

Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev–Orlicz space

Omar Benslimane¹ · Ahmed Aberqi² · Jaouad Bennouna¹

Received: 22 August 2020 / Accepted: 1 November 2020 / Published online: 13 November 2020 © Springer-Verlag Italia S.r.l., part of Springer Nature 2020

Abstract

Our objective in this paper is to study a certain class of anisotropic elliptic equations with the second term, which is a low-order term and non-polynomial growth; described by an N-uplet of N-function satisfying the Δ_2 -condition in the framework of anisotropic Orlicz spaces. We prove the existence and uniqueness of entropic solution for a source in the dual or in L^1 , without assuming any condition on the behaviour of the solutions when x tends towards infinity. Moreover, we are giving an example of an anisotropic elliptic equation that verifies all our demonstrated results.

Keywords Anisotropic elliptic equation \cdot Entropy solution \cdot Sobolev–Orlicz anisotropic spaces \cdot Unbounded domain

Mathematics Subject Classification MSC 35J47 · MSC 35J60

1 Introduction

In this paper, we focused on the study of existence and uniqueness solution to anisotropic elliptic non-linear equation, driven by low-order term and non-polynomial growth; described by n-uplet of N-function satisfying the Δ_2 -condition, in Sobolev–Orlicz anisotropic space $\mathring{W}^1_B(\Omega) = \overline{C^{\infty}(\Omega)}^{\mathring{W}^1_B(\Omega)}$. To be more precise, Ω is an unbounded domain of \mathbb{R}^N , $N \ge 2$, we study the following equation:

 Omar Benslimane omar.benslimane@usmba.ac.ma
 Ahmed Aberqi

aberqi_ahmed@yahoo.fr

Jaouad Bennouna jbennouna@hotmail.com

¹ Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P 1796, Atlas Fez, Morocco

² Laboratory LAMA, National School of Applied Sciences Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco

$$(\mathcal{P}) \begin{cases} A(u) + \sum_{i=1}^{N} b_i(x, u, \nabla u) = f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

where $A(u) = \sum_{i=1}^{N} (a_i(x, u, \nabla u))_{x_i}$ is a Leray–Lions operator defined from $\mathring{W}_B^1(\Omega)$ into its dual, $B(\theta) = (B_1(\theta), \dots, B_N(\theta))$ are N-uplet Orlicz functions that satisfy the Δ_2 -condition, and for $i = 1, \dots, N$, $b_i(x, u, \nabla u) : \Omega \times \mathbb{R} \times \mathbb{R}^N \longrightarrow \mathbb{R}$ the Carathéodory functions that do not satisfy any sign condition and the growth described by the vector N-function $B(\theta)$. In the recent studies, specifically the case of bounded domain Ω which is a well known for operators with polynomial, non-standard and non-polynomial growth (described by N-function). We refer the reader to [13–18, 28, 33] for the classical case, and for the Sobolev-Spaces with variable exponents Mihǎilescu, M. et al. in [35]; were they proved the existence of solutions on the following nonhomogeneous anisotropic eigenvalue problem:

$$(\mathcal{P}) \begin{cases} \sum_{i=1}^{N} \partial_{x_i} (|\partial_{x_i} u|^{p_i(x)-2} \partial_{x_i} u) = \lambda |u|^{q(x)-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ ($N \ge 3$) is a bounded domain with smooth boundary, λ is a positive number and p_i , q are continuous functions on $\overline{\Omega}$ such as $2 \le p_i(x) < N$ and q(x) > 1 for any $x \in \overline{\Omega}$ and $i = \{1, ..., N\}$. For more detail we refer the reader to [36, 37], and [2, 3, 5, 9, 10, 25–27, 32, 34, 38, 39] for Orlicz Spaces.

In the case where Ω is an unbounded domain, without any assumption on the behaviour of solution where $|x| \longrightarrow +\infty$. The existing result has been established by Brézis [19] for the semi-linear equation:

$$-\Delta u + |u|^{p_0 - 2} u = f(x).$$

Where $x \in \mathbb{R}^N$, $p_0 > 2$, $f \in L_{1,loc}(\mathbb{R}^N)$. Karlson and Bendahmane in [8] solved the problem $\leftarrow \mathcal{P} \Rightarrow$ in the classic case such as $b(x, u, \nabla u) = \operatorname{div}(g(u))$, with g(u) has a growth like $|u|^{q-1}$, $q \in (1, p_0 - 1)$. For more result we refer to [24]. In the Sobolev-Spaces with variable exponent, in [20] have demonstrated the existence of solutions to the following problem: $\Delta_{p(x)}u + |u|^{p(x)-2}u = f(x, u)$ in $\Omega = \mathbb{R}^N$, in both situations were $p : \Omega \longrightarrow \mathbb{R}$ is a log-Hölder continuous functions satisfying

$$1 < p^{-} = \inf_{x \in \Omega} p(x) \le p^{+} = \sup_{x \in \Omega} p(x) < \min\{n, \frac{np}{n-p}\}\$$

and $f(x, u) = \lambda f_1(x, u) - \delta f_2(x, u) + \eta f_3(x, u)$ with λ, δ, η as real positive parameters, $f_1, f_2, f_3 : \Omega \times \mathbb{R} \to \mathbb{R}$ are Carathéodory functions with subcritical growth. The dependence among the parameters makes f_1 a perturbation of f_3 and, in turn, f_2 a perturbation of f_1 . For more result we refer to the work of Aharrouch Benali and al. [6], for the Orlicz-Anisotropic Spaces L. M. Kozhevnikova [30] solved the problem $\ll \mathcal{P} \Rightarrow$ without the lower order $b_i(x, u, \nabla u)$ and f(x) = 0, we also cite [7, 23, 29, 31] for more detail.

Our goal, in this paper, is to show the existence and uniqueness of entropy solution for the equations (\mathcal{P}); governed with growth and described by an N-uplet of N-functions satisfying the Δ_2 -condition. The function $b_i(x, u, \nabla u)$ does not satisfy any sign condition and the source f is merely integrable, within the fulfilling of anisotropic Orlicz spaces. An approximation procedure and some a priori estimates are used to solve the problem, the challenges that we had were due to behaviour of solution near infinity.

Definition 1.1 A measurable function $u : \Omega \longrightarrow \mathbb{R}$ is called an entropy solution of the problem (\mathcal{P}) if it satisfies the following conditions: $1/ u \in \mathcal{T}_0^{1,B}(\Omega) = \{ u : \Omega \longrightarrow \mathbb{R} \text{ measurable}, T_k(u) \in \mathring{W}_B^1(\Omega) \text{ for any } k > 0 \}$ $2/ b(x, u, \nabla u) \in L^1(\Omega) 3/$ For any k > 0

$$\begin{split} &\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_k(u - \xi) \ dx + \int_{\Omega} b(x, u, \nabla u) \cdot T_k(u - \xi) \ dx \\ &\leq \int_{\Omega} f(x) \cdot T_k(u - \xi) \ dx \quad \forall \xi \in \mathring{W}^1_B(\Omega) \cap L^{\infty}(\Omega). \end{split}$$

The paper is organized as follows: in Sect. 2, we recall the most important and relevant properties and notation about N-functions and the space of Sobolev–Orlicz anisotropic, in Sect. 3, we show the existence of entropy solutions for the problem (\mathcal{P}) in an unbounded domain, in Sect. 4, we demonstrate the uniqueness of the solution to the problem (\mathcal{P}) in an unbounded domain and in Sect. 5 appendix.

2 Framework space: notations and basic properties

In this section, we briefly review some basic facts about Sobolev–Orlicz anisotropic space which we will need in our analysis of the problem \mathcal{P} . A comprehensive presentation of Sobolev–Orlicz anisotropic space can be found in the work of M.A Krasnoselskii and Ja. B. Rutickii [32] and [23].

Definition 2.1 We say that $B : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a N-function if *B* is continuous, convex, with $B(\theta) > 0$ for $\theta > 0$, $\frac{B(\theta)}{\theta} \to 0$ when $\theta \to 0$ and $\frac{B(\theta)}{\theta} \to \infty$ when $\theta \to \infty$. This N-function *B* admit the following representation: $B(\theta) = \int_0^{\theta} b(t) dt$, with $b : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ which is an increasing function on the right, with b(0) = 0 in the case $\theta > 0$ and $b(\theta) \longrightarrow \infty$ when $\theta \longrightarrow \infty$. Its conjugate is noted by $\overline{B}(\theta) = \int_0^{|\theta|} q(t) dt$ with *q* also satisfies all the properties already quoted from *b*, with

$$\bar{B}(\theta) = \sup_{\mu \ge 0} \left(\mu \mid \theta \mid - B(\mu) \right), \quad \theta > 0.$$
(1)

The Young's inequality is given as follow

$$\forall \theta, \, \mu > 0 \quad \theta \, \mu \le B(\mu) + \bar{B}(\theta). \tag{2}$$

Definition 2.2 The N-function $B(\theta)$ satisfies the Δ_2 -condition if $\exists c > 0, \theta_0 \ge 0$ such as

$$B(2\theta) \le c B(\theta) \quad |\theta| \ge \theta_0. \tag{3}$$

This definition is equivalent to, $\forall k > 1$, $\exists c(k) > 0$ such as

$$B(K\theta) \le c(K)B(\theta) \quad \text{for} \quad |\theta| \ge \theta_0.$$
 (4)

Definition 2.3 The N-function $B(\theta)$ satisfies the Δ_2 -condition as long as there exists positive numbers c > 1 and $\theta_0 \ge 0$ such as for $\theta \ge \theta_0$ we have

$$\theta \, b(\theta) \le c \, B(\theta). \tag{5}$$

Also, each N-function $B(\theta)$ satisfies the inequality

$$B(\mu + \theta) \le c B(\theta) + c B(\mu) \quad \theta, \ \mu \ge 0.$$
(6)

We consider the Orlicz space $L_B(\Omega)$ provided with the norm of Luxemburg given by

$$||u||_{B,\Omega} = \inf \{ k > 0 / \int_{\Omega} B\left(\frac{u(x)}{k}\right) dx \le 1 \}.$$
(7)

According to [32] we obtain the inequalities

$$\int_{\Omega} B\left(\frac{u(x)}{||u||_{B,\Omega}}\right) dx \le 1$$
(8)

and

$$||u||_{B,\Omega} \le \int_{\Omega} B(u) \, dx + 1. \tag{9}$$

Moreover, the Hölder's inequality holds and we have for all $u \in L_B(\Omega)$ and $v \in L_{\bar{B}}(\Omega)$

$$\left| \int_{\Omega} u(x) v(x) \, dx \right| \le 2 \, || \, u \, ||_{B,\Omega} \cdot || \, v \, ||_{\bar{B},\Omega}.$$
(10)

In [32] and [23], if $P(\theta)$ and $B(\theta)$ are two N-functions such as $P(\theta) \ll B(\theta)$ and meas $\Omega < \infty$, then $L_B(\Omega) \subset L_P(\Omega)$, furthermore

$$||u||_{P,\Omega} \le A_0 (\text{ meas } \Omega) ||u||_{B,\Omega} \quad u \in L_B(\Omega).$$
(11)

