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Abstract
Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and 
extended centroid C, f (x1,… , xn) be a multilinear polynomial over C, which is not central 
valued on R. Suppose that d is a nonzero derivation of R and G is a generalized derivation 
of R. If G2(u)d(u) = 0 for all u ∈ f (R) , then one of the following holds: 

 (i) there exists a ∈ U such that G(x) = ax for all x ∈ R with a2 = 0,
 (ii) there exists a ∈ U such that G(x) = xa for all x ∈ R with a2 = 0.

Keywords Prime ring · Derivation · Generalized derivation · Extended centroid · Utumi 
quotient ring

Mathematics Subject Classification 16W25 · 16N60

1 Introduction

Throughout this paper, unless specifically stated, R always denotes a prime ring of char-
acteristic different from 2. Let U be a Utumi ring of quotients and C be its center known 
as the extended centroid of R. An additive mapping d ∶ R → R is said to be a derivation 
on R if d(xy) = d(x)y + xd(y) for all x, y ∈ R. Motivated by elementry operators in the 
theory of operators Algebra, Bresar  [3] has introduced the concept of generalized deri-
vations, which is a generalization of derivation. A generalized derivation F is an addi-
tive mapping on R with F(xy) = F(x)y + xd(y) for all x, y ∈ R, where d is a derivation on 
R. Clearly, every derivation is generalized derivation but not conversely. A polynomial 
f = f (x1,… , xn) ∈ ℤ < X > is said to be multilinear if it is linear in every xi, 1 ≤ i ≤ n, 
where ℤ is the set of integers.

In [11], Giambruno and Herstien proved that if R is a prime ring and d is a derivation on 
R such that d(x)n = 0 for all x ∈ R, where n is a fixed positive integer, then d = 0. Bresar 
et al. [2] has extended Herstien result by taking a sequence of different derivations in place 
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of single derivation. Precisely, it is proved that, Let R be a prime ring with infinite extended 
centroid. If derivations d1, d2, d3,… , dn of R satisfy d1(x)d2(x)...dn(x) = 0 , for all x ∈ R, 
then di = 0 for some i. Later, similar situations considered in [18, 19].

In this sequence, Fosner and Vukman [10], have proved that if F1 and F2 are generalized 
derivations of a prime ring R of characteristic different from 2,   such thatF1(x)F2(x) = 0 
for all x ∈ R , then there exist elements p,   q of the Martindale quotient ring Q of R such 
that F1(x) = xp and F2(x) = qx for all x ∈ R and pq = 0 except when at least one Fi is zero. 
Moreover, above identity studied by Carini et al [5] by taking multilinear polynomial. They 
have proved the following:

Let R be a non-commutative prime ring of characteristic different from 2 with Utumi 
quotient ring U and extended centroid C,   f (x1, x2,… , xn) a multilinear polynomial over 
C which is not an identity for R, F and G two non-zero generalized derivations on R. If 
F(u)G(u) = 0 for all u ∈ f (R) = {f (r1, r2,… , rn) ∶ ri ∈ R}, then one of the following holds: 

(1) There exist a, c ∈ U such that ac = 0 and F(x) = xa,G(x) = cx for all x ∈ R;
(2) f (x1, x2,… , xn)

2 is central valued on R and there exist a, c ∈ U such that ac = 0 and 
F(x) = ax, G(x) = xc for all x ∈ R;

(3) f (x1, x2,… , xn) is central valued on R and there exist a, b, c, q ∈ U  such that 
(a + b)(c + q) = 0 and F(x) = ax + xb, G(x) = cx + xq for all x ∈ R.

