

Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev–Orlicz space

Omar Benslimane1 [·](http://orcid.org/0000-0002-2730-6259) Ahmed Aberqi2 · Jaouad Bennouna1

Received: 22 August 2020 / Accepted: 1 November 2020 / Published online: 13 November 2020 © Springer-Verlag Italia S.r.l., part of Springer Nature 2020

Abstract

Our objective in this paper is to study a certain class of anisotropic elliptic equations with the second term, which is a low-order term and non-polynomial growth; described by an N-uplet of N-function satisfying the Δ_2 -condition in the framework of anisotropic Orlicz spaces. We prove the existence and uniqueness of entropic solution for a source in the dual or in L^1 , without assuming any condition on the behaviour of the solutions when x tends towards infnity. Moreover, we are giving an example of an anisotropic elliptic equation that verifes all our demonstrated results.

Keywords Anisotropic elliptic equation · Entropy solution · Sobolev–Orlicz anisotropic spaces · Unbounded domain

Mathematics Subject Classifcation MSC 35J47 · MSC 35J60

1 Introduction

In this paper, we focused on the study of existence and uniqueness solution to anisotropic elliptic non-linear equation, driven by low-order term and non-polynomial growth; described by n-uplet of N-function satisfying the Δ_2 -condition, in Sobolev–Orlicz anisotropic space $\hat{W}_{B}^{1}(\Omega) = \overline{C^{\infty}(\Omega)}^{\hat{W}_{B}^{1}(\Omega)}$. To be more precise, Ω is an unbounded domain of \mathbb{R}^{N} , $N \geq 2$, we study the following equation:

 \boxtimes Omar Benslimane omar.benslimane@usmba.ac.ma

Ahmed Aberqi aberqi_ahmed@yahoo.fr

Jaouad Bennouna jbennouna@hotmail.com

¹ Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P 1796, Atlas Fez, Morocco

² Laboratory LAMA, National School of Applied Sciences Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco

$$
(\mathcal{P})\begin{cases} A(u) + \sum_{i=1}^{N} b_i(x, u, \nabla u) = f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}
$$

where $A(u) = \sum_{i=1}^{N} (a_i(x, u, \nabla u))_{x_i}$ is a Leray–Lions operator defined from $\mathring{W}_B^1(\Omega)$ into its dual, $B(\theta) = (B_1(\theta), ..., B_N(\theta))$ are N-uplet Orlicz functions that satisfy the Δ_2 -condition, and for $i = 1, ..., N$, $b_i(x, u, \nabla u) : \Omega \times \mathbb{R} \times \mathbb{R}^N \longrightarrow \mathbb{R}$ the Carathéodory functions that do not satisfy any sign condition and the growth described by the vector N-function $B(\theta)$. In the recent studies, specifically the case of bounded domain Ω which is a well known for operators with polynomial, non-standard and non-polynomial growth (described by N-function). We refer the reader to [[13](#page-28-0)–[18](#page-28-1), [28,](#page-28-2) [33\]](#page-29-0) for the classical case, and for the Sobolev-Spaces with variable exponents Mihăilescu, M. et al. in [[35](#page-29-1)]; were they proved the existence of solutions on the following nonhomogeneous anisotropic eigenvalue problem:

$$
(\mathcal{P})\left\{\begin{array}{ll}\sum_{i=1}^N \partial_{x_i}(|\partial_{x_i} u|^{p_i(x)-2}\partial_{x_i} u) = \lambda |u|^{q(x)-2}u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega.\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^N$ ($N \geq 3$) is a bounded domain with smooth boundary, λ is a positive number and p_i , q are continuous functions on $\overline{\Omega}$ such as $2 \leq p_i(x) < N$ and $q(x) > 1$ for any $x \in \overline{\Omega}$ and $i = \{1, ..., N\}$. For more detail we refer the reader to [\[36,](#page-29-2) [37](#page-29-3)], and [[2,](#page-27-0) [3](#page-28-3), [5](#page-28-4), [9,](#page-28-5) [10](#page-28-6), [25](#page-28-7)[–27,](#page-28-8) [32,](#page-29-4) [34](#page-29-5), [38](#page-29-6), [39\]](#page-29-7) for Orlicz Spaces.

In the case where Ω is an unbounded domain, without any assumption on the behaviour of solution where $|x| \longrightarrow +\infty$. The existing result has been established by Brézis [[19](#page-28-9)] for the semi-linear equation:

$$
-\Delta u + |u|^{p_0 - 2} u = f(x).
$$

Where $x \in \mathbb{R}^N$, $p_0 > 2$, $f \in L_{1,loc}(\mathbb{R}^N)$. Karlson and Bendahmane in [\[8\]](#page-28-10) solved the problem $\Leftarrow \mathcal{P} \Rightarrow$ in the classic case such as $b(x, u, \nabla u) = \text{div}(g(u))$, with $g(u)$ has a growth like $|u|^{q-1}$, *q* ∈ (1, *p*₀ − 1). For more result we refer to [[24](#page-28-11)]. In the Sobolev-Spaces with variable exponent, in [\[20\]](#page-28-12) have demonstrated the existence of solutions to the following problem: $\Delta_{p(x)} u + |u|^{p(x)-2}u = f(x, u)$ in $\Omega = \mathbb{R}^N$, in both situations were $p : \Omega \longrightarrow \mathbb{R}$ is a log-Hölder continuous functions satisfying

$$
1 < p^- = \inf_{x \in \Omega} p(x) \le p^+ = \sup_{x \in \Omega} p(x) < \min \{ n, \frac{np^-}{n - p} \}
$$

and $f(x, u) = \lambda f(x) - \delta f(x, u) + \eta f(x, u)$ with λ, δ, η as real positive parameters, $f_1, f_2, f_3 : \Omega \times \mathbb{R} \to \mathbb{R}$ are Carathéodory functions with subcritical growth. The dependence among the parameters makes f_1 a perturbation of f_3 and, in turn, f_2 a perturbation of f_1 . For more result we refer to the work of Aharrouch Benali and al. [[6\]](#page-28-13), for the Orlicz-Anisotropic Spaces L. M. Kozhevnikova [[30\]](#page-28-14) solved the problem $\Leftarrow \mathcal{P} \Rightarrow$ without the lower order $b_i(x, u, \nabla u)$ and $f(x) = 0$, we also cite [\[7,](#page-28-15) [23](#page-28-16), [29](#page-28-17), [31\]](#page-28-18) for more detail.

Our goal, in this paper, is to show the existence and uniqueness of entropy solution for the equations (\mathcal{P}) ; governed with growth and described by an N-uplet of N-functions satisfying the Δ_2 -condition. The function $b_i(x, u, \nabla u)$ does not satisfy any sign condition and the source *f* is merely integrable, within the fulflling of anisotropic Orlicz spaces. An

approximation procedure and some a priori estimates are used to solve the problem, the challenges that we had were due to behaviour of solution near infnity.

Definition 1.1 A measurable function $u : \Omega \longrightarrow \mathbb{R}$ is called an entropy solution of the problem (P) if it satisfies the following conditions: 1/ *u* ∈ $T_0^{1,B}(\Omega) = \{ u : \Omega \longrightarrow \mathbb{R} \text{ measurable}, T_k(u) \in \mathring{W}_B^1(\Omega) \text{ for any } k > 0 \}$ 2/ $b(x, u, \nabla u) \in L^1(\Omega)$ 3/ For any $k > 0$

$$
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_k(u - \xi) dx + \int_{\Omega} b(x, u, \nabla u) \cdot T_k(u - \xi) dx
$$

$$
\leq \int_{\Omega} f(x) \cdot T_k(u - \xi) dx \quad \forall \xi \in \mathring{W}_B^1(\Omega) \cap L^{\infty}(\Omega).
$$

The paper is organized as follows: in Sect. [2](#page-2-0), we recall the most important and relevant properties and notation about N-functions and the space of Sobolev–Orlicz anisotropic, in Sect. [3](#page-6-0), we show the existence of entropy solutions for the problem (\mathcal{P}) in an unbounded domain, in Sect. [4](#page-19-0), we demonstrate the uniqueness of the solution to the problem (\mathcal{P}) in an unbounded domain and in Sect. [5](#page-21-0) appendix.

2 Framework space: notations and basic properties

In this section, we briefy review some basic facts about Sobolev–Orlicz anisotropic space which we will need in our analysis of the problem P . A comprehensive presentation of Sobolev–Orlicz anisotropic space can be found in the work of M.A Krasnoselskii and Ja. B. Rutickii [[32](#page-29-4)] and [[23](#page-28-16)].

Definition 2.1 We say that $B : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a N-function if *B* is continuous, convex, with $B(\theta) > 0$ for $\theta > 0$, $\frac{B(\theta)}{\theta} \to 0$ when $\theta \to 0$ and $\frac{B(\theta)}{\theta \theta} \to \infty$ when $\theta \to \infty$. This N-function *B* admit the following representation: $B(\theta) = \int$ *θ* $\int_{0}^{b} b(t) dt$, with $b: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$ which is an increasing function on the right, with $b(0) = 0$ in the case $\theta > 0$ and $b(\theta) \longrightarrow \infty$ when $\theta \longrightarrow \infty$. Its conjugate is noted by $\bar{B}(\theta) = \int_{0}^{|\theta|}$ $q(t)$ *dt* with *q* also satisfies all the properties already quoted from *b*, with

$$
\bar{B}(\theta) = \sup_{\mu \ge 0} (\mu \mid \theta \mid -B(\mu)), \quad \theta > 0.
$$
 (1)

The Young's inequality is given as follow

$$
\forall \theta, \ \mu > 0 \quad \theta \ \mu \leq B(\mu) + \bar{B}(\theta). \tag{2}
$$

Definition 2.2 The N-function *B*(θ) satisfies the Δ_2 -condition if $\exists c > 0$, $\theta_0 \ge 0$ such as

$$
B(2 \theta) \le c B(\theta) \quad |\theta| \ge \theta_0. \tag{3}
$$

This definition is equivalent to, $\forall k > 1$, \exists *c*(*k*) > 0 such as

$$
B(K \theta) \le c(K) B(\theta) \quad \text{for} \quad |\theta| \ge \theta_0. \tag{4}
$$

Definition 2.3 The N-function $B(\theta)$ satisfies the Δ_2 -condition as long as there exists positive numbers $c > 1$ and $\theta_0 \ge 0$ such as for $\theta \ge \theta_0$ we have

$$
\theta \, b(\theta) \le c \, B(\theta). \tag{5}
$$

Also, each N-function $B(\theta)$ satisfies the inequality

$$
B(\mu + \theta) \le c B(\theta) + c B(\mu) \quad \theta, \ \mu \ge 0. \tag{6}
$$

We consider the Orlicz space $L_B(\Omega)$ provided with the norm of Luxemburg given by

$$
||u||_{B,\Omega} = \inf\{k > 0 \mid \int_{\Omega} B\left(\frac{u(x)}{k}\right) dx \le 1\}.
$$
 (7)

According to [\[32\]](#page-29-4) we obtain the inequalities

$$
\int_{\Omega} B\left(\frac{u(x)}{||u||_{B,\Omega}}\right) dx \le 1
$$
\n(8)

and

$$
||u||_{B,\Omega} \le \int_{\Omega} B(u) \, dx + 1. \tag{9}
$$

Moreover, the Hölder's inequality holds and we have for all $u \in L_B(\Omega)$ and $v \in L_{\bar{B}}(\Omega)$

$$
\left| \int_{\Omega} u(x) \, v(x) \, dx \right| \le 2 \left| \left| u \right| \right|_{B,\Omega} \cdot \left| \left| v \right| \right|_{\bar{B},\Omega}.\tag{10}
$$