And for all N-functions $B(\theta)$, if meas $\Omega < \infty$, then $L_{\infty}(\Omega) \subset L_B(\Omega)$ with

$$||u||_{B,\Omega} \le A_1 (\text{ meas } \Omega) ||u||_{\infty,\Omega} \quad u \in L_B(\Omega).$$
(12)

Also for all N-functions $B(\theta)$, if meas $\Omega < \infty$, then $L_B(\Omega) \subset L^1(\Omega)$ with

$$||u||_{1,\Omega} \le A_2 ||u||_{B,\Omega} \quad u \in L_B(\Omega).$$
 (13)

We define for all N-functions $B_1(\theta), \ldots, B_N(\theta)$ the space of Sobolev–Orlicz anisotropic $\mathring{W}^1_B(\Omega)$ as the adherence space $C_0^{\infty}(\Omega)$ under the norm

$$|| u ||_{\mathring{W}^{1}_{B}(\Omega)}^{*} = \sum_{i=1}^{N} || u_{x_{i}} ||_{B_{i},\Omega}.$$
(14)

Definition 2.4 A sequence $\{u_m\}$ is said to converge modularly to u in $\mathring{W}^1_B(\Omega)$ if for some k > 0 we have

$$\int_{\Omega} B\left(\frac{u_m - u}{k}\right) dx \longrightarrow 0 \quad \text{as} \quad m \longrightarrow \infty.$$
(15)

🖄 Springer

Remark 2.5 Since B satisfies the Δ_2 -condition, then the modular convergence coincide with the norm convergence.

$$\theta B'(\theta) = \bar{B}(B'(\theta)) + B(\theta), \theta > 0, \tag{16}$$

with B' is the right derivative of the N-function $B(\theta)$.

Proof By (2), we take $\mu = B'(\theta)$, then we obtain

$$B'(\theta) \theta \leq B(\theta) + \bar{B}(B'(\theta))$$

and by Ch. I [32], we get the result.

Proposition 2.6

Let $\omega \subset \Omega$, be a bounded domain in \mathbb{R}^N . The following Lemmas are true:

Lemma 2.7 [27] For all $u \in \mathring{W}_{L_{\omega}}^{1}(\omega)$ with meas $\omega < \infty$, we have

$$\int_{\omega} B\left(\frac{|u|}{\lambda}\right) dx \leq \int_{\omega} B(|\nabla u|) dx$$

where $\lambda = \operatorname{diam}(\omega)$, is the diameter of ω .

Note by $h(t) = \left(\prod_{i=1}^{N} \frac{B_i^{-1}(t)}{t}\right)^{\frac{1}{N}}$ and we assume that $\int_0^1 \frac{h(t)}{t} dt$ converge, so we consider the N-functions $B^*(z)$ defined by $(B^*)^{-1}(z) = \int_0^{|z|} \frac{h(t)}{t} dt$.

Lemma 2.8 [29] Let $u \in \mathring{W}^1_B(\omega)$. If

$$\int_{1}^{\infty} \frac{h(t)}{t} dt = \infty,$$
(17)

then, $\mathring{W}^{1}_{B}(\omega) \subset L_{B^{*}}(\omega)$ and $||u||_{B^{*},\omega} \leq \frac{N-1}{N} ||u||_{\mathring{W}^{1}_{B}(\omega)}$. If

$$\int_{1} \frac{n(t)}{t} dt \le \infty,$$

then, $\mathring{W}^1_B(\omega) \subset L_{\infty}(\omega)$ and $||u||_{\infty,\omega} \leq \beta ||u||_{\mathring{W}^1_B(\omega)}^{-1}$, with $\beta = \int_0^\infty \frac{h(t)}{t} dt$.

Lemma 2.9 Suppose that conditions (20)–(23) are satisfied, and let $(u^m)_{m \in \mathbb{N}}$ be sequence in $\mathring{W}^1_B(\omega)$ such as

(a) $u^m \to u$ in $\mathring{W}^1_{B}(\omega)$. (b) $a^m(x, u^m, \nabla u^m)$ is bounded in $L_{\bar{B}}(\omega)$. (c) $\sum_{i=1}^N \int_{\omega} \left[a^m_i(x, u^m, \nabla u^m) - a^m_i(x, u^m, \nabla u\chi_s) \right] \cdot (\nabla u^m - \nabla u\chi_s) \, dx \longrightarrow 0$ as $m \to +\infty, s \to \infty$. Where χ_s is the characteristic function of $\omega^s = \{x \in \omega : |\nabla u| \le s\}$. Then,

$$7u^m \longrightarrow \nabla u \text{ a.e in } \omega,$$
 (18)

and

$$B(|\nabla u^m|) \longrightarrow B(|\nabla u|) \text{ in } L^1(\omega).$$
⁽¹⁹⁾

Proof Let $\vartheta > 0$ fixed and $s > \vartheta$, then from (21) we have

$$0 \leq \sum_{i=1}^{N} \int_{\omega^{g}} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u^{m}, \nabla u) \right] \cdot (\nabla u^{m} - \nabla u) dx$$

$$= \sum_{i=1}^{N} \int_{\omega^{s}} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u^{m}, \nabla u \chi_{s}) \right] \cdot (\nabla u^{m} - \nabla u \chi_{s}) dx$$

$$\leq \sum_{i=1}^{N} \int_{\omega} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u^{m}, \nabla u \chi_{s}) \right] \cdot (\nabla u^{m} - \nabla u \chi_{s}) dx.$$

According to (c), we get

$$\lim_{m \to \infty} \sum_{i=1}^{N} \int_{\omega^{\theta}} \left[a_i^m(x, u^m, \nabla u^m) - a_i^m(x, u^m, \nabla u) \right] \cdot (\nabla u^m - \nabla u) \, dx = 0.$$

Proceeding as in [4], we obtain

$$\nabla u^m \longrightarrow \nabla u$$
 a.e in ω .

On the other hand, we have

$$\begin{split} \sum_{i=1}^{N} \int_{\omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} dx &= \sum_{i=1}^{N} \int_{\omega} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u^{m}, \nabla u \,\chi_{s}) \right] \\ &\times (\nabla u^{m} - \nabla u \,\chi_{s}) \, dx \\ &+ \sum_{i=1}^{N} \int_{\omega} a_{i}^{m}(x, u^{m}, \nabla u \,\chi_{s}) \cdot (\nabla u^{m} - \nabla u \,\chi_{s}) \cdot dx \\ &+ \sum_{i=1}^{N} \int_{\omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u \,\chi_{s} dx, \end{split}$$

using (b) and (18), we obtain

$$\sum_{i=1}^{N} a_i^m(x, u^m, \nabla u^m) \rightharpoonup \sum_{i=1}^{N} a_i(x, u, \nabla u) \text{ weakly in } (L_{\bar{B}}(\omega))^N.$$

Therefore

$$\sum_{i=1}^N \int_{\omega} a_i^m(x, u^m, \nabla u^m) \, \nabla u \, \chi_s \, dx \longrightarrow \sum_{i=1}^N \int_{\omega} a_i(x, u, \nabla u) \cdot \nabla u$$

as $m \to \infty$, $s \to \infty$. So,

$$\sum_{i=1}^{N} \int_{\omega} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u^{m}, \nabla u \,\chi_{s}) \right] \cdot \left(\nabla u^{m} - \nabla u \,\chi_{s} \right) \, dx \longrightarrow 0,$$

 $\underline{\textcircled{O}}$ Springer

and

$$\sum_{i=1}^{N} \int_{\omega} a_{i}^{m}(x, u^{m}, \nabla u \,\chi_{s}) \cdot (\nabla u^{m} - \nabla u \,\chi_{s}) \cdot dx \longrightarrow 0.$$

Thus,

$$\lim_{m\to\infty}\sum_{i=1}^N\int_{\omega}a_i^m(x,u^m,\nabla u^m)\cdot\nabla u^m\ dx=\sum_{i=1}^N\int_{\omega}a_i(x,u,\nabla u)\cdot\nabla u\ dx,$$

from (22) and vitali's Theorem, we get

$$\bar{a} \sum_{i=1}^{N} \int_{\omega} B_i(|\nabla u^m|) \, dx - \int_{\omega} \phi(x) \, dx \ge \bar{a} \sum_{i=1}^{N} \int_{\omega} B_i(|\nabla u|) \, dx - \int_{\omega} \phi(x) \, dx.$$

Consequently, by Lemma 2.6 in [27], we get

$$B(|\nabla u^m|) \longrightarrow B(|\nabla u|)$$
 in $\mathring{W}^1_B(\omega)$.

Thanks to Lemma 1 in [29], we have

$$B(|\nabla u^m|) \longrightarrow B(|\nabla u|)$$
 in $L^1(\omega)$.

3 Existence result in unbounded domain

In this section, we assume they have non-negative measurable functions ϕ , $\varphi \in L^1(\Omega)$ and \bar{a} , \tilde{a} are two positive constants such that

$$\sum_{i=1}^{N} |a_i(x, s, \xi)| \le \tilde{a} \sum_{i=1}^{N} \bar{B}_i^{-1} B_i(|\xi|) + \varphi(x),$$
(20)

$$\sum_{i=1}^{N} \left(a_i(x, s, \xi) - a_i(x, s, \xi') \right) \cdot (\xi_i - \xi'_i) > 0,$$
(21)

$$\sum_{i=1}^{N} a_i(x, s, \xi) \cdot \xi_i > \bar{a} \sum_{i=1}^{N} B_i(|\xi|) - \phi(x),$$
(22)

and there exists $h \in L^1(\Omega)$ and $l : \mathbb{R} \longrightarrow \mathbb{R}^+$ a positive continuous functions such that $l \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.

$$\sum_{i=1}^{N} |b_i(x, s, \xi)| \le l(s) \cdot \sum_{i=1}^{N} B_i(|\xi|) + h(x).$$
(23)

Theorem 3.1 Let Ω be an unbounded domain of \mathbb{R}^N . Under assumptions (20)–(23), there exists a least one entropy solution of the problem (\mathcal{P}) on the sense of Definition 1.1.

Proof Let $\Omega(m) = \{x \in \Omega : |x| \le m\}$ and $f^m(x) = \frac{f(x)}{1 + \frac{1}{m} |f(x)|} \cdot \chi_{\Omega(m)}$. We have $f^m \longrightarrow f$ in $L^1(\Omega), m \to \infty, |f^m(x)| \le |f(x)|$ and $|f^m| \le m \chi_{\Omega(m)}$.

 $a^{m}(x, s, \xi) = (a_{1}^{m}(x, s, \xi), \dots, a_{N}^{m}(x, s, \xi))$

where $a_i^m(x, s, \xi) = a_i(x, T_m(s), \xi)$ for i = 1, ..., N.

$$b^{m}(x, s, \xi) = T_{m}(b(x, s, \xi)) \cdot \chi_{\Omega(m)}$$

and for any $v \in \mathring{W}^{1}_{R}(\Omega)$, we consider the following approximate equations

$$(\mathcal{P}_m): \int_{\Omega} a(x, T_m(u^m), \nabla u^m) \, \nabla v \, dx + \int_{\Omega} b^m(x, u^m, \nabla u^m) \, v \, dx = \int_{\Omega} f^m \, v \, dx.$$

For the proof. See Appendix 5. We divide our proof in six steps.