Here in this article, we have studied the identity G2(u)d(u) = 0, for all 
u ∈ f (R) = {f (r1, r2,… , rn) ∶ ri ∈ R} , where G is a generalized derivation and d is a non 
zero derivation on prime ring R of characteristic different from 2. More preisely, we have 
proved the following:

Theorem 1.1 Let R be a prime ring of characteristic different from 2 with Utumi quotient 
ring U and extended centroid C, f (x1,… , xn) be a multilinear polynomial over C, which is 
not central valued on R. Suppose that d is a nonzero derivation of R and G is a generalized 
derivation on R. If G2(u)d(u) = 0 for all u ∈ f (R) , then one of the following holds: 

 (i) there exists a ∈ U such that G(x) = ax  for all x ∈ R  with a2 = 0,
 (ii) there exists a ∈ U such that G(x) = xa   for all x ∈ R  with a2 = 0.

2  Preliminaries

We will use frequently some important theory of generalized polynomial identities and dif-
ferential identities. We recall some of the facts.

Fact-1: Every derivation d of R can be uniquely extended to a derivation of U (see 
Proposition 2.5.1 [1]).

Fact-2: If I is a two-sided ideal of R, then R, I and U satisfy the same differential identi-
ties ( [15]).

Fact-3: If I is a two-sided ideal of R, then R, I and U satisfies the same generalized poly-
nomial identities with coefficients in U ([6]).

Fact-4: (Kharchenko [13, Theorem 2]) Let R be a prime ring, d a nonzero derivation on 
R and I a nonzero ideal of R. If I satisfies the differential identity
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for any r1, r2,… , rn ∈ I , then either 

 (i) I satisfies the generalized polynomial identity 

 or
 (ii) d is Q-inner i.e., for some q ∈ Q, d(x) = [q, x] and I satisfies the generalized poly-

nomial identity 

Fact-5: We shall use the following notation:

for some �� ∈ C and Sn the symmetric group of degree n.
Let d be a derivation. We denote by f d(x1,… , xn) , f d

2

(x1,… , xn) the polynomials 
obtained from f (x1,… , xn) replacing each coefficients �� with d(��) and d2(��) respec-
tively. Then we have

and

3  The case when d and G are an inner

First, we study the situation when both d and G are an inner. Let d(x) = [P, x] for all x ∈ R 
be an inner derivation on R and G(x) = ax + xb for all x ∈ R be an inner generalized deri-
vation on R for some P, a, b ∈ U . Then G2(f (r))d(f (r)) = 0 for all r = (r1,… , rn) ∈ Rn 
implies

This gives

for any r = (r1,… , rn) ∈ Rn , where a� = a2, b� = bP, b�� = b2P, c = b2.
To prove main results, we need the following.

f (r1, r2,… , rn, d(r1), d(r2),… , d(rn)) = 0

f (r1, r2,… , rn, x1, x2,… , xn) = 0

f (r1, r2,… , rn, [q, r1], [q, r2],… , [q, rn]) = 0.

f (x1,… , xn) = x1x2 … xn +
∑

�∈Sn ,�≠id

��x�(1)x�(2) … x�(n)

d(f (x1,… , xn)) = f d(x1,… , xn) +
∑

i

f (x1,… , d(xi),… , xn)

d2(f (x1,… , xn)) = f d
2

(x1,… , xn) + 2
∑

i

f d(x1,… , d(xi),… , xn)

+
∑

i

f (x1,… , d2(xi),… , xn) +
∑

i≠j

f (x1,… , d(xi),… , d(xj),… , xn).

(a2f (r) + 2af (r)b + f (r)b2)Pf (r) − (a2f (r) + 2af (r)b + f (r)b2)f (r)P = 0.

a�f (r)Pf (r) + 2af (r)b�f (r) + f (r)b��f (r) − a�f (r)2P

− 2af (r)bf (r)P − f (r)cf (r)P = 0
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Lemma 3.1 [7, Lemma 1] Let C be an infinite field and m ≥ 2 . If A1,… ,Ak are not scalar 
matrices in Mm(C) then there exists some invertible matrix B ∈ Mm(C) such that any matri-
ces BA1B

−1,… ,BAkB
−1 have all non-zero entries.

The following lemma is a particular case of Theorem 1.1 of [4].

