all $r = (r_1, ..., r_n) \in \mathbb{R}^n$. Since $d \neq 0$, so $P \notin C$, then by Lemma 3.4, either $a \in C$ or $b \in C$.

If $a \in C$, then G(x) = x(a + b) for all $x \in R$. Then by hypothesis, we have

$$f(r)(a+b)^{2}[P,f(r)] = 0$$

for all $r = (r_1, ..., r_n) \in \mathbb{R}^n$. Since $d \neq 0$ so $P \notin C$, from Lemma 3.2, it implies that $(a + b)^2 = 0$, which is our conclusion (*ii*).

If $b \in C$, then G(x) = (a + b)x. Hence hypothesis becomes

$$(a+b)^{2}f(r)[P,f(r)] = 0$$

for all $r = (r_1, ..., r_n) \in \mathbb{R}^n$. Since $d \neq 0$ so $P \notin C$, from Lemma 3.2, it implies that $(a + b)^2 = 0$, which gives our conclusion (*i*).

Deringer

Lemma 3.6 Let *R* be a prime ring of characteristic different from 2 with Utumi quotient ring *U* and extended centroid *C*, $f(x_1, ..., x_n)$ be a multilinear polynomial over *C*, which is not central valued on *R*. Suppose that for some $a, b \in U$, *d* is a nonzero derivation of *R*, and G(x) = ax + xb for all $x \in R$ is an inner generalized derivation of *R*. If $G^2(f(r))d(f(r)) = 0$ for all $r = (r_1, ..., r_n) \in R^n$, then one of the following holds:

- (i) G(x) = (a + b)x for all $x \in R$ with $(a + b)^2 = 0$,
- (ii) G(x) = x(a+b) for all $x \in R$ with $(a+b)^2 = 0$.

Proof If d is an inner derivation, then by Lemma 3.5 we get our conclusions. Suppose d is not an inner derivation. Then hypothesis implies that

$$G^{2}(f(r_{1},...,r_{n}))d(f(r_{1},...,r_{n})) = 0.$$

That is

$$\left(a^{2}f(r_{1},\ldots,r_{n})+2af(r_{1},\ldots,r_{n})b+f(r_{1},\ldots,r_{n})b^{2}\right)d(f(r_{1},\ldots,r_{n}))=0.$$
(5)

Since

$$d(f(r_1, ..., r_n)) = f^d(r_1, ..., r_n) + \sum_i f(r_1, ..., d(r_i), ..., r_n),$$

by applying Kharchenko's theorem (see Fact 4) to (5), we can replace $d(f(r_1, ..., r_n))$ with $f^d(r_1, ..., r_n) + \sum f(r_1, ..., r_n)$ and then U satisfies

$$\left(a^{2}f(r_{1},\ldots,r_{n})+2af(r_{1},\ldots,r_{n})b+f(r_{1},\ldots,r_{n})b^{2}\right)\left(f^{d}(r_{1},\ldots,r_{n})+\sum_{i}f(r_{1},\ldots,y_{i},\ldots,r_{n})\right)=0.$$
(6)

Hence U satisfies blended component

$$\left(a^2 f(r_1, \dots, r_n) + 2a f(r_1, \dots, r_n) b + f(r_1, \dots, r_n) b^2 \right)$$

$$\left(\sum_i f(r_1, \dots, y_i, \dots, r_n) \right) = 0.$$
(7)

Replacing y_i with $[q, r_i]$ for some $q \notin C$, U satisfies

$$\left(a^2 f(r_1, \dots, r_n) + 2a f(r_1, \dots, r_n) b + f(r_1, \dots, r_n) b^2 \right)$$

$$\left[q, f(r_1, \dots, r_n) \right] = 0.$$
(8)

Equation (8) is same as Eq. (4). Hence from Lemma 3.5, we conclude our results. \Box

Theorem 3.7 Let *R* be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, $f(x_1, ..., x_n)$ be a multilinear polynomial over C, which is not central valued on R. Suppose that d is a nonzero derivation of R and G is a generalized derivation of R. If $G^2(u)d(u) = 0$ for all $u \in f(R)$, then one of the following holds:

- (i) there exists $a \in U$ such that G(x) = ax for all $x \in R$ with $a^2 = 0$,
- (ii) there exists $a \in U$ such that G(x) = xa for all $x \in R$ with $a^2 = 0$.

Proof If G is an inner generalized derivation, then by Lemma 3.6 we get desired results.