Step 1 A priori estimate of { u^m }.

Proposition 3.2 Suppose that the assumptions (20)–(23) hold true, and let $(u^m)_m$ be a solution of the approximate problem (\mathcal{P}_m) . Then, for all k > 0, there exists a constant $c \cdot k$ (not depending on m), such that

$$\int_{\Omega} B(|\nabla T_k(u^m)|) \le c \cdot k$$

Proof Taking $v = \exp(G(u^m)) \cdot T_k(u^m)$, as a test function with $G(s) = \int_0^s \frac{l(t)}{\bar{a}} dt$ and \bar{a} is the coercivity constant, we obtain

$$\sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla(\exp(G(u^{m})) \cdot T_{k}(u^{m})) dx$$

+
$$\sum_{i=1}^{N} \int_{\Omega} b_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(G(u^{m})) \cdot T_{k}(u^{m}) dx$$

$$\leq \int_{\Omega} f^{m} \cdot \exp(G(u^{m})) \cdot T_{k}(u^{m}) dx.$$

Then,

$$\begin{split} \sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \exp(G(u^{m})) \nabla T_{k}(u^{m})) \, dx \\ &+ \sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} \cdot \frac{l(u^{m})}{\bar{a}} \cdot \exp(G(u^{m})) T_{k}(u^{m}) dx \\ &\leq \sum_{i=1}^{N} \int_{\Omega} |b_{i}^{m}(x, u^{m}, \nabla u^{m})| \cdot \exp(G(u^{m})) \cdot T_{k}(u^{m}) \, dx + \int_{\Omega} f^{m} \cdot \exp(G(u^{m})) \cdot T_{k}(u^{m}) \, dx \\ &\leq \sum_{i=1}^{N} \int_{\Omega} \left[h(x) + l(u^{m}) \cdot B_{i}(\nabla u^{m}) \right] \cdot \exp(G(u^{m})) \cdot T_{k}(u^{m}) \, dx \\ &+ \int_{\Omega} f^{m} \cdot \exp(G(u^{m})) \times T_{k}(u^{m}) \, dx \\ &\leq \sum_{i=1}^{N} \int_{\Omega} l(u^{m}) \cdot B_{i}(\nabla u^{m}) \cdot \exp(G(u^{m})) \cdot T_{k}(u^{m}) \, dx \\ &+ \int_{\Omega} \left(f^{m} + h(x) \right) \cdot \exp(G(u^{m})) \cdot T_{k}(u^{m}) \, dx, \end{split}$$

so,

$$\sum_{i=1}^{N} \int_{\{\Omega: |u^{m}| < k\}} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} \cdot \exp(G(u^{m})) dx$$
$$\leq \int_{\Omega} \left[f^{m}(x) + h(x) + \phi(x) \frac{l(u^{m})}{\bar{a}} \right] \cdot \exp(G(u^{m})) T_{k}(u^{m}) dx$$

by (22), we get

$$\bar{a} \sum_{i=1}^{N} \int_{\{\Omega : |u^{m}| \le k\}} B_{i}(\nabla u^{m}) \exp(G(u^{m})) dx$$

$$\leq \int_{\{\Omega : |u^{m}| \le k\}} \phi(x) \exp(G(u^{m})) dx$$

$$+ \int_{\Omega} \left[f^{m}(x) + h(x) + \phi(x) \frac{l(u_{m})}{\bar{a}} \right] \cdot \exp(G(u^{m})) T_{k}(u^{m}) dx,$$

since ϕ , h and $f^m \in L^1(\Omega)$, and the fact that $\exp(G(\pm \infty)) \leq \exp\left(\frac{||l||_{L^1(\Omega)}}{\bar{a}}\right)$, we deduce that,

$$\int_{\{\Omega: |u^m| < k\}} B(\nabla T_k(u^m)) \ dx \le k \cdot c \quad k > 0.$$

Finally

$$\int_{\Omega} B(\nabla T_k(u^m)) \, dx \le k \cdot c \quad k > 0.$$

 \Box

Step 2 Almost everywhere convergence of $\{u^m\}$.

Lemma 3.3 For all u^m measurable function on Ω , we have

meas {
$$x \in \Omega$$
, $|u^m| > k$ } $\longrightarrow 0$.

Proof According to Lemma 2.7 and Lemma 2.8, we have

$$|| T_{k}(u^{m}) ||_{B^{*}} \leq A \cdot || \nabla T_{k}(u^{m}) ||_{B}$$

$$\leq A \cdot \epsilon(k) \int_{\omega} B(\nabla T_{k}(u^{m}) dx$$

$$\leq c \cdot k \cdot \epsilon(k) \quad \text{for } k > 1$$
(24)

with $\epsilon(k) \longrightarrow 0$ as $k \longrightarrow \infty$. Form (24) we have

$$B^* \left(\frac{k}{||T_k(u^m)||_{B^*}} \right) \text{ meas } \{ x \in \Omega : |u^m| \ge k \} \le \int_{\Omega} B^* \left(\frac{T_k(u^m)}{||T_k(u^m)||_{B^*}} \right) dx \\ \le \int_{\Omega} B^* \left(\frac{k}{||T_k(u^m)||_{B^*}} \right) dx$$

by (24) again, we obtain

$$B^*\left(\frac{k}{||T_k(u^m)||_{B^*}}\right) \longrightarrow \infty \text{ as } k \longrightarrow \infty.$$

Hence,

meas {
$$x \in \Omega$$
 : $|u^m| \ge k$ } $\longrightarrow 0$ as $k \longrightarrow \infty$ for all $m \in \mathbb{N}$.

Lemma 3.4 For all u^m measurable function on Ω , such that

$$T_k(u^m) \in \mathring{W}_R^1(\Omega) \quad \forall k \ge 1.$$

We have,

meas {
$$\Omega$$
 : $B(\nabla u^m) \ge r$ } $\longrightarrow 0$ as $r \longrightarrow \infty$.

meas { $x \in \Omega$: $B(\nabla u^m) \ge 0$ } = meas { { $x \in \Omega$: $|u^m| \ge k \ B(\nabla u^m) \ge r$ } $\cup \{ x \in \Omega : |u^{m}| < k \ B(\nabla u^{m}) \ge r \} \}$

Proof

if we denote

$$g(r,k) = \max \{ x \in \Omega : |u^m| \ge k, B(\nabla u^m) \ge r \}$$

we have

meas {
$$x \in \Omega$$
 : $|u^m| < k \ B(\nabla u^m) \ge r$ } = $g(r, 0) - g(r, k)$.

Then,

Description Springer

$$\int_{\{x\in\Omega: |u^m| < k\}} B(\nabla u^m) \, dx = \int_0^\infty \left(g(r,0) - g(r,k) \right) \, dr \le c \cdot k \tag{25}$$

with $r \longrightarrow g(r, k)$ is a decreasing map. Then,

$$g(r,0) \leq \frac{1}{r} \int_{0}^{r} g(r,0) dr$$

$$\leq \frac{1}{r} \int_{0}^{r} \left(g(r,0) - g(r,k) \right) dr + \frac{1}{r} \int_{0}^{r} g(r,k) dr$$

$$\leq \frac{1}{r} \int_{0}^{r} \left(g(r,0) - g(r,k) \right) dr + g(0,k)$$
(26)

combining (25) and (26), we obtain

$$g(r,0) \le \frac{c \cdot k}{r} + g(0,k)$$

by Lemma 2.7,

$$\lim_{k\to\infty}g(0,k)=0$$

Thus

$$g(r,0) \longrightarrow 0$$
 as $r \longrightarrow \infty$

We have now to prove the almost everywhere convergence of $\{u^m\}$

$$u^m \longrightarrow u$$
 a.e in Ω . (27)

Let $g(k) = \sup \max \{ x \in \Omega : |u^m| > k \} \longrightarrow 0 \text{ as } k \longrightarrow \infty.$ Since Ω is unbounded domain in \mathbb{R}^N , we define η_R as

$$\eta_R(r) = \begin{cases} 1 & \text{if } r < R, \\ R+1-r & \text{if } R \le r < R+1, \\ 0 & \text{if } r \ge R+1. \end{cases}$$

For R, k > 0, we have by (6)

$$\begin{split} \int_{\Omega} B(\nabla \eta_R(|x|) \cdot T_k(u^m)) \, dx &\leq c \, \int_{\{x \in \Omega : \, |u^m| < k\}} B(\nabla u^m) \, dx \\ &+ c \, \int_{\Omega} B(T_k(u^m) \cdot \nabla \eta_R(|x|) \, dx \\ &\leq c(k, R), \end{split}$$

which implies that the sequence $\{\eta_R(|x|)T_K(u^m)\}$ is bounded in $\mathring{W}^1_B(\Omega(R+1))$ and by embedding Theorem, for $P \ll B$ we have

$$\check{W}^1_B(\Omega(R+1)) \hookrightarrow L_P(\Omega(R+1)),$$

and since $\eta_R = 1$ in $\Omega(R)$, we have

$$\eta_R T_k(u^m) \longrightarrow v_k$$
 in $L_P(\Omega(R+1))$ as $m \longrightarrow \infty$.

For k = 1, ...,

$$T_k(u^m) \longrightarrow v_k$$
 in $L_p(\Omega(R+1))$ as $m \longrightarrow \infty$,

by diagonal process, we prove that there is $u : \Omega \longrightarrow \mathbb{R}$ measurable such that $u^m \longrightarrow u$ a.e in Ω . This implies the (27).

Lemma 3.5 Let an N-functions $\overline{B}(t)$ satisfy the Δ_2 -condition and u^m , $m = 1, ..., \infty$, and u be two functions of $L_B(\Omega)$ such as

$$||u^{m}||_{B} \leq c \quad m = 1, 2, \dots$$

$$u^{m} \longrightarrow u \text{ almost everywhere in } \Omega, \ m \longrightarrow \infty.$$

Then,

$$u^m \rightarrow u$$
 weakly in $L_B(\Omega)$ as $m \rightarrow \infty$.

Proof See Lemma 1.3 in [34].

Step 3 Weak convergence of the gradient. Since $\mathring{W}^{1}_{B}(\Omega)$ reflexive, then, there exists a subsequence

$$T_k(u^m) \rightarrow v$$
 weakly in $W_R^1(\Omega), m \rightarrow \infty$.

And since,

$$\check{W}^1_B(\Omega) \hookrightarrow L_B(\Omega),$$

we have

 $\nabla T_k(u^m) \rightarrow \nabla v$ in $L_B(\Omega)$ as $m \rightarrow \infty$,

since

$$u^m \longrightarrow u$$
 a.e in Ω as $m \rightarrow \infty$,

we get

$$\nabla u^m \longrightarrow \nabla u$$
 a.e in Ω as $m \to \infty$.