Lemma 3.2 Let R be a prime ring of characteristic different from 2, Qr its right Martin-
dale quotient ring, and C its extended centroid. Suppose that F is a generalized derivation 
and d is a non zero derivation on R and f (x1,… , xn) a noncentral multilinear polynomial 
over C with n noncommuting variables, such that F(f (r1,… , rn))d(f (r1,… , rn)) = 0 for all 
r1, r2,… , rn ∈ R , then F = 0.

Proposition 3.3 Let R = Mm(C) be the ring of all m × m matrices over the field C, 
f (x1,… , xn) a non-central multilinear polynomial over C and a, b, c,P, a�, b�, b�� ∈ R . 
If   a�f (r)Pf (r) + 2af (r)b�f (r) + f (r)b��f (r) − a�f (r)2P − 2af (r)bf (r)P − f (r)cf (r)P = 0 for 
all r = (r1,… , rn) ∈ Rn , then either P or a or b is central.

Proof By our assumption, R satisfies the generalized identity

We shall prove it by contradiction. Suppose that a ∉ Z(R) , b ∉ Z(R) and P ∉ Z(R).
Case-I: Suppose that C is infinite field. Since a ∉ Z(R) , b ∉ Z(R) and P ∉ Z(R) , by 

Lemma 3.1 there exists a C-automorphism � of Mm(C) such that a1 = �(a) , b1 = �(b) and 
P1 = �(P) have all non-zero entries. Clearly a1 , b1 , P1 , c1 = �(c) , a�

1
= �(a�) , b�

1
= �(b�) 

and b��
1
= �(b��) must satisfy the condition (1). Without loss of generality we may replace 

a, b, c,P, a′, b′, b′′ with a1, b1, c1,P1, a
′
1
, b′

1
, b′′

1
 respectively.

Here eij denotes the matrix whose (i,  j)-entry is 1 and rest entries are zero. Since 
f (x1,… , xn) is not central, by [15] (see also [16]), there exist u1,… , un ∈ Mm(C) 
and � ∈ C − {0} such that f (u1,… , un) = �est , with s ≠ t . Moreover, since the set 
{f (r1,… , rn) ∶ r1,… , rn ∈ Mm(C)} is invariant under the action of all C-automorphisms of 
Mm(C) , then for any i ≠ j there exist r1,… , rn ∈ Mm(C) such that f (r1,… , rn) = eij . Hence 
by (1) we have

Right and left multiplying by eij , we obtain 2ajibjiPjieij = 0 . Since char (R) ≠ 2 , thus we 
have ajibjiPjieij = 0 . It implies either aji = 0 or bji = 0 or Pji = 0 . By Lemma 3.1, it gives a 
contradiction, since a, b and P have all non-zero entries. Thus we conclude that either a or 
b or P is central.

Case-II: Suppose C is finite field. Let K be an infinite field which is an extension of the 
field C. Let R = Mm(K) ≅ R⊗C K . Notice that the multilinear polynomial f (x1,… , xn) is 
central-valued on R if and only if it is central-valued on R . Suppose that the generalized 
polynomial Q(r1,… , rn) such that

(1)

a�f (r1,… , rn)Pf (r1,… , rn) + 2af (r1,… , rn)b
�f (r1,… , rn)

+ f (r1,… , rn)b
��f (r1,… , rn) − a�f (r1,… , rn)

2P − 2af (r1,… , rn)bf (r1,… , rn)P

− f (r1,… , rn)cf (r1,… , rn)P = 0.

a�eijPeij + 2aeijb
�eij + eijb

��eij − 2aeijbeijP − eijceijP = 0.
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is a generalized polynomial identity for R.
Moreover, it is a multi-homogeneous of multi-degree (2,… , 2) in the indeterminates 

r1,… , rn . Hence the complete linearization of Q(r1,… , rn) is a multilinear generalized pol-
ynomial Θ(r1,… , rn, x1,… , xn) in 2n indeterminates, moreover

It is clear that the multilinear polynomial Θ(r1,… , rn, x1,… , xn) is a generalized polyno-
mial identity for both R and R . For assumption char(R) ≠ 2 we obtain Q(r1,… , rn) = 0 for 
all r1,… , rn ∈ R and then conclusion follows from Case-I.