Next we assume that *G* is not an inner generalized derivation. By [14, Theorem 3], we may assume that there exist derivations δ on *U*, $a \in U$ such that $G(x) = ax + \delta(x)$. Since *R* and *U* satisfy the same generalized polynomial identities (see [6]) as well as the same differential identities (see [15]), without loss of generality, we have

$$\left((a^2 + \delta(a))f(r_1, \dots, r_n) + 2a\delta(f(r_1, \dots, r_n)) + \delta^2(f(r_1, \dots, r_n)) \right)$$

$$d(f(r_1, \dots, r_n)) = 0$$
(9)

for all $r_1, \ldots, r_n \in U$. Now we consider two cases:

Cases-I: Let *d* and δ be *C*-dependent modulo inner derivations of *U*, that is $\alpha d + \beta \delta = ad_q$, where $\alpha, \beta \in C$, $q \in U$ and $ad_q(x) = [q, x]$ for all $x \in U$. If $\alpha = 0$, then $\delta = [q', x]$ for all $x \in R$, where $q' = \beta^{-1}q$, which implies that δ is an inner derivation. It implies that *G* is an inner generalized derivation, a contradiction. Hence $\alpha \neq 0$, and hence $d = \lambda \delta + ad_p$, where $\lambda = \alpha^{-1}\beta$ and $p = \alpha^{-1}q$. Then by hypothesis, we have

$$\left((a^2 + \delta(a))f(r_1, \dots, r_n) + 2a\delta(f(r_1, \dots, r_n)) + \delta^2(f(r_1, \dots, r_n)) \right)$$

$$\left(\lambda\delta(f(r_1, \dots, r_n)) + \left[p, f(r_1, \dots, r_n) \right] \right) = 0$$

$$(10)$$

for all $r_1, \ldots, r_n \in U$.

Since $\delta(f(r_1, \dots, r_n)) = f^{\delta}(r_1, \dots, r_n) + \sum_i f(r_1, \dots, \delta(r_i), \dots, r_n)$ and $\delta^2(f(r_1, \dots, r_n)) = f^{\delta^2}(r_1, \dots, r_n) + \sum_i f(r_1, \dots, \delta^2(r_i), \dots, r_n) + \sum_{i \neq j} f(r_1, \dots, \delta(r_i), \dots, \sigma(r_j), \dots, \sigma(r_n))$. Hence our hypothesis becomes

$$\left((a^{2} + \delta(a))f(r_{1}, \dots, r_{n}) + 2af^{\delta}(r_{1}, \dots, r_{n}) + 2a\sum_{i} f(r_{1}, \dots, \delta(r_{i}), \dots, r_{n}) \right. \\ \left. + f^{\delta^{2}}(r_{1}, \dots, r_{n}) + 2\sum_{i} f^{\delta}(r_{1}, \dots, \delta(r_{i}), \dots, r_{n}) + \sum_{i} f(r_{1}, \dots, \delta^{2}(r_{i}), \dots, r_{n}) \right. \\ \left. + \sum_{i \neq j} f(r_{1}, \dots, \delta(r_{i}), \dots, \delta(r_{j}), \dots, r_{n}) \right) \left(\lambda f^{\delta}(r_{1}, \dots, r_{n}) \right.$$

$$\left. + \lambda \sum_{i} f(r_{1}, \dots, \delta(r_{i}), \dots, r_{n}) + \left[p, f(r_{1}, \dots, r_{n}) \right] \right) = 0.$$

$$(11)$$

By Kharchenko's theorem (see Fact-4), we can replace $\delta(r_i)$ with y_i , $\delta^2(r_i)$ with z_i in (10), then U satisfies the blended component

$$\left(\sum_{i} f(r_1, \dots, z_i, \dots, r_n)\right) \left(\lambda f^{\delta}(r_1, \dots, r_n) + \lambda \sum_{i} f(r_1, \dots, y_i, \dots, r_n) + \left[p, f(r_1, \dots, r_n)\right]\right) = 0.$$
(12)

In particular for $y_i = 0$ for all i = 1, 2, ..., n, U satisfies the blended component

$$\left(\sum_{i} f(r_1, \dots, z_i, \dots, r_n)\right) \left(\lambda \sum_{i} f(r_1, \dots, y_i, \dots, r_n)\right) = 0.$$
(13)

Replacing y_i with $[q, r_i]$ for some $q \notin C$ and $z_1 = r_1, z_2 = \cdots = z_n = 0$, we have that U satisfies

$$f(r_1, \dots, r_n)\lambda \Big[q, f(r_1, \dots, r_n)\Big] = 0.$$
(14)