Then, we obtain for any fixed k > 0

$$\nabla T_k(u^m) \longrightarrow \nabla T_k(u)$$
 a.e in Ω .

Applying Lemma 3.5, we have the following weak convergence

$$\nabla T_k(u^m) \rightarrow \nabla T_k(u)$$
 in $L_B(\Omega)$ as $m \rightarrow \infty$,

for more detail see page 11 in [10].

Step 4 Strong convergence of the gradient.

For j > k > 0, we introduce the following function defined as

$$h_{j}(s) = \begin{cases} 1 & \text{if } |s| \leq j, \\ 1 - |s - j| & \text{if } j \leq |s| \leq j + 1, \\ 0 & \text{if } s \geq j + 1. \end{cases}$$

and we show that the following assertions are true:

Assertion 1

$$\lim_{j \to \infty} \lim_{m \to \infty} \sum_{i=1}^{N} \int_{\{j \le | u^m | \le j+1\}} a_i^m(x, u^m, \nabla u^m) \cdot \nabla u^m \cdot \eta_R(|x|) \, dx = 0.$$
(28)

Assertion 2

$$\nabla u^m \longrightarrow \nabla u$$
 a.e in $\Omega(m)$. (29)

Proof We take $v = \exp(G(u^m)) T_{1,j}(u^m) \eta_R(|x|) = \exp(G(u^m)) T_1(u^m - T_j(u^m)) \eta_R(|x|)$ as a test function in the problem (\mathcal{P}_m) , we obtain

$$\begin{split} &\sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla \bigg(\exp(G(u^{m})) \cdot T_{1}(u^{m} - T_{j}(u^{m})) \cdot \eta_{R}(|x|) \bigg) dx \\ &\leq \sum_{i=1}^{N} \int_{\Omega} |b_{i}^{m}(x, u^{m}, \nabla u^{m})| \cdot \exp(G(u^{m})) \cdot T_{1}(u^{m} - T_{j}(u^{m})) \cdot \eta_{R}(|x|) dx \\ &+ \int_{\Omega} f^{m}(x) \cdot \exp(G(u^{m})) \cdot T_{1}(u^{m} - T_{j}(u^{m})) \cdot \eta_{R}(|x|) dx \end{split}$$

according to (22) and (23) we deduce that

$$\sum_{i=1}^{N} \int_{\{j < |u^{m}| < j+1\}} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} \cdot \exp(G(u^{m})) \cdot \eta_{R}(|x|) dx$$

$$\leq \int_{\Omega} \left[f^{m}(x) + h(x) + \phi(x) \cdot \frac{l(u^{m})}{\bar{a}} \right] \cdot \exp(G(u^{m})) \cdot T_{1}(u^{m} - T_{j}(u^{m})) \cdot \eta_{R}(|x|) dx$$

since $\phi \in L^1(\Omega)$, $h \in L^1(\Omega)$, $f^m \in (L^1(\Omega))^N$, and the fact that $\exp(G(\pm)) \leq \exp\left(\frac{||l||_{L^1(\mathbb{R})}}{\bar{a}}\right)$, we deduce from vitali's Theorem that

$$\lim_{j \to \infty} \lim_{m \to \infty} \int_{\Omega} \left[f^m(x) + h(x) + \phi(x) \cdot \frac{l(u^m)}{\bar{a}} \right] \cdot \exp(G(u^m)) \cdot T_1(u^m - T_j(u^m)) \\ \times \eta_R(|x|) \ dx = 0.$$

Hence,

$$\lim_{j\to\infty}\lim_{m\to\infty}\int_{\{j<|u^m|< j+1\}}a_i^m(x,u^m,\nabla u^m)\cdot\nabla u^m\cdot\eta_R(|x|)\ dx=0.$$

And to show that assertion 2 is true, we take

$$v = \exp(G(u^m)) (T_k(u^m) - T_k(u)) h_j(u^m) \eta_R(|x|),$$

as a test function in the problem (\mathcal{P}_m). We have

$$\begin{split} \sum_{i=1}^{N} & \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla \Big(\exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot h_{j}(u^{m}) \cdot \eta_{R}(|x|) \Big) dx \\ &+ \sum_{i=1}^{N} \int_{\Omega} b_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot h_{j}(u^{m}) \cdot \eta_{R}(|x|) dx \\ &\leq \int_{\Omega} f^{m}(x) \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot h_{j}(u^{m}) \cdot \eta_{R}(|x|) dx, \end{split}$$

which implies

$$\begin{split} &\sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} \cdot \frac{l(u^{m})}{\bar{a}} \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot h_{j}(u^{m}) \\ &\times \eta_{R}(|x|) \ dx \\ &+ \sum_{i=1}^{N} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(G(u^{m})) \cdot (\nabla T_{k}(u^{m}) - \nabla T_{k}(u)) \cdot h_{j}(u^{m}) \cdot \eta_{R}(|x|) \ dx \\ &+ \sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot \nabla h_{j}(u^{m}) \cdot \eta_{R}(|x|) \ dx \\ &+ \sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot h_{j}(u^{m}) \cdot \nabla \eta_{R}(|x|) \ dx \\ &\leq \sum_{i=1}^{N} \int_{\Omega} |b_{i}^{m}(x, u^{m}, \nabla u^{m})| \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot h_{j}(u^{m}) \cdot \eta_{R}(|x|) \ dx \\ &+ \int_{\Omega} f^{m}(x) \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot h_{j}(u^{m}) \cdot \eta_{R}(|x|) \ dx, \end{split}$$

thanks to (22) and (23), we obtain

$$\begin{split} &\sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(G(u^{m})) \cdot (\nabla T_{k}(u^{m}) - \nabla T_{k}(u)) \cdot h_{j}(u^{m}) \cdot \eta_{R}(|x|) \ dx \\ &+ \sum_{i=1}^{N} \int_{\{\Omega: j \leq |u^{m}| \leq j+1\}} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} \cdot \exp(G(u^{m})) \\ &\times (T_{k}(u^{m}) - T_{k}(u)) \cdot \eta_{R}(|x|) \ dx \\ &+ \sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot h_{j}(u^{m}) \\ &\times \nabla \eta_{R}(|x|) \ dx \\ &\leq \int_{\Omega} \left[f^{m}(x) + h(x) + \phi(x) \cdot \frac{l(u^{m})}{\bar{a}} \right] \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot h_{j}(u^{m}) \\ &\times \eta_{R}(|x|) \ dx \end{split}$$

sine $h_j \ge 0$, $\eta_R(|x|) \ge 0$ and $u^m (T_k(u^m) - T_k(u)) \ge 0$ we have

$$\begin{split} \sum_{i=1}^{N} \int_{\{\Omega: |u^{m}| \leq k\}} a_{i}(x, T_{k}(u^{m}), \nabla T_{k}(u^{m})) \exp(G(u^{m})) \cdot (\nabla T_{k}(u^{m}) - \nabla T_{k}(u)) \\ & \times \eta_{R}(|x|) \ dx \\ &+ \int_{\{\Omega: j \leq |u^{m}| \leq j+1\}} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \nabla u^{m} \exp(G(u^{m})) (T_{k}(u^{m}) - T_{k}(u)) \eta_{R}(|x|) \ dx \\ &+ \sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot \nabla \eta_{R}(|x|) \ dx \\ &\leq \int_{\Omega} \left[f^{m}(x) + h(x) + \phi(x) \cdot \frac{l(u^{m})}{\bar{a}} \right] \cdot \exp(G(u^{m})) \cdot (T_{k}(u^{m}) - T_{k}(u)) \cdot \eta_{R}(|x|) \ dx \\ &+ \sum_{i=1}^{N} \int_{\{\Omega: k \leq |u^{m}| \leq j+1\}} a_{i}(x, T_{j+1}(u^{m}), \nabla T_{j+1}(u^{m})) \cdot \exp(G(u^{m})) \cdot |\nabla T_{k}(u)| \\ &\times \eta_{R}(|x|) \ dx \\ &+ \sum_{i=1}^{N} \int_{\{\Omega: j \leq |u^{m}| \leq j+1\}} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} \cdot \exp(G(u^{m})) \cdot |T_{k}(u^{m}) - T_{k}(u)| \\ &\times \eta_{R}(|x|) \ dx. \end{split}$$

The first term in the right hand side goes to zero as m tend to ∞ , since $T_k(u^m) \rightarrow T_k(u)$ weakly in $\mathring{W}^1_B(\Omega(m))$.

Since $a_i^m(x, T_{j+1}(u^m), \nabla T_{j+1}(u^m))$ is bounded in $L_{\bar{B}}(\Omega(m))$, there exists $\tilde{a}^m \in L_{\bar{B}}(\Omega(m))$ such as

$$|a_i^m(x, T_{j+1}(u^m), \nabla T_{j+1}(u^m))| \to \tilde{a}^m \text{ in } L_{\bar{B}}(\Omega(m)).$$

$$(30)$$

Thus, the second term of the right hand side goes also to zero.

Since $T_k(u^m) \longrightarrow T_K(u)$ strongly in $\mathring{W}^1_{B,loc}(\Omega(m))$. The third term of the left hand side increased by a quantity that tends to zero as *m* tend to zero, and according to (28) we deduce that

$$\begin{split} \sum_{i=1}^{N} \int_{\{\Omega: |u^{m}| \leq k\}} a_{i}(x, T_{k}(u^{m}), \nabla T_{k}(u^{m})) \cdot \exp(G(u^{m})) \cdot |\nabla T_{k}(u^{m}) - \nabla T_{k}(u)| \\ & \times \eta_{R}(|x|) \ dx \\ & \leq \epsilon(j, m). \end{split}$$

Then,

$$\begin{split} \sum_{i=1}^{N} \int_{\Omega} \left[a_{i}(x, T_{k}(u^{m}), \nabla T_{k}(u^{m})) - a_{i}(x, T_{k}(u^{m}), \nabla T_{k}(u)) \right] \cdot (\nabla T_{k}(u^{m}) - T_{K}(u)) \\ & \times \eta_{R}(|x|) \ dx \\ \leq - \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{k}(u^{m}), \nabla T_{k}(u)) \cdot \exp(G(u^{m})) \cdot |\nabla T_{k}(u^{m}) - \nabla T_{k}(u)| \\ & \times \eta_{R}(|x|) \ dx \\ & - \sum_{i=1}^{N} \int_{\{\Omega: |u^{m}| \leq k\}} a_{i}(x, T_{k}(u^{m}), \nabla T_{k}(u^{m})) \cdot \exp(G(u^{m})) \cdot \nabla T_{k}(u) \cdot \eta_{R}(|x|) \ dx \\ & + \epsilon(j, m). \end{split}$$

$$(31)$$

According to Lebesgue dominated convergence Theorem, we have $T_k(u^m) \longrightarrow T_k(u)$ in $\mathring{W}^1_{B,loc}(\Omega)$ and $\nabla T_k(u^m) \rightarrow \nabla T_k(u)$ in $\mathring{W}^1_B(\Omega)$, then the terms on the right had side of (31) goes to zero as *m* and *j* tend to infinity. Which implies that

$$\sum_{i=1}^{N} \int_{\Omega} \left[a_i(x, T_k(u^m), \nabla T_k(u^m)) - a_i(x, T_k(u^m), \nabla T_k(u)) \right]$$

$$\times (\nabla T_k(u^m) - T_K(u)) \, dx \longrightarrow 0.$$
(32)

Thanks to Lemma 2.9, we have for k = 1, ...,

$$\nabla T_k(u^m) \longrightarrow \nabla T_k(u)$$
 a.e in $\Omega(m)$ (33)

and by diagonal process, we prove that

$$\nabla u^m \longrightarrow \nabla u$$
 a.e in $\Omega(m)$.