Lemma 3.4 Let R be a prime ring of characteristic different from 2 with Utumi quo-
tient ring U and extended centroid C, and f (x1,… , xn) a multilinear polynomial over 
C, which is not central valued on R. Suppose that for some a, b, c,P, a�, b�, b�� ∈ R , 
a�f (r)Pf (r) + 2af (r)b�f (r) + f (r)b��f (r) − a�f (r)2P − 2af (r)bf (r)P − f (r)cf (r)P = 0 for all 
r = (r1,… , rn) ∈ Rn , then either a or b or P is central.

Proof Let P ∉ C , a ∉ C and b ∉ C . By hypothesis, we have

for all x1,… , xn ∈ R . Since R and U satisfy same generalized polynomial iden-
tity (GPI) (see [6]), U satisfies h(x1,… , xn) = 0. Suppose that h(x1,… , xn) is a trivial 
GPI for U. Let T = U ∗C C{x1, x2,… , xn} , the free product of U and C{x1,… , xn} , 
the free C-algebra in noncommuting indeterminates x1, x2,… , xn . Then, h(x1,… , xn) 
is zero element in T = U ∗C C{x1,… , xn} . Since P ∉ C , a ∉ C and b ∉ C , the 
term 2af (x1,… , xn)bf (x1,… , xn)P appears nontrivially in h(x1,… , xn) . This gives a 
contradiction.

Next, suppose that h(x1,… , xn) is a non-trivial GPI for U. In case C is infinite, we 
have h(x1,… , xn) = 0 for all x1,… , xn ∈ U ⊗C C , where C is the algebraic closure of 
C. Since both U and U ⊗C C are prime and centrally closed [8, Theorems 2.5 and 3.5], 
we may replace R by U or U ⊗C C according to C finite or infinite. Then R is centrally 
closed over C and h(x1,… , xn) = 0 for all x1,… , xn ∈ R . By Martindale’s theorem [17], 
R is then a primitive ring with nonzero socle soc(R) and with C as its associated division 
ring. Then, by Jacobson’s theorem [12, p.75], R is isomorphic to a dense ring of linear 
transformations of a vector space V over C. Assume first that V is finite dimensional over 
C, that is, dimCV = m . By density of R, we have R ≅ Mm(C) . Since f (r1,… , rn) is not 
central valued on R, R must be noncommutative and so m ≥ 2 . In this case, by Propo-
sition ??, we get that either a or b or P is in C, a contradiction. If V is infinite dimen-
sional over C, then for any e2 = e ∈ soc(R) we have eRe ≅ Mt(C) with t =dimCVe . Since 
P, a and b are not in C, there exist h1, h2, h3 ∈ soc(R) such that [P, h1] ≠ 0 , [a, h2] ≠ 0 
and [b, h3] ≠ 0 . By Litoff’s Theorem [9], there exists idempotent e ∈ soc(R) such that 
Ph1, h1P, ah2, h2a, bh3, h3b, h1, h2, h3 ∈ eRe . Since R satisfies generalized identity

(2)

Q(r1,… , rn) = a�f (r1,… , rn)Pf (r1,… , rn) + 2af (r1,… , rn)b
�f (r1,… , rn)

+ f (r1,… , rn)b
��f (r1,… , rn) − a�f (r1,… , rn)

2P − 2af (r1,… , rn)

bf (r1,… , rn)P − f (r1,… , rn)cf (r1,… , rn)P

Θ(r1,… , rn, r1,… , rn) = 2nQ(r1,… , rn).