In [[32](#page-29-4)] and [\[23\]](#page-28-16), if $P(\theta)$ and $B(\theta)$ are two N-functions such as $P(\theta) \ll B(\theta)$ and meas $Ω < ∞$, then $L_B(Ω) ⊂ L_p(Ω)$, furthermore

$$
||u||_{P,\Omega} \le A_0 \quad (\text{meas } \Omega) ||u||_{B,\Omega} \quad u \in L_B(\Omega). \tag{11}
$$

And for all N-functions $B(\theta)$, if meas $\Omega < \infty$, then $L_{\infty}(\Omega) \subset L_{B}(\Omega)$ with

$$
||u||_{B,\Omega} \le A_1 \quad (\text{meas } \Omega) \, ||u||_{\infty,\Omega} \quad u \in L_B(\Omega). \tag{12}
$$

Also for all N-functions $B(\theta)$, if meas $\Omega < \infty$, then $L_B(\Omega) \subset L^1(\Omega)$ with

$$
||u||_{1,\Omega} \le A_2 ||u||_{B,\Omega} \quad u \in L_B(\Omega). \tag{13}
$$

We define for all N-functions $B_1(\theta), \ldots, B_N(\theta)$ the space of Sobolev–Orlicz anisotropic $\mathring{W}_B^1(\Omega)$ as the adherence space $C_0^{\infty}(\Omega)$ under the norm

$$
||u||_{\mathring{W}_B^1(\Omega)} = \sum_{i=1}^N ||u_{x_i}||_{B_i, \Omega}.
$$
 (14)

Definition 2.4 A sequence { u_m } is said to converge modularly to *u* in $\mathring{W}_B^1(\Omega)$ if for some $k > 0$ we have

$$
\int_{\Omega} B\left(\frac{u_m - u}{k}\right) dx \longrightarrow 0 \quad \text{as} \quad m \longrightarrow \infty. \tag{15}
$$

 \mathcal{D} Springer

Remark 2.5 Since *B* satisfies the Δ_2 -condition, then the modular convergence coincide with the norm convergence.

$$
\theta B'(\theta) = \bar{B}(B'(\theta)) + B(\theta), \theta > 0,
$$
\n(16)

Proposition 2.6

with B' *is the right derivative of the N-function* $B(\theta)$ *.*

Proof By [\(2\)](#page-2-1), we take $\mu = B'(\theta)$, then we obtain

$$
B'(\theta)\,\theta\,\leq B(\theta)\,+\,\bar{B}(B'(\theta))
$$

and by Ch. I [\[32\]](#page-29-4), we get the result. \square

Let $\omega \subset \Omega$, be a bounded domain in \mathbb{R}^N . The following Lemmas are true:

Lemma 2.7 [\[27\]](#page-28-8) *For all* $u \in \mathring{W}_{L_B}^1(\omega)$ *with* meas $\omega < \infty$, *we have*

$$
\int_{\omega} B\left(\frac{|u|}{\lambda}\right) dx \le \int_{\omega} B(|\nabla u|) dx
$$

where $\lambda = \text{diam}(\omega)$, *is the diameter of* ω .

Note by $h(t) = \left(\prod_{i=1}^{N} \frac{B_i^{-1}(t)}{t}\right)$ *i*=1 *t* $\int_{0}^{\frac{1}{N}}$ and we assume that ∫ 1 $\boldsymbol{0}$ *h*(*t*) $\frac{\partial}{\partial t}$ *dt* converge, so we consider the N-functions $B^*(z)$ defined by $(B^*)^{-1}(z) = \int_0^{|z|}$ $\boldsymbol{0}$ *h*(*t*) $\frac{f^{(t)}}{t}$ dt.

Lemma 2.8 [\[29\]](#page-28-17) *Let* $u \in \mathring{W}_{B}^{1}(\omega)$. *If*

$$
\int_{1}^{\infty} \frac{h(t)}{t} dt = \infty, \tag{17}
$$

then, $\mathring{W}_{B}^{1}(\omega)$ ⊂ $L_{B^{*}}(\omega)$ *and* $||u||_{B^{*},\omega}$ ≤ $\frac{N-1}{N}$ $||u||_{\mathring{W}_{B}^{1}(\omega)}$. If ∞ *h*(*t*) $\frac{d^2y}{dt}$ *dt* $\leq \infty$,

 $then, \mathring{W}_{B}^{1}(\omega) \subset L_{\infty}(\omega)$ *and* $||u||_{\infty,\omega} \leq \beta ||u||_{\mathring{W}_{B}^{1}(\omega)},$ *with* $\beta = \int$ ∞ $\boldsymbol{0}$ *h*(*t*) $\frac{d}{t}$ dt.

 $\overline{ }$

1

Lemma 2.9 *Suppose that conditions* ([20](#page-6-1))–[\(23\)](#page-6-2) *are satisfied, and let* $(u^m)_{m\in\mathbb{N}}$ *be sequence* $in \mathring{W}_{B}^{1}(\omega)$ such as

(a) $u^m \rightharpoonup u$ in $\mathring{W}_B^1(\omega)$. (b) $a^m(x, u^m, \nabla u^m)$ is bounded in $L_{\bar{B}}(\omega)$. (c) $\sum_{i=1}^{N} \int_{\omega}$ $\left[a_i^m(x, u^m, \nabla u^m) - a_i^m(x, u^m, \nabla u_{\chi_s})\right] \cdot (\nabla u^m - \nabla u_{\chi_s}) dx \longrightarrow 0 \text{ as } m \to +\infty, s \to \infty.$ *Where* χ_s *is the characteristic function of* $\omega^s = \{ x \in \omega : |\nabla u| \leq s \}$. *Then*,

$$
\nabla u^m \longrightarrow \nabla u \quad \text{a.e. in} \quad \omega,
$$
\n(18)

and

$$
B(|\nabla u^m|) \longrightarrow B(|\nabla u|) \text{ in } L^1(\omega). \tag{19}
$$

Proof Let $\vartheta > 0$ fixed and $s > \vartheta$, then from ([21](#page-6-3)) we have

$$
0 \leq \sum_{i=1}^{N} \int_{\omega^{\beta}} \left[a_i^m(x, u^m, \nabla u^m) - a_i^m(x, u^m, \nabla u) \right] \cdot (\nabla u^m - \nabla u) dx
$$

\n
$$
= \sum_{i=1}^{N} \int_{\omega^s} \left[a_i^m(x, u^m, \nabla u^m) - a_i^m(x, u^m, \nabla u \chi_s) \right] \cdot (\nabla u^m - \nabla u \chi_s) dx
$$

\n
$$
\leq \sum_{i=1}^{N} \int_{\omega} \left[a_i^m(x, u^m, \nabla u^m) - a_i^m(x, u^m, \nabla u \chi_s) \right] \cdot (\nabla u^m - \nabla u \chi_s) dx.
$$

According to (c), we get

$$
\lim_{m \to \infty} \sum_{i=1}^{N} \int_{\omega^{\theta}} \left[a_i^m(x, u^m, \nabla u^m) - a_i^m(x, u^m, \nabla u) \right] \cdot (\nabla u^m - \nabla u) \, dx = 0.
$$

Proceeding as in [\[4\]](#page-28-19), we obtain

$$
\nabla u^m \longrightarrow \nabla u \text{ a.e in } \omega.
$$

On the other hand, we have

$$
\sum_{i=1}^{N} \int_{\omega} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m dx = \sum_{i=1}^{N} \int_{\omega} \left[a_i^m(x, u^m, \nabla u^m) - a_i^m(x, u^m, \nabla u \chi_s) \right] \times (\nabla u^m - \nabla u \chi_s) dx
$$

+
$$
\sum_{i=1}^{N} \int_{\omega} a_i^m(x, u^m, \nabla u \chi_s) \cdot (\nabla u^m - \nabla u \chi_s) \cdot dx
$$

+
$$
\sum_{i=1}^{N} \int_{\omega} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u \chi_s dx,
$$

using (b) and (18) , we obtain

$$
\sum_{i=1}^{N} a_i^m(x, u^m, \nabla u^m) \rightharpoonup \sum_{i=1}^{N} a_i(x, u, \nabla u) \text{ weakly in } (L_{\bar{B}}(\omega))^{N}.
$$

Therefore

$$
\sum_{i=1}^N \int_{\omega} a_i^m(x, u^m, \nabla u^m) \nabla u \chi_s dx \longrightarrow \sum_{i=1}^N \int_{\omega} a_i(x, u, \nabla u) \cdot \nabla u
$$

as $m \to \infty$, $s \to \infty$. So,

$$
\sum_{i=1}^N \int_{\omega} \left[a_i^m(x, u^m, \nabla u^m) - a_i^m(x, u^m, \nabla u \chi_s) \right] \cdot (\nabla u^m - \nabla u \chi_s) \ dx \longrightarrow 0,
$$

 \hat{Z} Springer

and

$$
\sum_{i=1}^N \int_{\omega} a_i^m(x, u^m, \nabla u \chi_s) \cdot (\nabla u^m - \nabla u \chi_s) \cdot dx \longrightarrow 0.
$$

Thus,

$$
\lim_{m\to\infty}\sum_{i=1}^N\int_{\omega}a_i^m(x,u^m,\nabla u^m)\cdot\nabla u^m\ dx=\sum_{i=1}^N\int_{\omega}a_i(x,u,\nabla u)\cdot\nabla u\ dx,
$$

from ([22](#page-6-4)) and vitali's Theorem, we get

$$
\bar{a}\sum_{i=1}^N\int_{\omega}B_i(|\nabla u^m|)\,dx-\int_{\omega}\phi(x)\,dx\geq \bar{a}\sum_{i=1}^N\int_{\omega}B_i(|\nabla u|)\,dx-\int_{\omega}\phi(x)\,dx.
$$

Consequently, by Lemma 2.6 in [\[27\]](#page-28-8), we get

$$
B(|\nabla u^m|) \longrightarrow B(|\nabla u|) \text{ in } \mathring{W}_B^1(\omega).
$$

Thanks to Lemma 1 in [\[29\]](#page-28-17), we have

$$
B(|\nabla u^m|) \longrightarrow B(|\nabla u|) \text{ in } L^1(\omega).
$$

◻

3 Existence result in unbounded domain

In this section, we assume they have non-negative measurable functions ϕ , $\varphi \in L^1(\Omega)$ and *ā*, *ã* are two positive constants such that

$$
\sum_{i=1}^{N} |a_i(x, s, \xi)| \leq \tilde{a} \sum_{i=1}^{N} \bar{B}_i^{-1} B_i(|\xi|) + \varphi(x), \tag{20}
$$

$$
\sum_{i=1}^{N} \left(a_i(x, s, \xi) - a_i(x, s, \xi') \right) \cdot (\xi_i - \xi'_i) > 0,
$$
\n(21)

$$
\sum_{i=1}^{N} a_i(x, s, \xi) \cdot \xi_i > \bar{a} \sum_{i=1}^{N} B_i(|\xi|) - \phi(x),
$$
\n(22)

and there exists $h \in L^1(\Omega)$ and $l : \mathbb{R} \longrightarrow \mathbb{R}^+$ a positive continuous functions such that *l* ∈ *L*¹(ℝ) ∩ *L*∞(ℝ).

$$
\sum_{i=1}^{N} |b_i(x, s, \xi)| \le l(s) \cdot \sum_{i=1}^{N} B_i(|\xi|) + h(x).
$$
 (23)

Theorem 3.1 *Let* Ω *be an unbounded domain of* \mathbb{R}^N . *Under assumptions* [\(20\)](#page-6-1)–([23](#page-6-2)), *there exists a least one entropy solution of the problem* (P) *on the sense of Defnition* [1.1](#page-2-2).