Step 5 Equi-integrability of $b^m(x, u^m, \nabla u^m)$.

Let $v = \exp(2 G(|u^m|)) \cdot T_1(u^m - T_R(u^m)) \cdot \eta_R(|x|)$ as a test function in the problem (\mathcal{P}_m) , we obtain

$$\begin{split} &\sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla \Big(\exp(2 \, G(|\, u^{m}\,|)) \cdot T_{1}(u^{m} - T_{R}(u^{m})) \cdot \eta_{R}(|\, x\,|) \, \Big) \, dx \\ &+ \sum_{i=1}^{N} \int_{\Omega} b_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(2 \, G(|\, u^{m}\,|)) \cdot T_{1}(u^{m} - T_{R}(u^{m})) \cdot \eta_{R}(|\, x\,|) \, dx \\ &\leq \int_{\Omega} f^{m}(x) \cdot \exp(2 \, G(|\, u^{m}\,|)) \cdot T_{1}(u^{m} - T_{R}(u^{m})) \cdot \eta_{R}(|\, x\,|) \, dx, \end{split}$$

which implies that

$$\begin{split} \sum_{i=1}^{N} & \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} \cdot \frac{l(u^{m})}{\bar{a}} \cdot \exp(2 \ G(| \ u^{m} \ |)) \cdot T_{1}(u^{m} - T_{R}(u^{m})) \\ & \times \eta_{R}(| \ x \ |) \ dx \\ & + \sum_{i=1}^{N} \int_{\{\Omega: \ R \le | \ u^{m} \ | \le R + 1\}} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} \cdot \exp(2 \ G(| \ u^{m} \ |)) \cdot \eta_{R}(| \ x \ |) \ dx \\ & + \sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(2 \ G(| \ u^{m} \ |)) \cdot T_{1}(u^{m} - T_{R}(u^{m})) \cdot \nabla \eta_{R}(| \ x \ |) \ dx \\ & \leq \sum_{i=1}^{N} \int_{\Omega} | \ b_{i}^{m}(x, u^{m}, \nabla u^{m}) | \cdot \exp(2 \ G(| \ u^{m} \ |)) \cdot T_{1}(u^{m} - T_{R}(u^{m})) \cdot \eta_{R}(| \ x \ |) \ dx \\ & + \int_{\Omega} f^{m}(x) \cdot \exp(2 \ G(| \ u^{m} \ |)) \cdot T_{1}(u^{m} - T_{R}(u^{m})) \cdot \eta_{R}(| \ x \ |) \ dx \end{split}$$

by (22) and (23), we obtain

$$\bar{a} \sum_{i=1}^{N} \int_{\{\Omega: R \le |u^{m}| \le R+1\}} B_{i}(|\nabla u^{m}|) \cdot \exp(2 G(|u^{m}|) \cdot \eta_{R}(|x|) dx + \sum_{i=1}^{N} \int_{\Omega} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \exp(2 G(|u^{m}|) \cdot T_{1}(u^{m} - T_{R}(u^{m})) \cdot \nabla \eta_{R}(|x|) dx \leq \int_{\Omega} \left[f^{m}(x) + h(x) + \phi(x) \cdot \frac{l(u^{m})}{\bar{a}} \right] \cdot \exp(2 G(|u^{m}|)) \cdot T_{1}(u^{m} - T_{R}(u^{m})) \times \eta_{R}(|x|) dx + \int_{\{\Omega: R \le |u^{m}| \le R+1\}} \phi(x) \cdot \exp(2 G(|u^{m}|)) \cdot \eta_{R}(|x|) dx.$$

Since $\eta_R(|x|) \ge 0$, $\exp(G(\pm\infty)) \le \exp\left(2\frac{||l||_{L^1}(\mathbb{R})}{\bar{a}}\right)$, $f^m \in (L^1(\Omega))^N$, ϕ and $h \in L^1(\Omega)$. Then, $\forall \epsilon > 0$, $\exists R(\epsilon) > 0$ such as

$$\sum_{i=1}^{N} \int_{\{\Omega: |u^m| > R+1\}} B(|\nabla u^m|) \, dx \leq \frac{\epsilon}{2} \quad \forall R > R(\epsilon).$$

Let $\mathring{V}(\Omega(m))$ be an arbitrary bounded subset for Ω , then, for any measurable set $E \subset \mathring{V}(\Omega(m))$ we have

$$\sum_{i=1}^{N} \int_{E} B_{i}(|\nabla u^{m}|) dx \leq \sum_{i=1}^{N} \int_{E} B_{i}(|\nabla T_{R}(u^{m})|) dx + \sum_{i=1}^{N} \int_{\{|u^{m}| > R+1\}} B_{i}(|\nabla u^{m}|) dx$$
(34)

we conclude that $\forall E \subset \mathring{V}(\Omega(m))$ with meas $(E) < \beta(\epsilon)$ and $T_R(u^m) \longrightarrow T_R(u)$ in $\mathring{W}_B^1(\Omega)$

$$\sum_{i=1}^{N} \int_{E} B_{i}(|\nabla T_{R}(u^{m})|) dx \leq \frac{\epsilon}{2}.$$
(35)

Finally, according to (34) and (35), we obtain

$$\sum_{i=1}^{N} \int_{E} B_{i}(|\nabla u^{m}|) dx \leq \epsilon \quad \forall E \subset \mathring{V}(\Omega(m)) \text{ such as meas } (E) < \beta(\epsilon).$$

Which gives the results.

Step 6 Passing to the limit.

Let $\xi \in \mathring{W}^{1}_{B}(\Omega) \cap L^{\infty}(\Omega)$, using the following test function $v = \vartheta_{k} T_{k}(u^{m} - \xi)$ in the problem (\mathcal{P}_{m}) with

$$\vartheta_k = \begin{cases} 1 & \text{for } \Omega(m), \\ 0 & \text{for } \Omega(m+1) \backslash \Omega(m). \end{cases}$$

and $|u^m| - ||\xi||_{\infty} < |u^m - \xi| \le j$. Then, $\{|u^m - \xi| \le j\} \subset \{|u^m| \le j + ||\xi||_{\infty}\}$ we obtain

$$\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{m}(u^{m}), \nabla u^{m}) \cdot \vartheta_{k} \nabla T_{k}(u^{m} - \xi) dx$$

$$+ \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{m}(u^{m}), \nabla u^{m}) \cdot T_{k}(u^{m} - \xi) \nabla \vartheta_{k} dx$$

$$+ \sum_{i=1}^{N} \int_{\Omega} b_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \vartheta_{k} T_{k}(u^{m} - \xi) dx$$

$$\leq \int_{\Omega} f^{m}(x) \cdot \vartheta_{k} T_{k}(u^{m} - \xi) dx$$
(36)

which implies that

$$\begin{split} \sum_{i=1}^{N} \int_{\Omega(m)} a_{i}(x, T_{m}(u^{m}), \nabla u^{m}) \cdot T_{k}(u^{m} - \xi) \, dx \\ &= \sum_{i=1}^{N} \int_{\Omega(m)} a_{i}(x, T_{j+||\xi||_{\infty}}(u^{m}), \nabla T_{j+||\xi||_{\infty}}(u^{m})) \cdot T_{j+||\xi||_{\infty}}(u^{m} - \xi) \cdot \chi_{\{|u^{m} - \xi| < j\}} dx \\ &= \sum_{i=1}^{N} \int_{\Omega(m)} \left[a_{i}(x, T_{j+||\xi||_{\infty}}(u^{m}), \nabla T_{j+||\xi||_{\infty}}(u^{m})) - a_{i}(x, T_{j+||\xi||_{\infty}}(u^{m}), \nabla \xi) \right] \\ &\times \nabla T_{j+||\xi||_{\infty}}(u^{m} - \xi) \cdot \chi_{\{|u^{m} - \xi| < j\}} \, dx \\ &+ \sum_{i=1}^{N} \int_{\Omega(m)} a_{i}(x, T_{j+||\xi||_{\infty}}(u^{m}), \nabla \xi) \cdot \nabla T_{j+||\xi||_{\infty}}(u^{m} - \xi) \cdot \chi_{\{|u^{m} - \xi| < j\}} \, dx. \end{split}$$

$$(37)$$

By Fatou's Lemma, we have

$$\lim_{m \to \infty} \inf \sum_{i=1}^{N} \int_{\Omega(m)} a_{i}(x, T_{m}(u^{m}), \nabla u^{m}) \cdot \nabla T_{k}(u^{m} - \xi) dx
\geq \sum_{i=1}^{N} \int_{\Omega(m)} \left[a_{i}(x, T_{j+||\xi||_{\infty}}(u^{m}), \nabla T_{j+||\xi||_{\infty}}(u^{m})) - a_{i}(x, T_{j+||\xi||_{\infty}}(u^{m}), \nabla \xi) \right]
\times \nabla T_{j+||\xi||_{\infty}}(u^{m} - \xi) \cdot \chi_{\{|u^{m} - \xi| < j\}} dx
+ \lim_{m \to \infty} \sum_{i=1}^{N} \int_{\Omega(m)} a_{i}(x, T_{j+||\xi||_{\infty}}(u^{m}), \nabla \xi) \cdot \nabla T_{j+||\xi||_{\infty}}(u^{m} - \xi) \cdot \chi_{\{|u^{m} - \xi| < j\}} dx.$$
(38)

The second term on the right hand side of the previous inequality is equal to

$$\int_{\Omega(m)} a_i(x, T_{j+||\xi||_{\infty}}(u), \nabla \xi) \cdot \nabla T_{j+||\xi||_{\infty}}(u-\xi) \cdot \chi_{\{|u-\xi| < j\}} dx.$$

Then, since $T_k(u^m - \xi) \rightarrow T_k(u - \xi)$ weakly in $\mathring{W}^1_B(\Omega)$, and by (29), (33) we have

$$\sum_{i=1}^{N} \int_{\Omega} b_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot \vartheta_{k} T_{k}(u^{m} - \xi) dx \longrightarrow \sum_{i=1}^{N} \int_{\Omega} b_{i}(x, u, \nabla u) \cdot \vartheta_{k} T_{k}(u - \xi) dx$$
(39)

and

$$\int_{\Omega} f^m(x) \cdot \vartheta_k T_k(u^m - \xi) \ dx \longrightarrow \int_{\Omega} f(x) \cdot \vartheta_k T_k(u - \xi) \ dx.$$
(40)

Combining (36)–(40) and passing to the limit as $m \to \infty$, we have the condition 3 in Definition 1.1.