(3)

h(x1,… , xn) = a�f (x1,… , xn)Pf (x1,… , xn) + 2af (x1,… , xn)b
�f (x1,… , xn)

+ f (x1,… , xn)b
��f (x1,… , xn) − a�f (x1,… , xn)

2P − 2af (x1,… , xn)

bf (x1,… , xn)P − f (x1,… , xn)cf (x1,… , xn)P = 0
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the subring eRe satisfies

Then by the above finite dimensional case, either ePe or eae or ebe is central ele-
ment of eRe. This leads a contradiction, since Ph1 = (ePe)h1 = h1ePe = h1P , 
ah2 = (eae)h2 = h2(eae) = h2a and bh3 = (ebe)h3 = h3(ebe) = h3b . Thus, we have proved 
that either P or a or b is in C.

Lemma 3.5 Let R be a prime ring of characteristic different from 2 with Utumi quotient 
ring U and extended centroid C, f (x1,… , xn) be a multilinear polynomial over C, which 
is not central valued on R. Suppose that for some P, a, b ∈ U , d(x) = [P, x] for all x ∈ R is 
a nonzero inner derivation of R and G(x) = ax + xb for all x ∈ R is an inner generalized 
derivation of R. If G2(f (r))d(f (r)) = 0 for all r = (r1,… , rn) ∈ Rn , then one of the following 
holds: 

 (i) G(x) = (a + b)x for all x ∈ R with (a + b)2 = 0,
 (ii) G(x) = x(a + b) for all x ∈ R  with (a + b)2 = 0.

Proof By hypothesis, we have

That is

for all r = (r1,… , rn) ∈ Rn . Since d ≠ 0 , so P ∉ C , then by Lemma 3.4, either a ∈ C or 
b ∈ C.

If a ∈ C , then G(x) = x(a + b) for all x ∈ R . Then by hypothesis, we have

for all r = (r1,… , rn) ∈ Rn . Since d ≠ 0 so P ∉ C , from Lemma 3.2, it implies that 
(a + b)2 = 0 , which is our conclusion (ii).

If b ∈ C , then G(x) = (a + b)x . Hence hypothesis becomes

for all r = (r1,… , rn) ∈ Rn . Since d ≠ 0 so P ∉ C , from Lemma 3.2, it implies that 
(a + b)2 = 0 , which gives our conclusion (i).

e{a�f (ex1e,… , exne)Pf (ex1e,… , exne) + 2af (ex1e,… , exne)b
�f (ex1e,… , exne)

+ f (ex1e,… , exne)b
��f (ex1e,… , exne) − a�f (ex1e,… , exne)

2P

− 2af (ex1e,… , exne)bf (ex1e,… , exne)P

− f (ex1e,… , exne)cf (ex1e,… , exne)P}e,

ea�ef (x1,… , xn)ePef (x1,… , xn) + 2eaef (x1,… , xn)eb
�ef (x1,… , xn)

+ f (x1,… , xn)eb
��ef (x1,… , xn) − ea�ef (x1,… , xn)

2ePe − 2eaef (x1,… , xn)

ebef (x1,… , xn)ePe − f (x1,… , xn)ecef (x1,… , xn)ePe = 0.

(4)
(

a2f (r) + 2af (r)b + f (r)b2
)

Pf (r) −
(

a2f (r) + 2af (r)b + f (r)b2
)

f (r)P = 0.

a2f (r)Pf (r) + 2af (r)bPf (r) + f (r)b2Pf (r) − a2f (r)2P

− 2af (r)bf (r)P − f (r)b2f (r)P = 0

f (r)(a + b)2[P, f (r)] = 0

(a + b)2f (r)[P, f (r)] = 0
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Lemma 3.6 Let R be a prime ring of characteristic different from 2 with Utumi quotient 
ring U and extended centroid C, f (x1,… , xn) be a multilinear polynomial over C, which is 
not central valued on R. Suppose that for some a, b ∈ U , d is a nonzero derivation of R, and 
G(x) = ax + xb for all x ∈ R is an inner generalized derivation of R. If G2(f (r))d(f (r)) = 0 
for all r = (r1,… , rn) ∈ Rn , then one of the following holds: 

 (i) G(x) = (a + b)x for all x ∈ R with (a + b)2 = 0,
 (ii) G(x) = x(a + b) for all x ∈ R with (a + b)2 = 0.