Proof Let $\Omega(m) = \{ x \in \Omega : |x| \le m \}$ and $f^m(x) = \frac{f(x)}{1 + \frac{1}{m} |f(x)|} \cdot \chi_{\Omega(m)}$. We have $f^m \longrightarrow f$ in $L^1(\Omega)$, $m \to \infty$, $|f^m(x)| \leq |f(x)|$ and $|f^m| \leq m \chi_{\Omega(m)}$.

 $a^m(x, s, \xi) = (a_1^m(x, s, \xi), \dots, a_N^m(x, s, \xi))$

where $a_i^m(x, s, \xi) = a_i(x, T_m(s), \xi)$ for $i = 1, ..., N$.

$$
b^m(x, s, \xi) = T_m(b(x, s, \xi)) \cdot \chi_{\Omega(m)}
$$

and for any $v \in \mathring{W}_{B}^{1}(\Omega)$, we consider the following approximate equations

$$
(\mathcal{P}_m) : \int_{\Omega} a(x, T_m(u^m), \nabla u^m) \nabla v \, dx + \int_{\Omega} b^m(x, u^m, \nabla u^m) v \, dx = \int_{\Omega} f^m v \, dx.
$$

For the proof. See Appendix [5](#page-21-0). We divide our proof in six steps.

Step 1 A priori estimate of $\{u^m\}$.

Proposition 3.2 *Suppose that the assumptions* [\(20\)](#page-6-1)–[\(23](#page-6-2)) *hold true, and let* $(u^m)_m$ *be a solution of the approximate problem* (P_m). *Then, for all* $k > 0$, *there exists a constant* $c \cdot k$ (*not depending on m*), *such that*

$$
\int_{\Omega} B(|\nabla T_k(u^m)|) \leq c \cdot k
$$

Proof Taking $v = \exp(G(u^m)) \cdot T_k(u^m)$, as a test function with $G(s) = \int_0^s$ $\mathbf 0$ $\frac{l(t)}{\bar{a}}$ *dt* and \bar{a} is the coercivity constant, we obtain

$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \nabla(\exp(G(u^m)) \cdot T_k(u^m)) dx
$$

+
$$
\sum_{i=1}^{N} \int_{\Omega} b_i^m(x, u^m, \nabla u^m) \cdot \exp(G(u^m)) \cdot T_k(u^m) dx
$$

$$
\leq \int_{\Omega} f^m \cdot \exp(G(u^m)) \cdot T_k(u^m) dx.
$$

Then,

$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \exp(G(u^m)) \nabla T_k(u^m)) dx
$$

+
$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \frac{l(u^m)}{\overline{a}} \cdot \exp(G(u^m)) T_k(u^m) dx
$$

$$
\leq \sum_{i=1}^{N} \int_{\Omega} |b_i^m(x, u^m, \nabla u^m)| \cdot \exp(G(u^m)) \cdot T_k(u^m) dx + \int_{\Omega} f^m \cdot \exp(G(u^m)) \cdot T_k(u^m) dx
$$

$$
\leq \sum_{i=1}^{N} \int_{\Omega} [h(x) + l(u^m) \cdot B_i(\nabla u^m)] \cdot \exp(G(u^m)) \cdot T_k(u^m) dx
$$

+
$$
\int_{\Omega} f^m \cdot \exp(G(u^m)) \times T_k(u^m) dx
$$

$$
\leq \sum_{i=1}^{N} \int_{\Omega} l(u^m) \cdot B_i(\nabla u^m) \cdot \exp(G(u^m)) \cdot T_k(u^m) dx
$$

+
$$
\int_{\Omega} (f^m + h(x)) \cdot \exp(G(u^m)) \cdot T_k(u^m) dx,
$$

so,

$$
\sum_{i=1}^{N} \int_{\{\Omega : |u^m| < k\}} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \exp(G(u^m)) \, dx
$$
\n
$$
\leq \int_{\Omega} \left[f^m(x) + h(x) + \phi(x) \frac{l(u^m)}{\bar{a}} \right] \cdot \exp(G(u^m)) \, T_k(u^m) \, dx
$$

by (22) (22) (22) , we get

$$
\bar{a} \sum_{i=1}^{N} \int_{\{\Omega : |u^m| \le k\}} B_i(\nabla u^m) \exp(G(u^m)) dx
$$

\n
$$
\le \int_{\{\Omega : |u^m| \le k\}} \phi(x) \exp(G(u^m)) dx
$$

\n
$$
+ \int_{\Omega} \left[f^m(x) + h(x) + \phi(x) \frac{l(u_m)}{\bar{a}} \right] \cdot \exp(G(u^m)) T_k(u^m) dx,
$$

since ϕ , *h* and $f^m \in L^1(\Omega)$, and the fact that $\exp(G(\pm \infty)) \leq \exp\left(\frac{||I||_{L^1(\Omega)}}{\bar{a}}\right)$ λ , we deduce that,

$$
\int_{\{\Omega: \, |u^m| < k\}} B(\nabla T_k(u^m)) \, dx \leq k \cdot c \quad k > 0.
$$

Finally

$$
\int_{\Omega} B(\nabla T_k(u^m)) \, dx \le k \cdot c \quad k > 0.
$$

◻

 \mathcal{D} Springer

Step 2 Almost everywhere convergence of $\{u^m\}$.

Lemma 3.3 *For all um measurable function on* Ω, *we have*

$$
\text{meas } \{ \, x \in \Omega, \, | \, u^m \, | > k \, \} \longrightarrow 0.
$$

Proof According to Lemma [2.7](#page-4-1) and Lemma [2.8,](#page-4-2) we have

$$
|| T_k(u^m) ||_{B^*} \le A \cdot || \nabla T_k(u^m) ||_B
$$

\n
$$
\le A \cdot \epsilon(k) \int_{\omega} B(\nabla T_k(u^m) dx
$$

\n
$$
\le c \cdot k \cdot \epsilon(k) \quad \text{for } k > 1
$$
\n(24)

with $\epsilon(k) \longrightarrow 0$ as $k \longrightarrow \infty$. Form [\(24\)](#page-9-0) we have

$$
B^* \left(\frac{k}{\|T_k(u^m)\|_{B^*}} \right) \text{ meas } \{ x \in \Omega : \|u^m\| \ge k \} \le \int_{\Omega} B^* \left(\frac{T_k(u^m)}{\|T_k(u^m)\|_{B^*}} \right) dx
$$

$$
\le \int_{\Omega} B^* \left(\frac{k}{\|T_k(u^m)\|_{B^*}} \right) dx
$$

by ([24](#page-9-0)) again, we obtain

$$
B^*\left(\frac{k}{\|T_k(u^m)\|_{B^*}}\right) \longrightarrow \infty \text{ as } k \longrightarrow \infty.
$$

Hence,

$$
\text{meas } \{ \, x \in \Omega : \, |u^m| \ge k \, \} \longrightarrow 0 \text{ as } k \longrightarrow \infty \text{ for all } m \in \mathbb{N}.
$$

◻

Lemma 3.4 *For all um measurable function on* Ω, *such that*

$$
T_k(u^m) \in \mathring{W}_B^1(\Omega) \quad \forall k \ge 1.
$$

We have,

$$
\text{meas } \{ \Omega : B(\nabla u^m) \ge r \} \longrightarrow 0 \text{ as } r \longrightarrow \infty.
$$

$$
\text{meas } \{ \, x \in \Omega : \, B(\nabla u^m) \ge 0 \, \} = \text{meas } \{ \, \{ \, x \in \Omega : \, | \, u^m \, | \ge k \, B(\nabla u^m) \ge r \, \} \, \}
$$
\n
$$
\cup \, \{ \, x \in \Omega : \, | \, u^m \, | < k \, B(\nabla u^m) \ge r \, \} \, \}
$$

Proof

if we denote

$$
g(r,k) = \text{meas } \{ x \in \Omega : \mid u^m \mid \ge k, \ B(\nabla u^m) \ge r \}
$$

we have

$$
\text{meas } \{ \, x \in \Omega : \, | \, u^m \, | < k \, B(\nabla u^m) \ge r \, \} = g(r, 0) - g(r, k).
$$

Then,

 \mathcal{D} Springer

$$
\int_{\{x\in\Omega:\,|u^m|
$$

with $r \longrightarrow g(r, k)$ is a decreasing map. Then,

$$
g(r, 0) \le \frac{1}{r} \int_0^r g(r, 0) dr
$$

\n
$$
\le \frac{1}{r} \int_0^r \left(g(r, 0) - g(r, k) \right) dr + \frac{1}{r} \int_0^r g(r, k) dr
$$

\n
$$
\le \frac{1}{r} \int_0^r \left(g(r, 0) - g(r, k) \right) dr + g(0, k)
$$
 (26)

combining (25) (25) (25) and (26) , we obtain

$$
g(r,0) \le \frac{c \cdot k}{r} + g(0,k)
$$

by Lemma [2.7,](#page-4-1)

$$
\lim_{k \to \infty} g(0, k) = 0.
$$

Thus

$$
g(r, 0) \longrightarrow 0
$$
 as $r \longrightarrow \infty$.

◻

We have now to prove the almost everywhere convergence of $\{u^m\}$

$$
u^m \longrightarrow u \text{ a.e in } \Omega. \tag{27}
$$

Let $g(k) = \sup_{m \in \mathbb{N}} \text{ meas } \{ x \in \Omega : |u^m| > k \} \longrightarrow 0 \text{ as } k \longrightarrow \infty.$

Since Ω is unbounded domain in \mathbb{R}^N , we define η_R as

$$
\eta_R(r) = \begin{cases} 1 & \text{if } r < R, \\ R + 1 - r & \text{if } R \le r < R + 1, \\ 0 & \text{if } r \ge R + 1. \end{cases}
$$

For *R*, $k > 0$, we have by ([6\)](#page-3-0)

$$
\int_{\Omega} B(\nabla \eta_R(|x|) \cdot T_k(u^m)) dx \le c \int_{\{x \in \Omega : |u^m| < k\}} B(\nabla u^m) dx
$$
\n
$$
+ c \int_{\Omega} B(T_k(u^m) \cdot \nabla \eta_R(|x|) dx
$$
\n
$$
\le c(k, R),
$$

which implies that the sequence { $\eta_R(|x|) T_K(u^m)$ } is bounded in $\mathring{W}_B^1(\Omega(R+1))$ and by embedding Theorem, for $P \ll B$ we have

$$
\mathring{W}_{B}^{1}(\Omega(R+1)) \hookrightarrow L_{P}(\Omega(R+1)),
$$

and since $\eta_R = 1$ in $\Omega(R)$, we have

$$
\eta_R T_k(u^m) \longrightarrow v_k
$$
 in $L_P(\Omega(R+1))$ as $m \longrightarrow \infty$.

For $k = 1, \ldots$

$$
T_k(u^m) \longrightarrow v_k
$$
 in $L_p(\Omega(R+1))$ as $m \longrightarrow \infty$,

by diagonal process, we prove that there is $u : \Omega \longrightarrow \mathbb{R}$ measurable such that $u^m \longrightarrow u$ a.e in $Ω$. This implies the [\(27\)](#page-10-2).