4 Uniqueness result in unbounded domain

In this section, we demonstrate the Theorem of uniqueness to the solution of problem (\mathcal{P}) in an unbounded domain; using the fact given in [1, 11, 12] such as $b_i(x, u, \nabla u)$ are a contraction Lipschitz continuous functions.

Theorem 4.1 Under assumptions (20)–(23), and $b_i(x, u, \nabla u) : \Omega \times \mathbb{R} \times \mathbb{R}^N \longrightarrow \mathbb{R}$ for i = 1, ..., N contraction Lipschitz continuous functions do not satisfy any sign condition, and

$$\sum_{i=1}^{N} \left[a_i(x,\xi,\nabla\xi) - a_i(x,\xi',\nabla\xi') \right] \cdot (\nabla\xi - \nabla\xi') > 0.$$

$$\tag{41}$$

The problem (\mathcal{P}) *has a unique solution.*

Proof Let u^1 and u^2 be two solutions of problem (\mathcal{P}) with $u^1 \neq u^2$ then,

$$\sum_{i=1}^{N} \int_{\Omega} a_i(x, u^1, \nabla u^1) \cdot \nabla v \, dx + \sum_{i=1}^{N} \int_{\Omega} b_i(x, u^1, \nabla u^1) \cdot v \, dx = \int_{\Omega} f(x) \cdot v \, dx$$

and

$$\sum_{i=1}^{N} \int_{\Omega} a_i(x, u^2, \nabla u^2) \cdot \nabla v \, dx + \sum_{i=1}^{N} \int_{\Omega} b_i(x, u^2, \nabla u^2) \cdot v \, dx = \int_{\Omega} f(x) \cdot v \, dx$$

we subtract the previous inequality, we get

$$\sum_{i=1}^{N} \int_{\Omega} \left[a_i(x, u^1, \nabla u^1) - a_i(x, u^2, \nabla u^2) \right] \cdot \nabla v \, dx$$
$$+ \sum_{i=1}^{N} \int_{\Omega} \left[b_i(x, u^1, \nabla u^1) - b_i(x, u^2, \nabla u^2) \right] \cdot v \, dx = 0$$

we take $v = \eta(x) \cdot (u^1 - u^2)(x)$ with

$$\eta(x) = \begin{cases} 0 & \text{if } x \ge k, \\ k - \frac{|x|^2}{k} & \text{if } |x| < k, \\ 0 & \text{if } x \le -k. \end{cases}$$

Combine to (41), we obtain

$$\begin{split} \sum_{i=1}^{N} \int_{\Omega} \left[a_i(x, u^1, \nabla u^1) - a_i(x, u^2, \nabla u^2) \right] \cdot (u^1 - u^2) \cdot \nabla \eta(x) \, dx \\ &+ \sum_{i=1}^{N} \int_{\Omega} \left[b_i(x, u^1, \nabla u^1) - b_i(x, u^2, \nabla u^2) \right] \cdot (u^1 - u^2) \cdot \eta(x) \, dx \\ &\leq 0 \end{split}$$

according to (2) and the fact that $b_i(x, u, \nabla u)$ contraction Lipschitz functions for i = 1, ..., N, we get

$$\begin{split} &\sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i} \left(a_{i}(x, u^{1}, \nabla u^{1}) - a_{i}(x, u^{2}, \nabla u^{2}) \right) dx + \sum_{i=1}^{N} \int_{\Omega} B_{i}(u^{1} - u^{2}) \nabla \eta(x)) dx \\ &\leq \sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i} \left(a_{i}(x, u^{1}, \nabla u^{1}) - a_{i}(x, u^{2}, \nabla u^{2}) \right) dx + 2 \sum_{i=1}^{N} \int_{\Omega} B_{i}(u^{1} - u^{2}) dx \\ &\leq \alpha \sum_{i=1}^{N} \int_{\Omega} B_{i}(u^{1} - u^{2}) dx + \alpha \sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i}(\eta(x) \cdot (u^{1} - u^{2})) dx \end{split}$$
(42)

then

$$\sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i} \left(a_{i}(x, u^{1}, \nabla u^{1}) - a_{i}(x, u^{2}, \nabla u^{2}) \right) dx$$

$$\leq (\alpha - 2) \sum_{i=1}^{N} \int_{\Omega} B_{i}(u^{1} - u^{2}) dx + \alpha \sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i}(\eta(x) \cdot (u^{1} - u^{2})) dx.$$
(43)

Since,

$$\begin{split} &\sum_{i=1}^{N} \int_{\Omega} \bar{B}_{i}(\eta(x) \cdot (u^{1} - u^{2})) dx \\ &\leq \sum_{i=1}^{N} \int_{\Omega \cap \{ |x| \leq k \}} \bar{B}_{i} \left(\left(k - \frac{|x|^{2}}{k} \right) \cdot (u^{1} - u^{2}) \right) dx \\ &+ \sum_{i=1}^{N} \int_{\Omega \cap \{ |x| > k \}} \bar{B}_{i}(\eta(x) \cdot (u^{1} - u^{2})) dx \\ &\longrightarrow 0 \text{ as } k \longrightarrow 0 \end{split}$$

and since the N-functions \bar{B}_i verified the same conditions and properties of the B_i then, according to (6) and (20), we obtain

$$\begin{split} &\sum_{i=1}^{N} \int_{\Omega} \bar{B}_i \left(a_i(x, u^1, \nabla u^1) - a_i(x, u^2, \nabla u^2) \right) \, dx \\ &\leq \tilde{a}c \, \sum_{i=1}^{N} \int_{\Omega} B_i(\nabla (u^2 - u^2)) \, dx \\ &\leq \tilde{a}c \, || \, B(u^1 - u^2) \, ||_{1,\Omega}. \end{split}$$

Combine to (42) and (43), we deduce that

$$0 \le (\tilde{a}c + 2 - \alpha) || B(u^1 - u^2) ||_{1,\Omega} \le 0.$$

Thus

$$||B(u^{1} - u^{2})||_{1,\Omega} = 0.$$

Hence, $u^1 = u^2$ a.e in Ω .

Appendix

Let

$$\begin{aligned} A : \mathring{W}_{B}^{1}(\Omega) &\longrightarrow (\mathring{W}_{B}^{1}(\Omega))' \\ v &\longmapsto < A(u), v >= \int_{\Omega} \sum_{i=1}^{N} \left(a_{i}(x, u, \nabla u) \cdot \frac{\partial v}{\partial x_{i}} + b_{i}(x, u, \nabla u) \cdot v \right) dx \\ &- \int_{\Omega} f(x) \cdot v \, dx \end{aligned}$$
and let denote $L_{\bar{B}}(\Omega) = \prod_{k=1}^{N} L_{\bar{B}_{i}}(\Omega)$ with the norm
$$||v||_{L_{\bar{B}}(\Omega)} = \sum_{i=1}^{N} ||v_{i}||_{\bar{B}_{i},\Omega} \quad v = (v_{1}, \dots, v_{N}) \in L_{\bar{B}}(\Omega). \end{aligned}$$

Where $\bar{B}_i(t)$ are N-functions satisfying the Δ_2 -conditions. Sobolev-space $\mathring{W}^1_B(\Omega)$ is the completions of the space $C_0^{\infty}(\Omega)$.

$$a(x,s,\xi) = \left(a_1(x,s,\xi), \dots, a_N(x,s,\xi)\right)$$

and

$$b(x, s, \xi) = (b_1(x, s, \xi), \dots, b_N(x, s, \xi)).$$

Let's show that operator A is bounded, so for $u \in \mathring{W}^{1}_{B}(\Omega)$, according to (9) and (20) we get

$$|| a(x, u, \nabla u) ||_{L_{\tilde{B}}(\Omega)} = \sum_{i=1}^{N} || a_i(x, u, \nabla u) ||_{L_{\tilde{B}_i}(\Omega)}$$

$$\leq \sum_{i=1}^{N} \int_{\Omega} \bar{B}_i(a_i(x, u, \nabla u)) dx + N$$

$$\leq \tilde{a}(\Omega) \cdot || B(u) ||_{1,\Omega} + || \varphi ||_{1,\Omega} + N.$$
(44)

Further, for $a(x, u, \nabla u) \in L_{\bar{B}_i}(\Omega)$, $v \in \mathring{W}^1_B(\Omega)$ using Hölder's inequality we have

$$| < A(u), v >_{\Omega} | \le 2 || a(x, u, \nabla u) ||_{L_{\tilde{B}}(\Omega)} \cdot || v ||_{\dot{W}_{B}^{1}(\Omega)} + 2 || b(x, u, \nabla u) ||_{L_{B}(\Omega)} \cdot || v ||_{\dot{W}_{B}^{1}(\Omega)} + c_{0} \cdot || v ||_{\dot{W}_{B}^{1}(\Omega)}.$$
(45)

Thus, A is bounded. And that A is coercive, so for $u \in \mathring{W}^{1}_{B}(\Omega)$

$$< A(u), u >_{\Omega} = \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla u) \cdot \frac{\partial u}{\partial x_{i}} dx + \sum_{i=1}^{N} \int_{\Omega} b_{i}(x, u, \nabla u) \cdot u dx$$
$$- \int_{\Omega} f(x) \cdot u dx.$$

Then,

$$\begin{aligned} \frac{\langle A(u), u \rangle_{\Omega}}{|| \, u \, ||_{\dot{W}_{B}^{1}(\Omega)}} &\geq \frac{1}{|| \, u \, ||_{\dot{W}_{B}^{1}(\Omega)}} \cdot \left[\bar{a} \, \sum_{i=1}^{N} \int_{\Omega} B_{i} \left(\left| \frac{\partial u}{\partial x_{i}} \right| \right) \, dx - c_{1} - c_{0} \\ &- l(u) \cdot \sum_{i=1}^{N} \int_{\Omega} B_{i} \left(\left| \frac{\partial u}{\partial x_{i}} \right| \right) \, dx - \int_{\Omega} h(x) \, dx \right] \\ &\geq \frac{1}{|| \, u \, ||_{\dot{W}_{B}^{1}(\Omega)}} \cdot \left[(\bar{a}(\Omega) - c_{2}) \cdot \sum_{i=1}^{N} \int_{\Omega} B_{i} \left(\left| \frac{\partial u}{\partial x_{i}} \right| \right) \, dx - c_{0} - c_{1} - c_{3} \right] \end{aligned}$$

According to (20), we have for all k > 0, $\exists \alpha_0 > 0$ such that

$$b_i(|u_{x_i}|) > k b_i\left(\frac{|u_{x_i}|}{||u_{x_i}||_{B_i,\Omega}}\right), \quad i = 1, \dots, N$$

We take $|| u_{x_i} ||_{B_i,\Omega} > \alpha_0$ i = 1, ..., N. Suppose that $|| u_{x_i} ||_{\dot{W}^1_b(\Omega)} \longrightarrow 0$ as $j \to \infty$. We can assume that

$$|| u_{x_1}^j ||_{B_1,\Omega} + \dots + || u_{x_N}^j ||_{B_N,\Omega} \ge N \alpha_0.$$