Proof If d is an inner derivation, then by Lemma 3.5 we get our conclusions. Suppose d is 
not an inner derivation. Then hypothesis implies that

That is

Since

by applying Kharchenko’s theorem (see Fact 4) to (5), we can replace d(f (r1,… , rn)) with 
f d(r1,… , rn) +

∑

i

f (r1,… , yi,… , rn) and then U satisfies

Hence U satisfies blended component

Replacing yi with [q, ri] for some q ∉ C , U satisfies

Equation (8) is same as Eq. (4). Hence from Lemma 3.5, we conclude our results.   ◻

Theorem 3.7 Let R be a prime ring of characteristic different from 2 with Utumi quotient 
ring U and extended centroid C, f (x1,… , xn) be a multilinear polynomial over C, which is 
not central valued on R. Suppose that d is a nonzero derivation of R and G is a generalized 
derivation of R. If G2(u)d(u) = 0 for all u ∈ f (R) , then one of the following holds: 

G2(f (r1,… , rn))d(f (r1,… , rn)) = 0.

(5)
(

a2f (r1,… , rn) + 2af (r1,… , rn)b + f (r1,… , rn)b
2
)

d(f (r1,… , rn)) = 0.

d(f (r1,… , rn)) = f d(r1,… , rn) +
∑

i

f (r1,… , d(ri),… , rn),

(6)

(

a2f (r1,… , rn) + 2af (r1,… , rn)b + f (r1,… , rn)b
2

)(

f d(r1,… , rn)

+
∑

i

f (r1,… , yi,… , rn)
)

= 0.

(7)

(

a2f (r1,… , rn) + 2af (r1,… , rn)b + f (r1,… , rn)b
2

)

(

∑

i

f (r1,… , yi,… , rn)
)

= 0.

(8)

(

a2f (r1,… , rn) + 2af (r1,… , rn)b + f (r1,… , rn)b
2

)

[

q, f (r1,… , rn)
]

= 0.
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 (i) there exists a ∈ U such that G(x) = ax for all x ∈ R with a2 = 0,
 (ii) there exists a ∈ U such that G(x) = xa for all x ∈ R with a2 = 0.

Proof If G is an inner generalized derivation, then by Lemma 3.6 we get desired results.
Next we assume that G is not an inner generalized derivation. By [14, Theorem 3], we 

may assume that there exist derivations � on U, a ∈ U such that G(x) = ax + �(x) . Since R 
and U satisfy the same generalized polynomial identities (see [6]) as well as the same dif-
ferential identities (see [15]), without loss of generality, we have

for all r1,… , rn ∈ U . Now we consider two cases:
Cases-I: Let d and � be C-dependent modulo inner derivations of U, that is 

�d + �� = adq , where �, � ∈ C , q ∈ U and adq(x) = [q, x] for all x ∈ U . If � = 0 , then 
� = [q�, x] for all x ∈ R , where q� = �−1q , which implies that � is an inner derivation. It 
implies that G is an inner generalized derivation, a contradiction. Hence � ≠ 0 , and hence 
d = �� + adp , where � = �−1� and p = �−1q . Then by hypothesis, we have

for all r1,… , rn ∈ U.
Since �(f (r1,… , rn)) = f �(r1,… , rn) +

∑

i

f (r1,… , �(ri),… , rn) and �2(f (r1,… , rn)) 

= f �
2
(r1,… , rn) + 2

∑

i

f � (r1,… , �(ri),… , rn) +
∑

i

f (r1,… , �2(ri),… , rn) +
∑

i≠j

f (r1,… , �(ri), … , �(rj),… , rn)  . 
Hence our hypothesis becomes

By Kharchenko’s theorem (see Fact-4), we can replace �(ri) with yi , �2(ri) with zi in (10), 
then U satisfies the blended component