Lemma 3.5 *Let an N-functions* $\bar{B}(t)$ *satisfy the* Δ_2 -*condition and* u^m *,* $m = 1, ..., \infty$ *, and u be two functions of* $L_B(\Omega)$ *such as*

$$
||u^m||_B \le c \quad m = 1, 2, \dots
$$

$$
u^m \longrightarrow u \text{ almost everywhere in } \Omega, m \longrightarrow \infty.
$$

Then,

$$
u^m \rightharpoonup u
$$
 weakly in $L_B(\Omega)$ as $m \to \infty$.

Proof See Lemma 1.3 in [\[34\]](#page-29-5). \Box

Step 3 Weak convergence of the gradient. Since $\mathring{W}_{B}^{1}(\Omega)$ reflexive, then, there exists a subsequence

$$
T_k(u^m) \to v
$$
 weakly in $\mathring{W}_B^1(\Omega)$, $m \to \infty$.

And since,

$$
\mathring{W}_{B}^{1}(\Omega) \hookrightarrow L_{B}(\Omega),
$$

we have

 $\nabla T_k(u^m) \rightharpoonup \nabla v$ in $L_B(\Omega)$ as $m \to \infty$,

since

$$
u^m \longrightarrow u
$$
 a.e in Ω as $m \to \infty$,

we get

$$
\nabla u^m \longrightarrow \nabla u \text{ a.e in } \Omega \text{ as } m \to \infty.
$$

Then, we obtain for any fixed $k > 0$

$$
\nabla T_k(u^m) \longrightarrow \nabla T_k(u) \text{ a.e in } \Omega.
$$

Applying Lemma [3.5](#page-11-0), we have the following weak convergence

$$
\nabla T_k(u^m) \rightharpoonup \nabla T_k(u) \text{ in } L_B(\Omega) \text{ as } m \to \infty,
$$

for more detail see page 11 in [[10](#page-28-6)].

Step 4 Strong convergence of the gradient.

For $j > k > 0$, we introduce the following function defined as

$$
h_j(s) = \begin{cases} 1 & \text{if } |s| \le j, \\ 1 - |s - j| & \text{if } j \le |s| \le j + 1, \\ 0 & \text{if } s \ge j + 1. \end{cases}
$$

and we show that the following assertions are true:

Assertion 1

$$
\lim_{j \to \infty} \lim_{m \to \infty} \sum_{i=1}^{N} \int_{\{j \le |u^m| \le j+1\}} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \eta_R(|x|) \, dx = 0. \tag{28}
$$

Assertion 2

$$
\nabla u^m \longrightarrow \nabla u \quad \text{a.e. in } \quad \Omega(m). \tag{29}
$$

Proof We take $v = \exp(G(u^m))T_{1,j}(u^m) \eta_R(|x|) = \exp(G(u^m))T_1(u^m - T_j(u^m)) \eta_R(|x|)$ as a test function in the problem (\mathcal{P}_m) , we obtain

$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \nabla \left(\exp(G(u^m)) \cdot T_1(u^m - T_j(u^m)) \cdot \eta_R(|x|) \right) dx
$$

$$
\leq \sum_{i=1}^{N} \int_{\Omega} |b_i^m(x, u^m, \nabla u^m)| \cdot \exp(G(u^m)) \cdot T_1(u^m - T_j(u^m)) \cdot \eta_R(|x|) dx
$$

+
$$
\int_{\Omega} f^m(x) \cdot \exp(G(u^m)) \cdot T_1(u^m - T_j(u^m)) \cdot \eta_R(|x|) dx
$$

according to (22) and (23) (23) (23) we deduce that

$$
\sum_{i=1}^{N} \int_{\{j < |u^m| < j+1\}} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \exp(G(u^m)) \cdot \eta_R(|x|) \, dx
$$
\n
$$
\leq \int_{\Omega} \left[f^m(x) + h(x) + \phi(x) \cdot \frac{l(u^m)}{\bar{a}} \right] \cdot \exp(G(u^m)) \cdot T_1(u^m - T_j(u^m)) \cdot \eta_R(|x|) \, dx
$$

since $\phi \in L^1(\Omega)$, $h \in L^1(\Omega)$, $f^m \in (L^1(\Omega))^N$, and the fact that $\exp(G(\pm)) \leq \exp\left(\frac{||I||_{L^1(\mathbb{R})}}{\bar{a}}\right)$ λ , we deduce from vitali's Theorem that

$$
\lim_{j \to \infty} \lim_{m \to \infty} \int_{\Omega} \left[f^m(x) + h(x) + \phi(x) \cdot \frac{l(u^m)}{\bar{a}} \right] \cdot \exp(G(u^m)) \cdot T_1(u^m - T_j(u^m))
$$

$$
\times \eta_R(\vert x \vert) dx = 0.
$$

Hence,

$$
\lim_{j\to\infty}\lim_{m\to\infty}\int_{\{j<|u^m|
$$

And to show that assertion 2 is true, we take

$$
v = \exp(G(u^{m})) (T_{k}(u^{m}) - T_{k}(u)) h_{j}(u^{m}) \eta_{R}(|x|),
$$

as a test function in the problem (\mathcal{P}_m) . We have

$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \nabla \Big(\exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot h_j(u^m) \cdot \eta_R(\vert x \vert) \Big) dx
$$

+
$$
\sum_{i=1}^{N} \int_{\Omega} b_i^m(x, u^m, \nabla u^m) \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot h_j(u^m) \cdot \eta_R(\vert x \vert) dx
$$

$$
\leq \int_{\Omega} f^m(x) \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot h_j(u^m) \cdot \eta_R(\vert x \vert) dx,
$$

which implies

$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \frac{l(u^m)}{\bar{a}} \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot h_j(u^m) \times \eta_R(|x|) dx \n+ \sum_{i=1}^{N} a_i^m(x, u^m, \nabla u^m) \cdot \exp(G(u^m)) \cdot (\nabla T_k(u^m) - \nabla T_k(u)) \cdot h_j(u^m) \cdot \eta_R(|x|) dx \n+ \sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot \nabla h_j(u^m) \cdot \eta_R(|x|) dx \n+ \sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot h_j(u^m) \cdot \nabla \eta_R(|x|) dx \n\leq \sum_{i=1}^{N} \int_{\Omega} |b_i^m(x, u^m, \nabla u^m) | \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot h_j(u^m) \cdot \eta_R(|x|) dx \n+ \int_{\Omega} f^m(x) \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot h_j(u^m) \cdot \eta_R(|x|) dx,
$$

thanks to (22) (22) (22) and (23) , we obtain

$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \exp(G(u^m)) \cdot (\nabla T_k(u^m) - \nabla T_k(u)) \cdot h_j(u^m) \cdot \eta_R(\vert x \vert) dx
$$
\n
$$
+ \sum_{i=1}^{N} \int_{\{\Omega : j \leq |u^m| \leq j+1\}} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \exp(G(u^m))
$$
\n
$$
\times (T_k(u^m) - T_k(u)) \cdot \eta_R(\vert x \vert) dx
$$
\n
$$
+ \sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot h_j(u^m)
$$
\n
$$
\times \nabla \eta_R(\vert x \vert) dx
$$
\n
$$
\leq \int_{\Omega} \left[f^m(x) + h(x) + \phi(x) \cdot \frac{l(u^m)}{\bar{a}} \right] \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot h_j(u^m)
$$
\n
$$
\times \eta_R(\vert x \vert) dx
$$

sine h_i ≥ 0, $\eta_R(|x|)$ ≥ 0 and $u^m(T_k(u^m) - T_k(u))$ ≥ 0 we have

$$
\sum_{i=1}^{N} \int_{\{\Omega : \|u^m\| \le k\}} a_i(x, T_k(u^m), \nabla T_k(u^m)) \exp(G(u^m)) \cdot (\nabla T_k(u^m) - \nabla T_k(u)) \times \eta_R(|x|) dx \n+ \int_{\{\Omega : j \le |u^m| \le j+1\}} a_i^m(x, u^m, \nabla u^m) \nabla u^m \exp(G(u^m)) (T_k(u^m) - T_k(u)) \eta_R(|x|) dx \n+ \sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot \nabla \eta_R(|x|) dx \n\le \int_{\Omega} \left[f^m(x) + h(x) + \phi(x) \cdot \frac{l(u^m)}{\bar{a}} \right] \cdot \exp(G(u^m)) \cdot (T_k(u^m) - T_k(u)) \cdot \eta_R(|x|) dx \n+ \sum_{i=1}^{N} \int_{\{\Omega : k \le |u^m| \le j+1\}} a_i(x, T_{j+1}(u^m), \nabla T_{j+1}(u^m)) \cdot \exp(G(u^m)) \cdot |\nabla T_k(u)| \n\times \eta_R(|x|) dx \n+ \sum_{i=1}^{N} \int_{\{\Omega : j \le |u^m| \le j+1\}} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \exp(G(u^m)) \cdot |T_k(u^m) - T_k(u)| \n\times \eta_R(|x|) dx.
$$

The first term in the right hand side goes to zero as *m* tend to ∞ , since $T_k(u^m) \to T_k(u)$ weakly in $\mathring{W}_{B}^{1}(\Omega(m))$.

Since $a_i^m(x, T_{j+1}(u^m), \nabla T_{j+1}(u^m))$ is bounded in $L_{\bar{B}}(\Omega(m))$, there exists $\tilde{a}^m \in L_{\bar{B}}(\Omega(m))$ such as

$$
| a_i^m(x, T_{j+1}(u^m), \nabla T_{j+1}(u^m)) | \rightharpoonup \tilde{a}^m \text{ in } L_{\tilde{B}}(\Omega(m)).
$$
 (30)

Thus, the second term of the right hand side goes also to zero.

Since $T_k(u^m) \longrightarrow T_K(u)$ strongly in $\mathring{W}_{B,loc}^1(\Omega(m))$. The third term of the left hand side increased by a quantity that tends to zero as m tend to zero, and according to (28) we deduce that

$$
\sum_{i=1}^{N} \int_{\{\Omega : \, |u^m| \le k\}} a_i(x, T_k(u^m), \nabla T_k(u^m)) \cdot \exp(G(u^m)) \cdot |\nabla T_k(u^m) - \nabla T_k(u)|
$$

 $\times \eta_R(|x|) dx$
 $\le \epsilon(j, m).$

Then,

$$
\sum_{i=1}^{N} \int_{\Omega} \left[a_i(x, T_k(u^m), \nabla T_k(u^m)) - a_i(x, T_k(u^m), \nabla T_k(u)) \right] \cdot (\nabla T_k(u^m) - T_K(u))
$$
\n
$$
\times \eta_R(|x|) dx
$$
\n
$$
\leq - \sum_{i=1}^{N} \int_{\Omega} a_i(x, T_k(u^m), \nabla T_k(u)) \cdot \exp(G(u^m)) \cdot |\nabla T_k(u^m) - \nabla T_k(u)|
$$
\n
$$
\times \eta_R(|x|) dx
$$
\n
$$
- \sum_{i=1}^{N} \int_{\{\Omega : |u^m| \leq k\}} a_i(x, T_k(u^m), \nabla T_k(u^m)) \cdot \exp(G(u^m)) \cdot \nabla T_k(u) \cdot \eta_R(|x|) dx
$$
\n
$$
+ \epsilon(j, m).
$$
\n(31)

According to Lebesgue dominated convergence Theorem, we have $T_k(u^m) \longrightarrow T_k(u)$ in $\mathring{W}_{B,loc}^1(\Omega)$ and $\nabla T_k(u^m) \to \nabla T_k(u)$ in $\mathring{W}_B^1(\Omega)$, then the terms on the right had side of ([31](#page-15-0)) goes to zero as *m* and *j* tend to infnity. Which implies that

$$
\sum_{i=1}^{N} \int_{\Omega} \left[a_i(x, T_k(u^m), \nabla T_k(u^m)) - a_i(x, T_k(u^m), \nabla T_k(u)) \right]
$$
\n
$$
\times (\nabla T_k(u^m) - T_k(u)) dx \longrightarrow 0.
$$
\n(32)

Thanks to Lemma [2.9](#page-4-3), we have for $k = 1, \ldots$,

$$
\nabla T_k(u^m) \longrightarrow \nabla T_k(u) \quad \text{a.e. in } \quad \Omega(m) \tag{33}
$$

and by diagonal process, we prove that

$$
\nabla u^m \longrightarrow \nabla u \text{ a.e in } \Omega(m).
$$

ਾ ਸ਼ਾਮਲ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੀ ਸ

Step 5 Equi-integrability of $b^m(x, u^m, \nabla u^m)$.