According to (9) for c > 1, we have

$$|u^j|b(|u^j|) < c B(u^j)$$

then, by (2.8) we obtain

$$\begin{split} \frac{\langle A(u^{i}), u^{i} \rangle_{\Omega}}{|| | u^{i} ||_{\mathring{W}_{B}^{1}(\Omega)}} &\geq \frac{\bar{a}(\Omega) - c_{2}}{N \alpha_{0}} \cdot \sum_{i=1}^{N} \int_{\Omega} B_{i} \left(\left| \frac{\partial u}{\partial x_{i}} \right| \right) dx - \frac{c_{4}}{N \alpha_{0}} \\ &\geq \frac{\bar{a}(\Omega) - c_{2}}{N \alpha_{0}} \cdot \sum_{i=1}^{N} \int_{\Omega} | u_{x_{i}}^{j} | b(| | u_{x_{i}}^{j} |) dx - \frac{c_{4}}{N \alpha_{0}} \\ &\geq \frac{(\bar{a}(\Omega) - c_{2}) \cdot k}{c N || | u_{x_{i}}^{j} ||_{B_{i}}} \cdot \sum_{i=1}^{N} \int_{\Omega} | u_{x_{i}}^{j} | b_{i} \left(\frac{| u_{x_{i}}^{j} |}{|| u_{x_{i}}^{j} ||_{B_{i},\Omega}} \right) dx - \frac{c_{4}}{N \alpha_{0}} \\ &\geq \frac{(\bar{a}(\Omega) - c_{2}) \cdot k}{c N} \cdot \sum_{i=1}^{N} \int_{\Omega} B_{i} \left(\frac{| u_{x_{i}}^{j} |}{|| u_{x_{i}}^{j} ||_{B_{i},\Omega}} \right) dx - \frac{c_{4}}{N \alpha_{0}} \\ &\geq \frac{(\bar{a}(\Omega) - c_{2}) \cdot k}{c N} - \frac{c_{4}}{N \alpha_{0}}. \end{split}$$

which shows that A is coercive, because k is arbitrary.

And for A pseudo-monotonic, we consider a sequence $\{u^m\}_{m=1}^{\infty}$ in the space $\mathring{W}_B^1(\Omega)$ such that

$$u^m \to u$$
 weakly in $\check{W}^1_B(\Omega) \quad m \to \infty.$ (46)

$$\lim_{m \to \infty} \sup < A(u^m), \ u^m - u \ge 0 \tag{47}$$

we demonstrate that

$$A(u^m) \rightarrow A(u)$$
 weakly in $(\mathring{W}^1_B(\Omega))', m \rightarrow \infty.$ (48)

$$\langle A(u^m), u^m - u \rangle \longrightarrow 0, \ m \to \infty.$$
 (49)

Since $B(\theta)$ satisfy the Δ_2 -condition, then by (9) we have

$$\int_{\Omega} B(\theta) \, dx \le c_0 \, ||\, \theta \, ||_{B,\Omega}.$$
(50)

According to (46) we get

$$|| u^{m} ||_{\mathring{W}^{1}_{B}(\Omega)} \le c_{1} \quad m = 1, 2, \dots$$
(51)

and

$$||B(\nabla u^m)||_1 \le c_2 \quad m = 1, 2, \dots$$
 (52)

Combining to (44) and (51) we obtain

$$||a^{m}(x, u, \nabla u)||_{\bar{B}} = \sum_{i=1}^{N} ||a^{m}_{i}(x, u^{m}, \nabla u^{m})||_{\bar{B}_{i}} \le c_{3} \ m = 1, 2, \dots.$$
(53)

And for $m \in \mathbb{N}^*$, $|b^m(x, u, \nabla)| = |T_m(b(x, u, \nabla u)| \le m$. Then, by (23) and (51) we have

$$||b^{m}(x, u, \nabla u)||_{B} = \sum_{i=1}^{N} ||b_{i}^{m}(x, u^{m}, \nabla u^{m})||_{B_{i}} \le c_{4} \ m = 1, 2, \dots$$

According again to proof of Lemmas 3.4 and 2.8, we have

$$\mathring{W}^1_B(\Omega(R+1)) \hookrightarrow L_{B_i}(\Omega(R+1))$$
 for $R > 0$ and $i = 1, ..., N$.

We set

$$A^{m}(x) = \sum_{i=1}^{N} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u, \nabla u) \right] (u^{m} - u)_{x_{i}} + \sum_{i=1}^{N} \left[b_{i}^{m}(x, u^{m}, \nabla u^{m}) - b_{i}^{m}(x, u, \nabla u) \right] (u^{m} - u), \ m = 1, \dots.$$

then

$$< A(u^m) - A(u), u^m - u > = \int_{\Omega} A^m(x) dx \quad m = 1, \dots$$

By (46) and (47), we obtain

$$\lim_{m \to \infty} \sup \int_{\Omega} A^m(x) \ dx \le 0$$

So,

$$A^{m}(x) = \sum_{i=1}^{N} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u^{m}, \nabla u) \right] (u^{m} - u)_{x_{i}} + \sum_{i=1}^{N} \left[a_{i}^{m}(x, u^{m}, \nabla u) - a_{i}^{m}(x, u, \nabla u) \right] (u^{m} - u)_{x_{i}} + \sum_{i=1}^{N} \left[b_{i}^{m}(x, u^{m}, \nabla u^{m}) - b_{i}^{m}(x, u, \nabla u) \right] (u^{m} - u) = A_{1}^{m}(x) + A_{2}^{m}(x) + A_{3}^{m}(x) \quad m = 1, \dots.$$
(54)

We prove that

 $A_1^m(x) \longrightarrow 0$ almost everywhere in $\Omega \quad m \to \infty$. (55)

$$A_2^m(x) \longrightarrow 0$$
 almost everywhere in $\Omega \quad m \to \infty$. (56)

$$A_3^m(x) \longrightarrow 0$$
 almost everywhere in $\Omega \quad m \to \infty$. (57)

$$A^{m}(x) = \sum_{i=1}^{N} \left[a_{i}^{m}(x, u^{m}, \nabla u^{m}) - a_{i}^{m}(x, u^{m}, \nabla u) \right] (u^{m} - u)_{x_{i}}$$

$$= \sum_{i=1}^{N} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot u_{x_{i}}^{m} - \sum_{i=1}^{N} a_{i}^{m}(x, u^{m}, \nabla u^{m}) \cdot u_{x_{i}}$$

$$- \sum_{i=1}^{N} a_{i}^{m}(x, u, \nabla u) \cdot u_{x_{i}}^{m} + \sum_{i=1}^{N} a_{i}^{m}(x, u, \nabla u) \cdot u_{x_{i}}$$

applying (1), (22), (52) and (53) we obtain

 $A_1^m(x) \ge c(m) \longrightarrow 0$ as $m \to \infty$.

Hence, using the diagonal process, we conclude the convergence (55).

As in [32], let $A_i(u) = a_i(x, u, \nabla v)$ i = 1, ..., N be Nemytsky operators for $v \in \mathring{W}^1_B(\Omega)$ fixed and $x \in \Omega(R)$, continuous in $L_{\overline{B}_i}(\Omega(R))$ for any R > 0.

Thus, according to (10), (27) and the diagonal process, we have for any R > 0

 $A_2^m(x) \longrightarrow 0$ almost everywhere in $\Omega \quad m \to \infty$.

Applying the inequality (10) we obtain

$$\begin{aligned} A_3^m(x) &\leq 2 \sum_{i=1}^N || b_i^m(x, u^m, \nabla u^m) - b_i^m(x, u, \nabla u) ||_{B_i, \Omega(R)} \cdot || u^m - u ||_{\dot{W}_b^1(\Omega)} \\ &\leq 2c(m) \cdot || u^m - u ||_{\dot{W}_b^1(\Omega)}. \end{aligned}$$

Hence, combining to (27) and the diagonal process, we have for any R > 0

$$A_3^m(x) \longrightarrow 0$$
 almost everywhere in $\Omega \quad m \to \infty$.

Consequently, by (55), (56), (57) and the selective convergences we deduce that

$$A^m(x) \longrightarrow 0$$
 almost everywhere in $\Omega \quad m \to \infty$. (58)

Let $\Omega' \subset \Omega$, meas Ω' = meas Ω , and the conditions (27), (58) are true, and (20)–(23) are satisfied.

We prove the convergence

$$u_{x_i}^m(x) \longrightarrow u_{x_i}(x)$$
 everywhere in Ω for $i = 1, ..., N$, $m \to \infty$ (59)

By the absurd, suppose we do not have convergence at the point $x^* \in \Omega'$.

Let $u^m = u^m_{x_i}(x^*)$, $u = u_{x_i}(x^*)$, i = 1, ..., N, and $\hat{a} = \varphi_1(x^*)$, $\bar{a} = \varphi(x^*)$. Suppose that the sequence $\sum_{i=1}^{N} B_i(u^m) \ m = 1, ..., \infty$ is unbounded. Let $\epsilon \in \left(0, \frac{\bar{a}}{1+\bar{a}}\right)$ is fixed, according to (2), (4) and the conditions (20), (22), we get $A^m(x^*) = \sum_{i=1}^{N} \left(a^m_i(x^*, u^m, \nabla u^m) - a^m_i(x^*, u, \nabla u)\right) \nabla(u^m - u)$ $+ \sum_{i=1}^{N} \left(b^m_i(x^*, u^m, \nabla u^m) - b^m_i(x^*, u, \nabla u)\right) (u^m - u)$ $= \sum_{i=1}^{N} a^m_i(x^*, u^m, \nabla u^m) \nabla u^m - \sum_{i=1}^{N} a^m_i(x^*, u^m, \nabla u^m) \nabla u$ $- \sum_{i=1}^{N} a^m_i(x^*, u^m, \nabla u^m) u^i - \sum_{i=1}^{N} b^m_i(x^*, u^m, \nabla u^m) u$ $- \sum_{i=1}^{N} b^m_i(x^*, u^m, \nabla u^m) u^i - \sum_{i=1}^{N} b^m_i(x^*, u^m, \nabla u^m) u$