In particular for yi = 0 for all i = 1, 2,… , n , U satisfies the blended component

(9)

(

(a2 + �(a))f (r1,… , rn) + 2a�(f (r1,… , rn)) + �2(f (r1,… , rn))
)

d(f (r1,… , rn)) = 0

(10)

(

(a2 + �(a))f (r1,… , rn) + 2a�(f (r1,… , rn)) + �2(f (r1,… , rn))
)

(

��(f (r1,… , rn)) +
[

p, f (r1,… , rn)
])

= 0

(11)

(

(a2 + �(a))f (r1,… , rn) + 2af �(r1,… , rn) + 2a
∑

i

f (r1,… , �(ri),… , rn)

+ f �
2

(r1,… , rn) + 2
∑

i

f �(r1,… , �(ri),… , rn) +
∑

i

f (r1,… , �2(ri),… , rn)

+
∑

i≠j

f (r1,… , �(ri),… , �(rj),… , rn)
)(

�f �(r1,… , rn)

+ �
∑

i

f (r1,… , �(ri),… , rn) +
[

p, f (r1,… , rn)
])

= 0.

(12)

(

∑

i

f (r1,… , zi,… , rn)
)(

�f �(r1,… , rn)

+ �
∑

i

f (r1,… , yi,… , rn) +
[

p, f (r1,… , rn)
])

= 0.
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Replacing yi with [q, ri] for some q ∉ C and z1 = r1 , z2 = ⋯ = zn = 0 , we have that U 
satisfies

Since q ∉ C , it implies that � = 0 . Hence (11) reduces to

Again using Kharchenko’s theorem (see Fact-4) and using Fact-5, U satisfies the blended 
component

Replacing zi with [q, ri] for some q ∉ C , we have that U satisfies

Since q ∉ C , by Lemma 3.6, it gives p ∈ C . It implies d = 0 , a contradiction.
Case-II: Let d and � be C-independent modulo inner derivations of U. By Kharchenko’s 

theorem (see Fact-4) and using Fact-5, we can replace �(f (r1,… , rn)) with 
f �(r1,… , rn) +

∑

i

f (r1,… , zi,… , rn) , d(f (r1,… , rn)) with f d(r1,… , rn) +
∑

i

f (r1,… , yi,… , rn) 

and �2(f (r1,… , rn)) with f �2 (r1,… , rn) + 2
∑

i

f �(r1,… , zi,… , rn) +
∑

i

f (r1,… , xi,… , rn)

+
∑

i≠j

f (r1,… , zi,… , zj,… , rn) , where �(ri) = zi , d(ri) = yi and �2(ri) = xi in (9) and then U 

satisfies

for all r1,… , rn ∈ U . In particular U satisfies the blended component

(13)
(

∑

i

f (r1,… , zi,… , rn)
)(

�
∑

i

f (r1,… , yi,… , rn)
)

= 0.

(14)f (r1,… , rn)�
[

q, f (r1,… , rn)
]

= 0.

(15)

(

(a2 + �(a))f (r1,… , rn) + 2af �(r1,… , rn) + 2a
∑

i

f (r1,… , �(ri),… , rn)

+ f �
2

(r1,… , rn) + 2
∑

i

f �(r1,… , �(ri),… , rn) +
∑

i

f (r1,… , �2(ri),… , rn)

+
∑

i≠j

f (r1,… , �(ri),… , �(rj),… , rn)
)[

p, f (r1,… , rn)
]

= 0.

(16)
∑

i

f (r1,… , zi,… , rn)
[

p, f (r1,… , rn)
]

= 0.

(17)
[

q, f (r1,… ,… , rn)
][

p, f (r1,… , rn)
]

= 0.