Let $v = \exp(2 G(|u^m|)) \cdot T_1(u^m - T_R(u^m)) \cdot \eta_R(|x|)$ as a test function in the problem (\mathcal{P}_m) , we obtain

$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \nabla \Big(\exp(2|G(|u^m|)) \cdot T_1(u^m - T_R(u^m)) \cdot \eta_R(|x|) \Big) dx
$$

+
$$
\sum_{i=1}^{N} \int_{\Omega} b_i^m(x, u^m, \nabla u^m) \cdot \exp(2|G(|u^m|)) \cdot T_1(u^m - T_R(u^m)) \cdot \eta_R(|x|) dx
$$

$$
\leq \int_{\Omega} f^m(x) \cdot \exp(2|G(|u^m|)) \cdot T_1(u^m - T_R(u^m)) \cdot \eta_R(|x|) dx,
$$

which implies that

$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \frac{l(u^m)}{\bar{a}} \cdot \exp(2|G(|u^m|)) \cdot T_1(u^m - T_R(u^m))
$$
\n
$$
\times \eta_R(|x|) dx
$$
\n+
$$
\sum_{i=1}^{N} \int_{\{\Omega : R \le |u^m| \le R+1\}} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \exp(2|G(|u^m|)) \cdot \eta_R(|x|) dx
$$
\n+
$$
\sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \exp(2|G(|u^m|)) \cdot T_1(u^m - T_R(u^m)) \cdot \nabla \eta_R(|x|) dx
$$
\n
$$
\le \sum_{i=1}^{N} \int_{\Omega} |b_i^m(x, u^m, \nabla u^m)| \cdot \exp(2|G(|u^m|)) \cdot T_1(u^m - T_R(u^m)) \cdot \eta_R(|x|) dx
$$
\n+
$$
\int_{\Omega} f^m(x) \cdot \exp(2|G(|u^m|)) \cdot T_1(u^m - T_R(u^m)) \cdot \eta_R(|x|) dx,
$$

by (22) (22) (22) and (23) (23) (23) , we obtain

$$
\bar{a} \sum_{i=1}^{N} \int_{\{\Omega : R \le |u^m| \le R+1\}} B_i(|\nabla u^m|) \cdot \exp(2|G(|u^m|) \cdot \eta_R(|x|)) dx \n+ \sum_{i=1}^{N} \int_{\Omega} a_i^m(x, u^m, \nabla u^m) \cdot \exp(2|G(|u^m|) \cdot T_1(u^m - T_R(u^m)) \cdot \nabla \eta_R(|x|) dx \n\le \int_{\Omega} \left[f^m(x) + h(x) + \phi(x) \cdot \frac{l(u^m)}{\bar{a}} \right] \cdot \exp(2|G(|u^m|)) \cdot T_1(u^m - T_R(u^m)) \n\times \eta_R(|x|) dx + \int_{\{\Omega : R \le |u^m| \le R+1\}} \phi(x) \cdot \exp(2|G(|u^m|) \cdot \eta_R(|x|)) dx.
$$

Since $\eta_R(|x|) \ge 0$, $\exp(G(\pm \infty)) \le \exp\left(2 \frac{||t||_{L^1}(\mathbb{R})}{\bar{a}}\right)$ $\Big), f^m \in (L^1(\Omega))^N, \phi \text{ and } h \in L^1(\Omega).$ Then, $\forall \epsilon > 0$, $\exists R(\epsilon) > 0$ such as

$$
\sum_{i=1}^N \int_{\{\Omega : \, |u^m| > R+1\}} B(|\nabla u^m|) \, dx \leq \frac{\epsilon}{2} \quad \forall R > R(\epsilon).
$$

Let $\mathring{V}(\Omega(m))$ be an arbitrary bounded subset for Ω , then, for any measurable set $E \subset \hat{V}(\Omega(m))$ we have

$$
\sum_{i=1}^{N} \int_{E} B_{i}(|\nabla u^{m}|) dx \leq \sum_{i=1}^{N} \int_{E} B_{i}(|\nabla T_{R}(u^{m})|) dx + \sum_{i=1}^{N} \int_{\{|u^{m}| > R+1\}} B_{i}(|\nabla u^{m}|) dx
$$
\n(34)

we conclude that $\forall E \subset \mathring{V}(\Omega(m))$ with meas $(E) < \beta(\epsilon)$ and $T_R(u^m) \longrightarrow T_R(u)$ in $\mathring{W}^1_B(\Omega)$

$$
\sum_{i=1}^{N} \int_{E} B_i(|\nabla T_R(u^m)|) dx \le \frac{\epsilon}{2}.
$$
\n(35)

Finally, according to (34) and (35) (35) (35) , we obtain

$$
\sum_{i=1}^{N} \int_{E} B_{i}(|\nabla u^{m}|) dx \leq \epsilon \quad \forall E \subset \mathring{V}(\Omega(m)) \text{ such as meas } (E) < \beta(\epsilon).
$$

Which gives the results.

Step 6 Passing to the limit.

Let $\xi \in \mathring{W}_B^1(\Omega) \cap L^\infty(\Omega)$, using the following test function $v = \theta_k T_k(u^m - \xi)$ in the problem (\mathcal{P}_m) with

$$
\vartheta_k = \begin{cases} 1 & \text{for } \Omega(m), \\ 0 & \text{for } \Omega(m+1) \backslash \Omega(m). \end{cases}
$$

and $|u^m| - ||\xi||_{\infty} < |u^m - \xi| \leq j$. Then, $\{|u^m - \xi| \leq j\} \subset {\{|u^m| \leq j + ||\xi||_{\infty}}\}$ we obtain

$$
\sum_{i=1}^{N} \int_{\Omega} a_i(x, T_m(u^m), \nabla u^m) \cdot \vartheta_k \nabla T_k(u^m - \xi) dx
$$

+
$$
\sum_{i=1}^{N} \int_{\Omega} a_i(x, T_m(u^m), \nabla u^m) \cdot T_k(u^m - \xi) \nabla \vartheta_k dx
$$

+
$$
\sum_{i=1}^{N} \int_{\Omega} b_i^m(x, u^m, \nabla u^m) \cdot \vartheta_k T_k(u^m - \xi) dx
$$

$$
\leq \int_{\Omega} f^m(x) \cdot \vartheta_k T_k(u^m - \xi) dx
$$
 (36)

which implies that

$$
\sum_{i=1}^{N} \int_{\Omega(m)} a_i(x, T_m(u^m), \nabla u^m) \cdot T_k(u^m - \xi) dx
$$
\n
$$
= \sum_{i=1}^{N} \int_{\Omega(m)} a_i(x, T_{j+||\xi||_{\infty}}(u^m), \nabla T_{j+||\xi||_{\infty}}(u^m)) \cdot T_{j+||\xi||_{\infty}}(u^m - \xi) \cdot \chi_{\{|u^m - \xi| < j\}} dx
$$
\n
$$
= \sum_{i=1}^{N} \int_{\Omega(m)} \left[a_i(x, T_{j+||\xi||_{\infty}}(u^m), \nabla T_{j+||\xi||_{\infty}}(u^m)) - a_i(x, T_{j+||\xi||_{\infty}}(u^m), \nabla \xi) \right]
$$
\n
$$
\times \nabla T_{j+||\xi||_{\infty}}(u^m - \xi) \cdot \chi_{\{|u^m - \xi| < j\}} dx
$$
\n
$$
+ \sum_{i=1}^{N} \int_{\Omega(m)} a_i(x, T_{j+||\xi||_{\infty}}(u^m), \nabla \xi) \cdot \nabla T_{j+||\xi||_{\infty}}(u^m - \xi) \cdot \chi_{\{|u^m - \xi| < j\}} dx.
$$
\n(37)

By Fatou's Lemma, we have

$$
\lim_{m \to \infty} \inf \sum_{i=1}^{N} \int_{\Omega(m)} a_i(x, T_m(u^m), \nabla u^m) \cdot \nabla T_k(u^m - \xi) dx
$$
\n
$$
\geq \sum_{i=1}^{N} \int_{\Omega(m)} \left[a_i(x, T_{j+||\xi||_{\infty}}(u^m), \nabla T_{j+||\xi||_{\infty}}(u^m)) - a_i(x, T_{j+||\xi||_{\infty}}(u^m), \nabla \xi) \right]
$$
\n
$$
\times \nabla T_{j+||\xi||_{\infty}}(u^m - \xi) \cdot \chi_{\{|u^m - \xi| < j\}} dx
$$
\n
$$
+ \lim_{m \to \infty} \sum_{i=1}^{N} \int_{\Omega(m)} a_i(x, T_{j+||\xi||_{\infty}}(u^m), \nabla \xi) \cdot \nabla T_{j+||\xi||_{\infty}}(u^m - \xi) \cdot \chi_{\{|u^m - \xi| < j\}} dx.
$$
\n(38)

The second term on the right hand side of the previous inequality is equal to

$$
\int_{\Omega(m)} a_i(x, T_{j+||\xi||_{\infty}}(u), \nabla \xi) \cdot \nabla T_{j+||\xi||_{\infty}}(u-\xi) \cdot \chi_{\{|u-\xi| < j\}} dx.
$$

Then, since $T_k(u^m - \xi) \to T_k(u - \xi)$ weakly in $\mathring{W}_B^1(\Omega)$, and by [\(29\)](#page-12-1), ([33](#page-15-1)) we have

$$
\sum_{i=1}^{N} \int_{\Omega} b_i^m(x, u^m, \nabla u^m) \cdot \vartheta_k T_k(u^m - \xi) \, dx \longrightarrow \sum_{i=1}^{N} \int_{\Omega} b_i(x, u, \nabla u) \cdot \vartheta_k T_k(u - \xi) \, dx \tag{39}
$$

and

$$
\int_{\Omega} f^{m}(x) \cdot \vartheta_{k} T_{k}(u^{m} - \xi) dx \longrightarrow \int_{\Omega} f(x) \cdot \vartheta_{k} T_{k}(u - \xi) dx.
$$
 (40)

Combining ([36](#page-17-2))–([40](#page-18-0)) and passing to the limit as $m \longrightarrow \infty$, we have the condition 3 in Definition 1.1. nition $1.1.$

4 Uniqueness result in unbounded domain

In this section, we demonstrate the Theorem of uniqueness to the solution of problem (P) in an unbounded domain; using the the fact given in [\[1](#page-27-1), [11](#page-28-20), [12\]](#page-28-21) such as $b_i(x, u, \nabla u)$ are a contraction Lipschitz continuous functions.