Applying the generalized Young inequality and (51), we obtain

$$\begin{split} A^{m}(x^{*}) &\geq \sum_{i=1}^{N} a_{i}^{m}(x^{*}, u, \nabla u) \cdot \nabla u + \sum_{i=1}^{N} a_{i}^{m}(x^{*}, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} \\ &- \epsilon \sum_{i=1}^{N} \bar{B}_{i}(a_{i}^{m}(x^{*}, u^{m}, \nabla u^{m})) \\ &- c_{1}(\epsilon) \sum_{i=1}^{N} B_{i}(\nabla u) - \epsilon \sum_{i=1}^{N} \bar{B}_{i}(a_{i}^{m}(x^{*}, u, \nabla u)) - c_{2}(\epsilon) \sum_{i=1}^{N} B_{i}(\nabla u^{m}) \\ &+ \sum_{i=1}^{N} b_{i}^{m}(x^{*}, u^{m}, \nabla u^{m}) \cdot \nabla u^{m} + \sum_{i=1}^{N} b_{i}^{m}(x^{*}, u, \nabla u) \cdot \nabla u \\ &- \sum_{i=1}^{N} b_{i}^{m}(x^{*}, u^{m}, \nabla u^{m}) \cdot \nabla u \\ &- \sum_{i=1}^{N} b_{i}^{m}(x^{*}, u, \nabla u) \cdot \nabla u^{m} \\ &\geq \bar{a} \sum_{i=1}^{N} B_{i}(\nabla u) - \psi(x^{*}) + \sum_{i=1}^{N} B_{i}(\nabla u^{m}) - \psi(x^{*}) \\ &- \epsilon \hat{a} \sum_{i=1}^{N} B_{i}(\nabla u) - \epsilon \varphi(x^{*}) \\ &- c_{1}(\epsilon) \sum_{i=1}^{N} B_{i}(\nabla u) - \epsilon \hat{a} \sum_{i=1}^{N} B_{i}(\nabla u) - \epsilon \varphi(x^{*}) \\ &- c_{3} l(u) \sum_{i=1}^{N} B_{i}(\nabla u) - c_{4} l(u^{m}) \sum_{i=1}^{N} B_{i}(\nabla u^{m}). \end{split}$$

So

$$\begin{split} A^{j}(x^{*}) &\geq \left[\bar{a} - c_{1}(\epsilon) - \epsilon \,\hat{a} \right. \\ &\quad - c_{3} \,l(u) \left.\right] \, \sum_{i=1}^{N} B_{i}(\nabla u) + \left[\bar{a} - \epsilon \,\hat{a} \, c_{2} \right. \\ &\quad - c_{4} \,l(u^{m}) \left.\right] \, \sum_{i=1}^{N} B_{i}(\nabla u^{m}) - c_{5}(\epsilon). \end{split}$$

So we deduce that the sequence $A^m(x^*)$ is not bounded, which is absurd as far as what is in (58).

As a consequence, the sequences $u_{x_i}^m$, i = 1, ..., N, $m \to \infty$ are bounded. Let $u^* = (u_1^*, u_2^*, ..., u_N^*)$ the limits of subsequence $u^m = (u_1^m, ..., u_N^m)$ with $m \to \infty$. Then, taking into account (27), we obtain

$$u_{x_i}^m \longrightarrow u_{x_i}^*$$
, $i = 1, \dots, N.$ (60)

As a result, from (58), (60) and the fact that $a_i^m(x^*, u, \nabla u)$ are continuous in *u* (because they are Carathéodory functions), we have

$$\sum_{i=1}^{N} \left(a_{i}^{m}(x^{*}, u^{m}, \nabla u^{m}) - a_{i}^{m}(x^{*}, u, \nabla u) \right) \cdot \left(u_{x_{i}}^{m} - u_{x_{i}} \right) = 0,$$

and from (21) we have, $u_{x_i}^* = u_{x_i}$. This contradicts the fact that there is no convergence at the point x^* .

And referring to (27), (60) and the fact that $a_i^m(x^*, u, \nabla u)$ are continuous u, so for $m \to \infty$ we get

$$a_i^m(x, u^m, \nabla u^m) \longrightarrow a_i^m(x, u, \nabla u), \ i = 1, \dots, N$$
 almost everywhere in Ω .

Using Lemma 3.5 we find the weak convergences

$$a_i^m(x, u^m, \nabla u^m) \rightharpoonup a_i^m(x, u, \nabla u) \quad \text{in} \quad L_{\bar{B}_i(\Omega)}, \ i = 1, \dots, N.$$
(61)

The weak convergence (48) follows from (61).

Furthermore, to complete the proof, we note that (49) is implied from (46) and (58):

$$< A(u^{m}), u^{m} - u > = lt; A(u^{m}) - A(u), u^{m} - u >$$

+ $< A(u), u^{m} - u > \to 0, m \to \infty.$

We're ending this section by a suitable example, that checks all the above conditions and propositions,

Example 5.1 Let Ω be an unbounded domain of \mathbb{R}^N , $(N \ge 2)$. By Theorems 3.1 and 4.1 it exists a unique entropy solution based on the Definition 1.1 of the following anisotropic problem (\mathcal{P}_1):

$$(\mathcal{P}_1) \begin{cases} \tilde{a} \sum_{i=1}^N \bar{B}_i^{-1} B_i(|\nabla u|) + l(u) \cdot \sum_{i=1}^N B_i(|\nabla u|) = f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

with \tilde{a} is a positive constant, $l : \mathbb{R} \longrightarrow \mathbb{R}^+$ a positive continuous functions such as $l \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R}), f \in L^1(\Omega)$ and

$$B(z) = |z|^{b} (|ln|z|| + 1), \ b > 1$$

satisfying the Δ_2 -condition.

References

- Aberqi, A., Bennouna, J., Hammoumi, M.: Non-uniformly degenerated parabolic equations with L 1-data. AIP Conf. Proc. 2074, 020002 (2019)
- Aberqi, A., Bennouna, J., Elmassoudi, M., Hammoumi, M.: Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces. Monatshefte f
 ür Mathematik 189, 195–219 (2019)

- 1607
- Aberqi, A., Bennouna, J., Mekkour, M., Redwane, H.: Nonlinear parabolic inequalities with lower order terms. Appl. Anal. 96, 2102–2117 (2017)
- Aharouch, L., Benkirane, A., Rhoudaf, M.: Existence results for some unilateral problems without sign condition with obstacle free in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 68, 2362–2380 (2008)
- Aharouch, L., Bennouna, J.: Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 72, 3553–3565 (2010)
- 6. Aharrouch, B., Boukhrij, M., Bennouna, J.: Existence of solutions for a class of degenerate elliptic equations in *P*(*x*)-Sobolev spaces. Topol. Methods Nonlinear Anal. **51**, 389–411 (2018)
- 7. Barletta, G.: On a class of fully anisotropic elliptic equations. Nonlinear Anal. 197, 111838 (2020)
- 8. Bendahmane, M., Karlsen, K.H.: Nonlinear anisotropic elliptic and parabolic equations in R N with advection and lower order terms and locally integrable data. Potential Anal. **22**, 207–227 (2005)
- 9. Benslimane, O., Aberqi, A., Bennouna, J.: Existence and Uniqueness of Weak solution of p(x)-laplacian in Sobolev spaces with variable exponents in complete manifolds, arXiv preprint arXiv :2006.04763, (2020)
- 10. Benslimane, O., Aberqi, A., Bennouna, J.: The existence and uniqueness of an entropy solution to unilateral Orlicz anisotropic equations in an unbounded domain. Axioms **9**, 109 (2020)
- 11. Blanchard, D., Guibé, O., Redwane, H.: Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities. Commun. Pure Appl. Anal. **15**, 197–217 (2016)
- 12. Blanchard, D., Murat, F., Redwane, H.: Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems. J. Differ. Equ. **177**, 331–374 (2001)
- 13. Boccardo, L., Gallouët, Th, Vazquez, J.L.: Nonlinear elliptic equations in \mathbb{R}^N without growth restrictions on the data. J. Differ. Equ. **105**, 334–363 (1993)
- 14. Boccardo, L., Gallouët, Th: Nonlinear elliptic equations with right hand side measures. Commun. Partial Differ. Equ. **17**, 89–258 (1992)
- Bonanno, G., Bisci, G.M., Rădulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. Theory Methods Appl. 75, 4441–4456 (2012)
- 16. Bonanno, G., Bisci, G.M., Rădulescu, V.: Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Monatshefte für Mathematik **165**, 305–318 (2012)
- 17. Bonanno, G., Bisci, G.M., Rădulescu, V.: Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Comptes Rendus Mathématique **349**, 263–268 (2011)
- Bonanno, G., Bisci, G.M., Rădulescu, V.: Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces. Nonlinear Anal. Theory Methods Appl. 74, 4785–4795 (2011)
- 19. Brezis, H.: Semilinear equations in \mathbb{R}^N without condition at infinity. Appl. Math. Optim. **12**, 271–282 (1984)
- Cammaroto, F., Vilasi, L.: On a perturbed p (x)-Laplacian problem in bounded and unbounded domain. J. Math. Anal. Appl. 402, 71–83 (2013)
- Chmara, M., Maksymiuk, J.: Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations. J. Math. Anal. Appl. 456, 457–475 (2017)
- 22. Chmara, M., Maksymiuk, J.: Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space. J. Math. Anal. Appl. **470**, 584–598 (2019)
- 23. Cianchi, A.: A fully anisotropic Sobolev inequality. Pac. J. Math. 196, 283–294 (2000)
- Diaz, J.I., Oleinik, O.A.: Nonlinear elliptic boundary-value problems in unbounded domains and the asymptotic behaviour of its solutions. Comptes Rendus-Academie Des Sciences Paris Serie 1(315), 787–787 (1992)
- Dong, G., Fang, X.: Existence results for some nonlinear elliptic equations with measure data in Orlicz–Sobolev spaces. Bound. Value Probl. 2015, 18 (2015)
- Elmahi, A.: Sur certains problèmes elliptiques et paraboliques non linéaires dans les espaces d'Orlicz; Ph.D Thesis. Sidi Mohamed Ben Abdelah University: FEZ, Morocco, (1997)
- 27. Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. **190**, 163–205 (1974)
- Gushchin, A.K.: The Dirichlet problem for a second-order elliptic equation with an Lp boundary function. Sbornik Math. 203, 1 (2012)
- Korolev, A.G.: Embedding theorems for anisotropic Sobolev–Orlicz spaces, Vestnik Moskovskogo Universiteta Seriya 1 Matematika Mekhanika, pp. 32–37 (1983)
- Kozhevnikova, L.M.: On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces. Comput. Math. Math. Phys. 57, 434–452 (2017)
- Kozhevnikova, L.M.: Existence of entropic solutions of an elliptic problem in anisotropic Sobolev– Orlicz spaces. J. Math. Sci. 241, 258–284 (2019)

- 32. Krasnosel'skii, M.A., Rutickii, J.B.: Convex Functions and Orlicz Spaces. Fizmatgiz, Moscow (1958)
- 33. Laptev, G.I.: Existence of solutions of certain quasilinear elliptic equations in \mathbb{R}^N without conditions at infinity. J. Math. Sci. **150**, 2384–2394 (2008)
- 34. Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires. Dunod, Paris (1969)
- Mihăilescu, M., Pucci, P., Rădulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)
- Papageorgiou, N.S., Rădulescu, V., Repovš, D.D.: Ground state and nodal solutions for a class of double phase problems. Zeitschrift f
 ür angewandte Mathematik und Physik 71, 1–15 (2020)
- Rădulescu, V.D., Repovs, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, vol. 9. CRC Press, Boca Raton (2015)
- Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9, 710–728 (2019)
- Yang, Sh, Dai, G.: Existence results for a variable exponent elliptic problem via topological method. Bound. Value Probl. 2012, 99 (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.