Since $q \notin C$, it implies that $\lambda = 0$. Hence (11) reduces to

$$\left((a^{2} + \delta(a))f(r_{1}, \dots, r_{n}) + 2af^{\delta}(r_{1}, \dots, r_{n}) + 2a\sum_{i} f(r_{1}, \dots, \delta(r_{i}), \dots, r_{n}) \right.$$

$$+ f^{\delta^{2}}(r_{1}, \dots, r_{n}) + 2\sum_{i} f^{\delta}(r_{1}, \dots, \delta(r_{i}), \dots, r_{n}) + \sum_{i} f(r_{1}, \dots, \delta^{2}(r_{i}), \dots, r_{n})$$

$$+ \sum_{i \neq j} f(r_{1}, \dots, \delta(r_{i}), \dots, \delta(r_{j}), \dots, r_{n}) \right) \left[p, f(r_{1}, \dots, r_{n}) \right] = 0.$$

$$(15)$$

Again using Kharchenko's theorem (see Fact-4) and using Fact-5, U satisfies the blended component

$$\sum_{i} f(r_1, \dots, z_i, \dots, r_n) \Big[p, f(r_1, \dots, r_n) \Big] = 0.$$
(16)

Replacing z_i with $[q, r_i]$ for some $q \notin C$, we have that U satisfies

$$\left[q, f(r_1, \dots, r_n)\right] \left[p, f(r_1, \dots, r_n)\right] = 0.$$
(17)

Since $q \notin C$, by Lemma 3.6, it gives $p \in C$. It implies d = 0, a contradiction.

Case-II: Let *d* and δ be *C*-independent modulo inner derivations of *U*. By Kharchenko's theorem (see Fact-4) and using Fact-5, we can replace $\delta(f(r_1, \ldots, r_n))$ with $f^{\delta}(r_1, \ldots, r_n) + \sum_i f(r_1, \ldots, z_i, \ldots, r_n), d(f(r_1, \ldots, r_n))$ with $f^d(r_1, \ldots, r_n) + \sum_i f(r_1, \ldots, y_i, \ldots, r_n)$ and $\delta^2(f(r_1, \ldots, r_n))$ with $f^{\delta^2}(r_1, \ldots, r_n) + 2\sum_i f^{\delta}(r_1, \ldots, z_i, \ldots, r_n) + \sum_i f(r_1, \ldots, x_i, \ldots, r_n) + \sum_i f(r_1, \ldots, z_i, \ldots, r_n)$, where $\delta(r_i) = z_i, d(r_i) = y_i$ and $\delta^2(r_i) = x_i$ in (9) and then *U* satisfies

$$\left((a^{2} + \delta(a))f(r_{1}, \dots, r_{n}) + 2af^{\delta}(r_{1}, \dots, r_{n}) + 2a\sum_{i} f(r_{1}, \dots, z_{i}, \dots, r_{n}) \right.$$

$$+ f^{\delta^{2}}(r_{1}, \dots, r_{n}) + 2\sum_{i} f^{\delta}(r_{1}, \dots, z_{i}, \dots, r_{n}) + \sum_{i} f(r_{1}, \dots, x_{i}, \dots, r_{n})$$

$$+ \sum_{i \neq j} f(r_{1}, \dots, z_{i}, \dots, z_{j}, \dots, r_{n}) \left(f^{d}(r_{1}, \dots, r_{n}) + \sum_{i} f(r_{1}, \dots, y_{i}, \dots, r_{n}) \right) = 0$$

$$(18)$$

for all $r_1, \ldots, r_n \in U$. In particular U satisfies the blended component

$$\sum_{i} f(r_1, \dots, x_i, \dots, r_n) \sum_{i} f(r_1, \dots, y_i, \dots, r_n) = 0.$$
 (19)

Replacing x_i with $[q, r_i]$ and y_i with $[p, r_i]$ for some $q \notin C$ and $p \notin C$, we have that U satisfies

$$\left[q, f(r_1, \dots, r_n)\right] \left[p, f(r_1, \dots, r_n)\right] = 0.$$
(20)

This is same as equation (17). In this case, we get a contradiction.

In particular for G = I in theorem 3.7, I denotes an identity function on R, we have the following corollaries.

Corollary 3.8 Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, $f(x_1, ..., x_n)$ be a multilinear polynomial over C, which is not central valued on R. Suppose that d is a derivation on R such that $f(x_1, ..., x_n) d(f(x_1, ..., x_n)) = 0$ for all $(x_1, ..., x_n) \in \mathbb{R}^n$, then d = 0

Corollary 3.9 Let *R* be a prime ring of characteristic different from 2, I a non zero ideal of *R* and *d* be a non zero derivation on *R*. If xd(x) = 0 for all $x \in I$, then *R* is a commutative.

Again for G = g, where g is a derivation on R, we have the following.

Corollary 3.10 Let *R* be a prime ring of characteristic different from 2, I a non zero ideal of *R*. Suppose that *g* and *d* a non zero derivations on *R*. If $g^2(x)d(x) = 0$ for all $x \in I$, then *R* is a commutative.

4 Open problems

In this section, we will give some open problems. In the Theorem 3.7, we have studied the identity $F^2(u)g(u) = 0$ for all $u \in f(R)$, where *F* is a generalized derivation and *g* is a derivation on prime ring *R*. The natural question will arise that what will happen if we replace derivation *g* with generalized derivation *G* on prime ring *R*? More precisely, the statement is given below.