Theorem 4.1 *Under assumptions* [\(20\)](#page-6-1)–([23](#page-6-2)), and $b_i(x, u, \nabla u) : \Omega \times \mathbb{R} \times \mathbb{R}^N \longrightarrow \mathbb{R}$ *for* $i = 1, \ldots, N$ *contraction Lipschitz continuous functions do not satisfy any sign condition, and*

$$
\sum_{i=1}^{N} \left[a_i(x, \xi, \nabla \xi) - a_i(x, \xi', \nabla \xi') \right] \cdot (\nabla \xi - \nabla \xi') > 0.
$$
 (41)

The problem (P) *has a unique solution.*

Proof Let u^1 and u^2 be two solutions of problem (P) with $u^1 \neq u^2$ then,

$$
\sum_{i=1}^{N} \int_{\Omega} a_i(x, u^1, \nabla u^1) \cdot \nabla v \, dx + \sum_{i=1}^{N} \int_{\Omega} b_i(x, u^1, \nabla u^1) \cdot v \, dx = \int_{\Omega} f(x) \cdot v \, dx
$$

and

$$
\sum_{i=1}^{N} \int_{\Omega} a_i(x, u^2, \nabla u^2) \cdot \nabla v \, dx + \sum_{i=1}^{N} \int_{\Omega} b_i(x, u^2, \nabla u^2) \cdot v \, dx = \int_{\Omega} f(x) \cdot v \, dx
$$

we subtract the previous inequality, we get

$$
\sum_{i=1}^{N} \int_{\Omega} \left[a_i(x, u^1, \nabla u^1) - a_i(x, u^2, \nabla u^2) \right] \cdot \nabla v \, dx
$$

+
$$
\sum_{i=1}^{N} \int_{\Omega} \left[b_i(x, u^1, \nabla u^1) - b_i(x, u^2, \nabla u^2) \right] \cdot v \, dx = 0
$$

we take $v = \eta(x) \cdot (u^1 - u^2)(x)$ with

$$
\eta(x) = \begin{cases} 0 & \text{if } x \ge k, \\ k - \frac{|x|^2}{k} & \text{if } |x| < k, \\ 0 & \text{if } x \le -k. \end{cases}
$$

Combine to ([41](#page-19-1)), we obtain

$$
\sum_{i=1}^{N} \int_{\Omega} \left[a_i(x, u^1, \nabla u^1) - a_i(x, u^2, \nabla u^2) \right] \cdot (u^1 - u^2) \cdot \nabla \eta(x) dx
$$

+
$$
\sum_{i=1}^{N} \int_{\Omega} \left[b_i(x, u^1, \nabla u^1) - b_i(x, u^2, \nabla u^2) \right] \cdot (u^1 - u^2) \cdot \eta(x) dx
$$

$$
\leq 0
$$

² Springer

according to ([2](#page-2-1)) and the fact that $b_i(x, u, \nabla u)$ contraction Lipschitz functions for $i = 1, \ldots, N$, we get

$$
\sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i}(a_{i}(x, u^{1}, \nabla u^{1}) - a_{i}(x, u^{2}, \nabla u^{2})) dx + \sum_{i=1}^{N} \int_{\Omega} B_{i}(u^{1} - u^{2}) \nabla \eta(x) dx
$$
\n
$$
\leq \sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i}(a_{i}(x, u^{1}, \nabla u^{1}) - a_{i}(x, u^{2}, \nabla u^{2})) dx + 2 \sum_{i=1}^{N} \int_{\Omega} B_{i}(u^{1} - u^{2}) dx \qquad (42)
$$
\n
$$
\leq \alpha \sum_{i=1}^{N} \int_{\Omega} B_{i}(u^{1} - u^{2}) dx + \alpha \sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i}(\eta(x) \cdot (u^{1} - u^{2})) dx
$$

then

$$
\sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i} (a_{i}(x, u^{1}, \nabla u^{1}) - a_{i}(x, u^{2}, \nabla u^{2})) dx
$$
\n
$$
\leq (\alpha - 2) \sum_{i=1}^{N} \int_{\Omega} B_{i}(u^{1} - u^{2}) dx + \alpha \sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i} (\eta(x) \cdot (u^{1} - u^{2})) dx.
$$
\n(43)

Since,

$$
\sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i}(\eta(x) \cdot (u^{1} - u^{2})) dx
$$
\n
$$
\leq \sum_{i=1}^{N} \int_{\Omega \cap \{|x| \leq k\}} \bar{B}_{i} \left(\left(k - \frac{|x|^{2}}{k} \right) \cdot (u^{1} - u^{2}) \right) dx
$$
\n
$$
+ \sum_{i=1}^{N} \int_{\Omega \cap \{|x| > k\}} \bar{B}_{i}(\eta(x) \cdot (u^{1} - u^{2})) dx
$$
\n
$$
\longrightarrow 0 \text{ as } k \longrightarrow 0
$$

and since the N-functions \bar{B}_i verified the same conditions and properties of the B_i then, according to (6) (6) and (20) , we obtain

$$
\sum_{i=1}^{N} \int_{\Omega} \bar{B}_i \Big(a_i(x, u^1, \nabla u^1) - a_i(x, u^2, \nabla u^2) \Big) dx
$$

\n
$$
\leq \tilde{a}c \sum_{i=1}^{N} \int_{\Omega} B_i (\nabla (u^2 - u^2)) dx
$$

\n
$$
\leq \tilde{a}c || B(u^1 - u^2) ||_{1, \Omega}.
$$

Combine to ([42](#page-20-0)) and [\(43\)](#page-20-1), we deduce that

$$
0 \le (\tilde{a}c + 2 - \alpha) ||B(u^1 - u^2)||_{1,\Omega} \le 0.
$$

Thus

$$
|| B(u^1 - u^2) ||_{1,\Omega} = 0.
$$

Hence, $u^1 = u^2$ a.e in Ω . a.e in Ω .

Appendix

Let

$$
A: \hat{W}_{B}^{1}(\Omega) \longrightarrow (\hat{W}_{B}^{1}(\Omega))'
$$

\n
$$
v \longmapsto A(u), v \rangle = \int_{\Omega} \sum_{i=1}^{N} \left(a_{i}(x, u, \nabla u) \cdot \frac{\partial v}{\partial x_{i}} + b_{i}(x, u, \nabla u) \cdot v \right) dx
$$

\n
$$
- \int_{\Omega} f(x) \cdot v dx
$$

\nand let denote $L_{\bar{B}}(\Omega) = \prod_{k=1}^{N} L_{\bar{B}_{i}}(\Omega)$ with the norm
\n
$$
||v||_{L_{\bar{B}}(\Omega)} = \sum_{i=1}^{N} ||v_{i}||_{\bar{B}_{i},\Omega} \quad v = (v_{1}, \dots, v_{N}) \in L_{\bar{B}}(\Omega).
$$

Where $\bar{B}_i(t)$ are N-functions satisfying the Δ_2 -conditions. Sobolev-space $\mathring{W}_B^1(\Omega)$ is the completions of the space $C_0^{\infty}(\Omega)$.

$$
a(x, s, \xi) = (a_1(x, s, \xi), \dots, a_N(x, s, \xi))
$$

and

$$
b(x, s, \xi) = (b_1(x, s, \xi), \dots, b_N(x, s, \xi)).
$$

Let's show that operator A is bounded, so for $u \in \mathring{W}_B^1(\Omega)$, according to ([9](#page-3-1)) and [\(20\)](#page-6-1) we get

$$
|| a(x, u, \nabla u) ||_{L_{\bar{B}}(\Omega)} = \sum_{i=1}^{N} || a_i(x, u, \nabla u) ||_{L_{\bar{B}_i}(\Omega)}
$$

\n
$$
\leq \sum_{i=1}^{N} \int_{\Omega} \bar{B}_i(a_i(x, u, \nabla u)) dx + N
$$

\n
$$
\leq \tilde{a}(\Omega) \cdot || B(u) ||_{1, \Omega} + || \varphi ||_{1, \Omega} + N.
$$
\n(44)

Further, for $a(x, u, \nabla u) \in L_{\bar{B}_i}(\Omega)$, $v \in \mathring{W}_B^1(\Omega)$ using Hölder's inequality we have

$$
\| < A(u), v>_{\Omega} \le 2 ||a(x, u, \nabla u)||_{L_{\tilde{B}}(\Omega)} \cdot ||v||_{\tilde{W}_{B}^{1}(\Omega)}
$$

+ 2 ||b(x, u, \nabla u)||_{L_{B}(\Omega)} \cdot ||v||_{\tilde{W}_{B}^{1}(\Omega)} + c_{0} \cdot ||v||_{\tilde{W}_{B}^{1}(\Omega)}. (45)

Thus, *A* is bounded. And that A is coercive, so for $u \in \mathring{W}_{B}^{1}(\Omega)$

$$
\langle A(u), u \rangle_{\Omega} = \sum_{i=1}^{N} \int_{\Omega} a_i(x, u, \nabla u) \cdot \frac{\partial u}{\partial x_i} dx + \sum_{i=1}^{N} \int_{\Omega} b_i(x, u, \nabla u) \cdot u dx
$$

$$
- \int_{\Omega} f(x) \cdot u dx.
$$

Then,

$$
\frac{A(u), u >_{\Omega}}{||u||_{\hat{W}_{B}^{1}(\Omega)}} \geq \frac{1}{||u||_{\hat{W}_{B}^{1}(\Omega)}} \cdot \left[\bar{a} \sum_{i=1}^{N} \int_{\Omega} B_{i}\left(\left|\frac{\partial u}{\partial x_{i}}\right|\right) dx - c_{1} - c_{0}\right]
$$

$$
- l(u) \cdot \sum_{i=1}^{N} \int_{\Omega} B_{i}\left(\left|\frac{\partial u}{\partial x_{i}}\right|\right) dx - \int_{\Omega} h(x) dx\right]
$$

$$
\geq \frac{1}{||u||_{\hat{W}_{B}^{1}(\Omega)}} \cdot \left[\left(\bar{a}(\Omega) - c_{2}\right) \cdot \sum_{i=1}^{N} \int_{\Omega} B_{i}\left(\left|\frac{\partial u}{\partial x_{i}}\right|\right) dx - c_{0} - c_{1} - c_{3}\right]
$$

According to [\(20\)](#page-6-1), we have for all $k > 0$, $\exists \alpha_0 > 0$ such that

$$
b_i(\,|\,u_{x_i}\,|) > k\,b_i\bigg(\,\frac{|\,u_{x_i}\,|}{\,||\,u_{x_i}\,||_{B_i,\Omega}}\,\bigg), \quad i=1,\ldots,N.
$$

We take $|| u_{x_i} ||_{B_i, \Omega} > \alpha_0 \quad i = 1, ..., N.$

Suppose that $||u_{x_i}||_{\hat{W}_{B}^{1}(\Omega)} \longrightarrow 0$ as $j \rightarrow \infty$. We can assume that

$$
|| u_{x_1}^j ||_{B_1,\Omega} + \cdots + || u_{x_N}^j ||_{B_N,\Omega} \geq N \alpha_0.
$$

According to [\(9\)](#page-3-1) for $c > 1$, we have

$$
|u^j|b(|u^j|) < c\,B(u^j)
$$

then, by (2.8) we obtain

$$
\frac{A(u^j, u^j >_{\Omega}}{||u^j||_{\hat{W}_B^1(\Omega)}} \ge \frac{\bar{a}(\Omega) - c_2}{N\alpha_0} \cdot \sum_{i=1}^N \int_{\Omega} B_i \left(\left| \frac{\partial u}{\partial x_i} \right| \right) dx - \frac{c_4}{N\alpha_0}
$$
\n
$$
\ge \frac{\bar{a}(\Omega) - c_2}{N\alpha_0} \cdot \sum_{i=1}^N \int_{\Omega} |u_{x_i}^j| b(\left| u_{x_i}^j \right|) dx - \frac{c_4}{N\alpha_0}
$$
\n
$$
\ge \frac{(\bar{a}(\Omega) - c_2) \cdot k}{cN ||u_{x_i}^j||_{B_i}} \cdot \sum_{i=1}^N \int_{\Omega} |u_{x_i}^j| b_i \left(\frac{|u_{x_i}^j|}{\left| |u_{x_i}^j||_{B_i,\Omega}} \right) dx - \frac{c_4}{N\alpha_0}
$$
\n
$$
\ge \frac{(\bar{a}(\Omega) - c_2) \cdot k}{cN} \cdot \sum_{i=1}^N \int_{\Omega} B_i \left(\frac{|u_{x_i}^j|}{\left| |u_{x_i}^j||_{B_i,\Omega}} \right| \right) dx - \frac{c_4}{N\alpha_0}
$$
\n
$$
\ge \frac{(\bar{a}(\Omega) - c_2) \cdot k}{cN} - \frac{c_4}{N\alpha_0}.
$$

which shows that A is coercive, because *k* is arbitrary.