(18)

(

(a2 + �(a))f (r1,… , rn) + 2af �(r1,… , rn) + 2a
∑

i

f (r1,… , zi,… , rn)

+ f �
2

(r1,… , rn) + 2
∑

i

f �(r1,… , zi,… , rn) +
∑

i

f (r1,… , xi,… , rn)

+
∑

i≠j

f (r1,… , zi,… , zj,… , rn)
)(

f d(r1,… , rn)

+
∑

i

f (r1,… , yi,… , rn)
)

= 0



268 V. K. Yadav 

1 3

Replacing xi with [q, ri] and yi with [p, ri] for some q ∉ C and p ∉ C , we have that U 
satisfies

This is same as equation (17). In this case, we get a contradiction.   ◻

In particular for G = I in theorem 3.7, I denotes an identity function on R, we have the 
following corollaries.

Corollary 3.8 Let R be a noncommutative prime ring of characteristic different from 2 with 
Utumi quotient ring U and extended centroid C, f (x1,… , xn) be a multilinear polynomial 
over C, which is not central valued on R. Suppose that d is a derivation on R such that 
f (x1,… , xn)d(f (x1,… , xn)) = 0 for all (x1,… , xn) ∈ Rn , then d = 0

Corollary 3.9 Let R be a prime ring of characteristic different from 2, I a non zero ideal of 
R and d be a non zero derivation on R. If xd(x) = 0 for all x ∈ I , then R is a commutative.

Again for G = g , where g is a derivation on R, we have the following.

Corollary 3.10 Let R be a prime ring of characteristic different from 2, I a non zero ideal of 
R. Suppose that g and d a non zero derivations on R. If g2(x)d(x) = 0 for all x ∈ I , then R 
is a commutative.

4  Open problems

In this section, we will give some open problems. In the Theorem 3.7, we have studied the 
identity F2(u)g(u) = 0 for all u ∈ f (R) , where F is a generalized derivation and g is a deri-
vation on prime ring R. The natural question will arise that what will happen if we replace 
derivation g with generalized derivation G on prime ring R? More precisely, the statement 
is given below.

Proposition 4.1 Let R be a prime ring and G and F are two generalized derivations on R. 
Let U be Utumi ring of quotient of R with extended centroid C. Suppose  f (x1,… , xn) is a 
multilinear polynomial over C which is not central valued on R such that  F2(u)G(u) = 0 
for all u ∈ f (R) . Then find the structure of these additive mappings as well as prime ring R.

If we replace generalized derivation G with G2 in above problem, we have the following.

Proposition 4.2 Let R be a prime ring and G and F are two generalized derivations on R. 
Let U be Utumi ring of quotient of R with extended centroid C. Suppose f (x1,… , xn) is a 
multilinear polynomial over C which is not central valued on R such that F2(u)G2(u) = 0 
for all u ∈ f (R) . Then find the structure of these additive mappings as well as prime ring R.

(19)
∑

i

f (r1,… , xi,… , rn)
∑

i

f (r1,… , yi,… , rn) = 0.

(20)
[

q, f (r1,… ,… , rn)
][

p, f (r1,… ,… , rn

]

= 0.
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Proposition 4.3 Let R be a prime ring and G and F are two generalized derivations on R. 
Let U be Utumi ring of quotient of R with extended centroid C. Suppose f (x1,… , xn) is a 
multilinear polynomial over C which is not central valued on R such that F2(u)G(u) ∈ C 
for all u ∈ f (R) . Then find the structure of these additive mappings as well as prime ring R.

Since we know that identity mapping is a generalized derivation on R. If we replace 
G = id , where id is the identity mapping on R, in problem 4.3, then it will be [ Eroǧlu and 
Argaç Canad. Math. Bull. 2017; 60: 721–735].

Proposition 4.4 Let R be a prime ring and G and F are two generalized derivations on R. 
Let U be Utumi ring of quotient of R with extended centroid C. Suppose f (x1,… , xn) is a 
multilinear polynomial over C which is not central valued on R such that Fn(u)Gm(u) ∈ C 
(or Fn(u)Gm(u) = 0 ) for all u ∈ f (R) , where m and n are positive integers. Then find the 
structure of these additive mappings as well as prime ring R.
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