Proposition 4.1 Let R be a prime ring and G and F are two generalized derivations on R. Let U be Utumi ring of quotient of R with extended centroid C. Suppose $f(x_1, ..., x_n)$ is a multilinear polynomial over C which is not central valued on R such that $F^2(u)G(u) = 0$ for all $u \in f(R)$. Then find the structure of these additive mappings as well as prime ring R.

If we replace generalized derivation G with G^2 in above problem, we have the following.

Proposition 4.2 Let R be a prime ring and G and F are two generalized derivations on R. Let U be Utumi ring of quotient of R with extended centroid C. Suppose $f(x_1, ..., x_n)$ is a multilinear polynomial over C which is not central valued on R such that $F^2(u)G^2(u) = 0$ for all $u \in f(R)$. Then find the structure of these additive mappings as well as prime ring R.

268

Proposition 4.3 Let R be a prime ring and G and F are two generalized derivations on R. Let U be Utumi ring of quotient of R with extended centroid C. Suppose $f(x_1, ..., x_n)$ is a multilinear polynomial over C which is not central valued on R such that $F^2(u)G(u) \in C$ for all $u \in f(R)$. Then find the structure of these additive mappings as well as prime ring R.

Since we know that identity mapping is a generalized derivation on *R*. If we replace G = id, where *id* is the identity mapping on *R*, in problem 4.3, then it will be [Eroğlu and Argaç **Canad. Math. Bull. 2017; 60: 721–735**].

Proposition 4.4 Let R be a prime ring and G and F are two generalized derivations on R. Let U be Utumi ring of quotient of R with extended centroid C. Suppose $f(x_1, ..., x_n)$ is a multilinear polynomial over C which is not central valued on R such that $F^n(u)G^m(u) \in C$ (or $F^n(u)G^m(u) = 0$) for all $u \in f(R)$, where m and n are positive integers. Then find the structure of these additive mappings as well as prime ring R.

Acknowledgements The author is very thankful to Dr. S. K. Tiwari, Assistant Professor, Departments of Mathematics, I.I.T Patna for his valuable guidence, suggestions/comments and also thankful to reviewers for his suggestions.

References

- Beidar, K.I., Martindale, W.S., Mikhalev, V.: Rings with Generalized Identities. Dekker, New York (1996)
- Bresar, M., Chebotar, M.A., Semrl, P.: On derivatons of prime rings. Commun. Algebra. 27, 3129– 3135 (1999)
- Brešar, M.: On the distance of the composition of two derivations to the generalized derivations. Glasgow Math. J. 33, 89–93 (1991)
- Carini, L., De Filippis, V., Scudo, G.: Identities with product of generalized skew derivations on multilinear polynomials. Commun. Algebra. 44(7), 3122–3138 (2016)
- Carini, L., De Filippis, V., Scudo, G.: Identities with product of generalized derivations of prime rings. Algebra Colloq. 20, 711–720 (2013)
- Chuang, C.L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103(3), 723– 728 (1988)
- De Filippis, V., Di Vincenzo, O.M.: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials. Commun. Algebra. 40, 1918–1932 (2012)
- Erickson, T.S., Martindale, W.S., Osborn, J.M.: Prime nonassociative algebras. Pacific J. Math. 60, 49–63 (1975)
- Faith, C., Utumi, Y.: On a new proof of Litoff's theorem. Acta Math. Acad. Sci. Hung. 14, 369–371 (1963)
- Fosner, M., Vukman, J.: Identities with generalized derivations in prime rings. Mediterr. J. Math. 9, 847–863 (2012)
- 11. Giambruno, A., Herstien, I.N.: Deivations with nilpotent values Rend. C. Math Palermo. **30**, 199–206 (1981)
- Jacobson, N.: Structure of rings, Am. Math. Soc. Colloq. Pub., 37, Am. Math. Soc., Providence, RI (1964)
- 13. Kharchenko, V.K.: Differential identity of prime rings. Algebra Log. 17, 155–168 (1978)
- 14. Lee, T.K.: Generalized derivations of left faithful rings. Commun. Algebra. 27(8), 4057–4073 (1999)
- Lee, T.K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica. 20(1), 27–38 (1992)
- 16. Leron, U.: Nil and power central polynomials in rings. Trans. Am. Math. Soc. 202, 97–103 (1975)
- 17. Martindale III, W.S.: Prime rings satisfying a generalized polynomial identity. J. Algebra. **12**, 576–584 (1969)

- 18. Vukman, J.: On α -derivations of prime and semiprime rings. Demo. Math. **38**, 283–290 (2005)
- 19. Vukman, J.: Identities with product of (α, β) -derivations on prime rings. Demo. Math. **39**, 291–298 (2006)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.