And for A pseudo-monotonic, we consider a sequence { u^m } $_{m=1}^{\infty}$ in the space $\mathring{W}^1_B(\Omega)$ such that

$$
u^m \rightharpoonup u \text{ weakly in } \mathring{W}_B^1(\Omega) \quad m \to \infty. \tag{46}
$$

$$
\lim_{m \to \infty} \sup \langle A(u^m), u^m - u \rangle \le 0 \tag{47}
$$

we demonstrate that

$$
A(u^{m}) \to A(u) \text{ weakly in } (\mathring{W}_{B}^{1}(\Omega))', \ m \to \infty.
$$
 (48)

$$
\langle A(u^m), u^m - u \rangle \longrightarrow 0, \ m \to \infty. \tag{49}
$$

Since $B(\theta)$ satisfy the Δ_2 -condition, then by ([9](#page-3-1)) we have

$$
\int_{\Omega} B(\theta) \, dx \le c_0 \, ||\theta||_{B,\Omega}.\tag{50}
$$

According to [\(46\)](#page-23-0) we get

$$
||u^m||_{\mathring{W}_B^1(\Omega)} \le c_1 \quad m = 1, 2, ... \tag{51}
$$

and

$$
|| B(\nabla u^m) ||_1 \le c_2 \quad m = 1, 2, \dots.
$$
 (52)

Combining to (44) (44) (44) and (51) we obtain

$$
||a^{m}(x, u, \nabla u)||_{\bar{B}} = \sum_{i=1}^{N} ||a_{i}^{m}(x, u^{m}, \nabla u^{m})||_{\bar{B}_{i}} \leq c_{3} \ m = 1, 2, \tag{53}
$$

And for $m \in \mathbb{N}^*$, $|b^m(x, u, \nabla)| = |T_m(b(x, u, \nabla u))| \le m$. Then, by ([23](#page-6-2)) and [\(51\)](#page-23-1) we have

$$
||b^{m}(x, u, \nabla u)||_{B} = \sum_{i=1}^{N} ||b_{i}^{m}(x, u^{m}, \nabla u^{m})||_{B_{i}} \leq c_{4} m = 1, 2,
$$

According again to proof of Lemmas [3.4](#page-9-1) and [2.8](#page-4-2), we have

$$
\mathring{W}_B^1(\Omega(R+1)) \hookrightarrow L_{B_i}(\Omega(R+1)) \text{ for } R > 0 \text{ and } i = 1, \dots, N.
$$

We set

$$
A^{m}(x) = \sum_{i=1}^{N} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u, \nabla u) \right] (u^{m} - u)_{x_{i}}
$$

+
$$
\sum_{i=1}^{N} \left[b_{i}^{m}(x, u^{m}, \nabla u^{m}) - b_{i}^{m}(x, u, \nabla u) \right] (u^{m} - u), \quad m = 1,
$$

then

$$
< A(um) - A(u), um - u > = \int_{\Omega} Am(x) dx \quad m = 1, ...
$$

By (46) and (47) (47) (47) , we obtain

$$
\lim_{m \to \infty} \sup \int_{\Omega} A^m(x) \ dx \le 0.
$$

So,

$$
A^{m}(x) = \sum_{i=1}^{N} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u^{m}, \nabla u) \right] (u^{m} - u)_{x_{i}}
$$

+
$$
\sum_{i=1}^{N} \left[a_{i}^{m}(x, u^{m}, \nabla u) - a_{i}^{m}(x, u, \nabla u) \right] (u^{m} - u)_{x_{i}}
$$

+
$$
\sum_{i=1}^{N} \left[b_{i}^{m}(x, u^{m}, \nabla u^{m}) - b_{i}^{m}(x, u, \nabla u) \right] (u^{m} - u)
$$

=
$$
A_{1}^{m}(x) + A_{2}^{m}(x) + A_{3}^{m}(x) \quad m = 1,
$$
 (54)

We prove that

 $A_1^m(x) \longrightarrow 0$ almost everywhere in Ω *m* → ∞. (55)

$$
A_2^m(x) \longrightarrow 0 \text{ almost everywhere in } \Omega \quad m \to \infty. \tag{56}
$$

$$
A_3^m(x) \longrightarrow 0 \text{ almost everywhere in } \Omega \quad m \to \infty. \tag{57}
$$

$$
A^{m}(x) = \sum_{i=1}^{N} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u^{m}, \nabla u) \right] (u^{m} - u)_{x_{i}}
$$

$$
= \sum_{i=1}^{N} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot u_{x_{i}}^{m} - \sum_{i=1}^{N} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot u_{x_{i}}
$$

$$
- \sum_{i=1}^{N} a_{i}^{m}(x, u, \nabla u) \cdot u_{x_{i}}^{m} + \sum_{i=1}^{N} a_{i}^{m}(x, u, \nabla u) \cdot u_{x_{i}}
$$

applying (1) (1) , (22) , (52) (52) (52) and (53) we obtain

 $A_1^m(x) \ge c(m) \longrightarrow 0 \text{ as } m \to \infty.$

Hence, using the diagonal process, we conclude the convergence ([55](#page-24-0)).

As in [[32](#page-29-4)], let $A_i(u) = a_i(x, u, \nabla v)$ $i = 1, ..., N$ be Nemytsky operators for $v \in \mathring{W}_B^1(\Omega)$ fixed and $x \in \Omega(R)$, continuous in $L_{\bar{B}_i}(\Omega(R))$ for any $R > 0$.

Thus, according to ([10](#page-3-2)), [\(27\)](#page-10-2) and the diagonal process, we have for any $R > 0$

 $A_2^m(x) \longrightarrow 0$ almost everywhere in Ω *m* $\rightarrow \infty$.

Applying the inequality (10) we obtain

$$
A_3^m(x) \le 2 \sum_{i=1}^N ||b_i^m(x, u^m, \nabla u^m) - b_i^m(x, u, \nabla u) ||_{B_i, \Omega(R)} \cdot ||u^m - u||_{\mathring{W}_B^1(\Omega)}
$$

$$
\le 2c(m) \cdot ||u^m - u||_{\mathring{W}_B^1(\Omega)}.
$$

Hence, combining to ([27](#page-10-2)) and the diagonal process, we have for any $R > 0$

$$
A_3^m(x) \longrightarrow 0 \text{ almost everywhere in } \Omega \quad m \to \infty.
$$

Consequently, by ([55](#page-24-0)), [\(56\)](#page-24-1), ([57](#page-24-2)) and the selective convergences we deduce that

$$
A^{m}(x) \longrightarrow 0 \text{ almost everywhere in } \Omega \quad m \to \infty. \tag{58}
$$

Let $\Omega' \subset \Omega$, meas $\Omega' =$ meas Ω , and the conditions ([27](#page-10-2)), [\(58\)](#page-25-0) are true, and [\(20\)](#page-6-1)–([23](#page-6-2)) are satisfed.

We prove the convergence

$$
u_{x_i}^m(x) \longrightarrow u_{x_i}(x) \text{ everywhere in } \Omega \text{ for } i = 1, ..., N, m \to \infty
$$
 (59)

By the absurd, suppose we do not have convergence at the point $x^* \in \Omega'$.

Let $u^m = u_{x_i}^m(x^*)$, $u = u_{x_i}(x^*)$, $i = 1, ..., N$, and $\hat{a} = \varphi_1(x^*)$, $\bar{a} = \varphi(x^*)$. Suppose that the sequence $\sum_{n=1}^{N} B_i(u^m)$ *m* = 1, ..., ∞ is unbounded. *i*=1 Let $\epsilon \in$ $\left(0, \frac{\bar{a}}{1+\hat{a}}\right)$ \setminus is fixed, according to (2) , (4) (4) and the conditions (20) (20) (20) , (22) , we get $A^m(x^*) = \sum_{i=1}^{N} \left(a_i^m(x^*, u^m, \nabla u^m) - a_i^m(x^*, u, \nabla u) \right) \nabla(u^m - u)$ *i*=1 $+\sum_{i=1}^{N} \left(b_i^m(x^*, u^m, \nabla u^m) - b_i^m(x^*, u, \nabla u) \right) (u^m - u)$ *i*=1 $=\sum_{l=1}^{N}$ *i*=1 $a_i^m(x^*, u^m, \nabla u^m) \nabla u^m - \sum_{i=1}^N$ *i*=1 $a_i^m(x^*, u^m, \nabla u^m)$ ∇u [−] [∑]*^N i*=1 $a_i^m(x^*, u, \nabla u) \nabla u^m + \sum_{i=1}^N$ $a_i^m(x^*, u, \nabla u) \nabla u$ ⁺ [∑]*^N i*=1 $b_i^m(x^*, u^m, \nabla u^m) u^j - \sum_{i=1}^N$ $b_i^m(x^*, u^m, \nabla u^m)$ *u* [−] [∑]*^N i*=1 $b_i^m(x^*, u, \nabla u) u^m + \sum_{i=1}^N u_i^m(x^*, u, \nabla u)$ *i*=1 $b_i^m(x^*, u, \nabla u)$ *u*.

Applying the generalized Young inequality and [\(51\)](#page-23-1), we obtain

$$
A^{m}(x^{*}) \geq \sum_{i=1}^{N} a_{i}^{m}(x^{*}, u, \nabla u) \cdot \nabla u + \sum_{i=1}^{N} a_{i}^{m}(x^{*}, u^{m}, \nabla u^{m}) \cdot \nabla u^{m}
$$

\n
$$
- \epsilon \sum_{i=1}^{N} \bar{B}_{i}(a_{i}^{m}(x^{*}, u^{m}, \nabla u^{m}))
$$

\n
$$
- c_{1}(\epsilon) \sum_{i=1}^{N} B_{i}(\nabla u) - \epsilon \sum_{i=1}^{N} \bar{B}_{i}(a_{i}^{m}(x^{*}, u, \nabla u)) - c_{2}(\epsilon) \sum_{i=1}^{N} B_{i}(\nabla u^{m})
$$

\n
$$
+ \sum_{i=1}^{N} b_{i}^{m}(x^{*}, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} + \sum_{i=1}^{N} b_{i}^{m}(x^{*}, u, \nabla u) \cdot \nabla u
$$

\n
$$
- \sum_{i=1}^{N} b_{i}^{m}(x^{*}, u, \nabla u) \cdot \nabla u^{m}
$$

\n
$$
\geq \bar{a} \sum_{i=1}^{N} B_{i}(\nabla u) - \psi(x^{*}) + \sum_{i=1}^{N} B_{i}(\nabla u^{m}) - \psi(x^{*})
$$

\n
$$
- \epsilon \hat{a} \sum_{i=1}^{N} B_{i}(\nabla u^{m}) - \epsilon \varphi(x^{*})
$$

\n
$$
- c_{1}(\epsilon) \sum_{i=1}^{N} B_{i}(\nabla u) - \epsilon \hat{a} \sum_{i=1}^{N} B_{i}(\nabla u) - \epsilon \varphi(x^{*})
$$

\n
$$
- c_{2} \sum_{i=1}^{N} B_{i}(\nabla u^{m}) - 4h(x^{*})
$$

\n
$$
- c_{3} I(u) \sum_{i=1}^{N} B_{i}(\nabla u) - c_{4} I(u^{m}) \sum_{i=1}^{N} B_{i}(\nabla u^{m}).
$$

So

$$
A^{j}(x^{*}) \geq \left[\bar{a} - c_{1}(\epsilon) - \epsilon \hat{a}\right]
$$

- $c_{3} l(u)$ $\Big| \sum_{i=1}^{N} B_{i}(\nabla u) + \left[\bar{a} - \epsilon \hat{a} c_{2}\right]$
- $c_{4} l(u^{m})$ $\Big| \sum_{i=1}^{N} B_{i}(\nabla u^{m}) - c_{5}(\epsilon).$

So we deduce that the sequence $A^m(x^*)$ is not bounded, which is absurd as far as what is in ([58](#page-25-0)).

As a consequence, the sequences $u_{x_i}^m$, $i = 1, ..., N$, $m \to \infty$ are bounded.

Let $u^* = (u_1^*, u_2^*, \dots, u_N^*)$ the limits of subsequence $u^m = (u_1^m, \dots, u_N^m)$ with $m \to \infty$. Then, taking into account (27) , we obtain

$$
u_{x_i}^m \longrightarrow u_{x_i}^* \quad , \quad i = 1, \dots, N. \tag{60}
$$

² Springer

As a result, from [\(58\)](#page-25-0), ([60](#page-26-0)) and the fact that $a_i^m(x^*, u, \nabla u)$ are continuous in *u* (because they are Carathéodory functions), we have

$$
\sum_{i=1}^N (a_i^m(x^*, u^m, \nabla u^m) - a_i^m(x^*, u, \nabla u)) \cdot (u_{x_i}^m - u_{x_i}) = 0,
$$

and from [\(21\)](#page-6-3) we have, $u_{x_i}^* = u_{x_i}$. This contradicts the fact that there is no convergence at the point *x*[∗].

And referring to ([27](#page-10-2)), [\(60\)](#page-26-0) and the fact that $a_i^m(x^*, u, \nabla u)$ are continuous *u*, so for $m \rightarrow \infty$ we get

$$
a_i^m(x, u^m, \nabla u^m) \longrightarrow a_i^m(x, u, \nabla u), \quad i = 1, \dots, N
$$
 almost everywhere in Ω .

Using Lemma [3.5](#page-11-0) we fnd the weak convergences

$$
a_i^m(x, u^m, \nabla u^m) \to a_i^m(x, u, \nabla u) \text{ in } L_{\bar{B}_i(\Omega)}, \ i = 1, ..., N. \tag{61}
$$

The weak convergence (48) (48) (48) follows from (61) .

Furthermore, to complete the proof, we note that (49) is implied from (46) and (58) (58) (58) :

$$
\langle A(u^m), u^m - u \rangle = lt; A(u^m) - A(u), u^m - u \rangle
$$

+
$$
\langle A(u), u^m - u \rangle \to 0, m \to \infty.
$$

We're ending this section by a suitable example, that checks all the above conditions and propositions,

Example 5.1 Let Ω be an unbounded domain of \mathbb{R}^N , $(N \ge 2)$. By Theorems [3.1](#page-7-0) and [4.1](#page-19-2) it exists a unique entropy solution based on the Defnition [1.1](#page-2-2) of the following anisotropic problem (\mathcal{P}_1) :

$$
(\mathcal{P}_1) \begin{cases} \tilde{a} \sum_{i=1}^N \bar{B}_i^{-1} B_i(|\nabla u|) + l(u) \cdot \sum_{i=1}^N B_i(|\nabla u|) = f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}
$$

with \tilde{a} is a positive constant, $l : \mathbb{R} \longrightarrow \mathbb{R}^+$ a positive continuous functions such as $l \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$, $f \in L^1(\Omega)$ and

$$
B(z) = |z|^b \left(| \ln |z| | + 1 \right), \ b > 1
$$

satisfying the Δ_2 -condition.

References

- 1. Aberqi, A., Bennouna, J., Hammoumi, M.: Non-uniformly degenerated parabolic equations with L 1-data. AIP Conf. Proc. **2074**, 020002 (2019)
- 2. Aberqi, A., Bennouna, J., Elmassoudi, M., Hammoumi, M.: Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces. Monatshefte für Mathematik **189**, 195–219 (2019)
-
- 3. Aberqi, A., Bennouna, J., Mekkour, M., Redwane, H.: Nonlinear parabolic inequalities with lower order terms. Appl. Anal. **96**, 2102–2117 (2017)
- 4. Aharouch, L., Benkirane, A., Rhoudaf, M.: Existence results for some unilateral problems without sign condition with obstacle free in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. **68**, 2362–2380 (2008)
- 5. Aharouch, L., Bennouna, J.: Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. **72**, 3553–3565 (2010)
- 6. Aharrouch, B., Boukhrij, M., Bennouna, J.: Existence of solutions for a class of degenerate elliptic equations in *P*(*x*)-Sobolev spaces. Topol. Methods Nonlinear Anal. **51**, 389–411 (2018)
- 7. Barletta, G.: On a class of fully anisotropic elliptic equations. Nonlinear Anal. **197**, 111838 (2020)
- 8. Bendahmane, M., Karlsen, K.H.: Nonlinear anisotropic elliptic and parabolic equations in R N with advection and lower order terms and locally integrable data. Potential Anal. **22**, 207–227 (2005)
- 9. Benslimane, O., Aberqi, A., Bennouna, J.: Existence and Uniqueness of Weak solution of $p(x)$ -laplacian in Sobolev spaces with variable exponents in complete manifolds, [arXiv](http://arxiv.org/abs/2006.04763) preprint arXiv [:2006.04763](http://arxiv.org/abs/2006.04763), (2020)
- 10. Benslimane, O., Aberqi, A., Bennouna, J.: The existence and uniqueness of an entropy solution to unilateral Orlicz anisotropic equations in an unbounded domain. Axioms **9**, 109 (2020)
- 11. Blanchard, D., Guibé, O., Redwane, H.: Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities. Commun. Pure Appl. Anal. **15**, 197–217 (2016)
- 12. Blanchard, D., Murat, F., Redwane, H.: Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems. J. Difer. Equ. **177**, 331–374 (2001)
- 13. Boccardo, L., Gallouët, Th, Vazquez, J.L.: Nonlinear elliptic equations in ℝ*N* without growth restrictions on the data. J. Difer. Equ. **105**, 334–363 (1993)
- 14. Boccardo, L., Gallouët, Th: Nonlinear elliptic equations with right hand side measures. Commun. Partial Difer. Equ. **17**, 89–258 (1992)
- 15. Bonanno, G., Bisci, G.M., Rădulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. Theory Methods Appl. **75**, 4441–4456 (2012)
- 16. Bonanno, G., Bisci, G.M., Rădulescu, V.: Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Monatshefte für Mathematik **165**, 305–318 (2012)
- 17. Bonanno, G., Bisci, G.M., Rădulescu, V.: Infnitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Comptes Rendus Mathématique **349**, 263–268 (2011)
- 18. Bonanno, G., Bisci, G.M., Rădulescu, V.: Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces. Nonlinear Anal. Theory Methods Appl. **74**, 4785–4795 (2011)
- 19. Brezis, H.: Semilinear equations inℝ*N*without condition at infnity. Appl. Math. Optim. **12**, 271–282 (1984)
- 20. Cammaroto, F., Vilasi, L.: On a perturbed p (x)-Laplacian problem in bounded and unbounded domain. J. Math. Anal. Appl. **402**, 71–83 (2013)
- 21. Chmara, M., Maksymiuk, J.: Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations. J. Math. Anal. Appl. **456**, 457–475 (2017)
- 22. Chmara, M., Maksymiuk, J.: Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space. J. Math. Anal. Appl. **470**, 584–598 (2019)
- 23. Cianchi, A.: A fully anisotropic Sobolev inequality. Pac. J. Math. **196**, 283–294 (2000)
- 24. Diaz, J.I., Oleinik, O.A.: Nonlinear elliptic boundary-value problems in unbounded domains and the asymptotic behaviour of its solutions. Comptes Rendus-Academie Des Sciences Paris Serie **1**(315), 787–787 (1992)
- 25. Dong, G., Fang, X.: Existence results for some nonlinear elliptic equations with measure data in Orlicz–Sobolev spaces. Bound. Value Probl. **2015**, 18 (2015)
- 26. Elmahi, A.: Sur certains problèmes elliptiques et paraboliques non linéaires dans les espaces d'Orlicz; Ph.D Thesis. Sidi Mohamed Ben Abdelah University: FEZ, Morocco, (1997)
- 27. Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190, 163-205 (1974)
- 28. Gushchin, A.K.: The Dirichlet problem for a second-order elliptic equation with an Lp boundary function. Sbornik Math. **203**, 1 (2012)
- 29. Korolev, A.G.: Embedding theorems for anisotropic Sobolev–Orlicz spaces, Vestnik Moskovskogo Universiteta Seriya 1 Matematika Mekhanika, pp. 32–37 (1983)
- 30. Kozhevnikova, L.M.: On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces. Comput. Math. Math. Phys. **57**, 434–452 (2017)
- 31. Kozhevnikova, L.M.: Existence of entropic solutions of an elliptic problem in anisotropic Sobolev– Orlicz spaces. J. Math. Sci. **241**, 258–284 (2019)
- 32. Krasnosel'skii, M.A., Rutickii, J.B.: Convex Functions and Orlicz Spaces. Fizmatgiz, Moscow (1958)
- 33. Laptev, G.I.: Existence of solutions of certain quasilinear elliptic equations in ℝ*N* without conditions at infnity. J. Math. Sci. **150**, 2384–2394 (2008)
- 34. Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires. Dunod, Paris (1969)
- 35. Mihăilescu, M., Pucci, P., Rădulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. **340**, 687–698 (2008)
- 36. Papageorgiou, N.S., Rădulescu, V., Repovš, D.D.: Ground state and nodal solutions for a class of double phase problems. Zeitschrift für angewandte Mathematik und Physik **71**, 1–15 (2020)
- 37. Rădulescu, V.D., Repovs, D.D.: Partial Diferential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, vol. 9. CRC Press, Boca Raton (2015)
- 38. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. **9**, 710–728 (2019)
- 39. Yang, Sh, Dai, G.: Existence results for a variable exponent elliptic problem via topological method. Bound. Value Probl. **2012**, 99 (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.