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Abstract
Effect of anti-predator defense due to fear of predator felt by prey and effect of toxic sub-
stance released by external sources on prey–predator system is a serious mater of concern 
in mathematical biology. In the proposed model we have discussed a prey–predator sys-
tem in which both the species are infected by environmental toxicant. In our consideration 
prey species is directly infected by environmental toxicant and predator gets infected by 
consuming infected prey. Prey’s growth rate is assumed to be affected by fear of predator. 
In this work the proposed predator–prey model is analyzed in presence of environmental 
fluctuation, i.e., stochastic analysis of this model is discussed. Using Itô formula: positiv-
ity, boundedness, uniform continuity criterion and global attractivity of solutions of this 
system have been established. Conditions for which the prey as well as the predator goes 
extinct have been derived. Conditions for persistence of the system have also been dis-
cussed. Mathematical findings have been validated in numerical simulation by MATLAB. 
Different effects of different levels of toxicant and different levels of fear have been demon-
strated by depicting figures in numerical simulation using MATLAB.

Keywords  Itô formula · Fear · Toxic · Global attractivity · Persistence · Extinction

Mathematics Subject Classification  34C23 · 92D25

1  Introduction

The history of the study to gain knowledge about the interactions among the individuals 
of the prey–predator species dates back long. Many ecologists and mathematicians [6, 8, 
14, 38] have made a significant contributions to analyze prey–predator interactions over 
the years. Analysis of the persistence and extinction scenario has been one of the most 
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important objectives, though there are several thematic areas of interest. Analyzing these 
models in rapidly fluctuating environment make these findings more meaningful and 
interesting.

From field experiments, some theoretical ecologists and biologists have realised that a 
prey–predator model should involve not only direct killing but also the fear (felt by prey)-
factor as they have observed a change in the behaviour and psychology of the prey popula-
tion in presence of the predator, sometimes more powerful than direct killing [4, 5]. How-
ever, the intensity of the impact left by fear factor on the ecosystem is not totally clear till 
now. There are some controversies and some believe that the physiological impacts of fear 
on young populations may lead to a lower survival rate of adults, although so far such an 
impact has not yet been shown by any direct experimental results.

Fear makes different animals respond differently [5, 31, 33, 34]: some find a different 
place to live, some change their foraging behaviour, some become circumspect, whereas 
others go through psychological changes. Under fear, a prey species may find a compara-
tively low risk (with respect to fear) area to live but this effort may get nullified in case 
the new habitat is not suitable for the prey to live as well - the prey may starve out of fear 
rather than searching for food [4, 5, 43]. In an experiment made on the snowshoe hare, it 
has been found that high fear factor played a bigger role in decreasing their reproduction 
rate than high hare density or poor food level [2]. Therefore, it would not be appropriate 
to neglect the fear factor prevailing in the minds of the prey species particularly when the 
reproduction rate is reduced by it [2, 3, 32]. The estimation of Pangle et al. [30] upon direct 
killings and fear effects on three species of zoo-plankton on Lake Michigan and Lake Erie 
by the predation of water fleas (Bythotrephes longimanus) over six combinations of loca-
tion and depth is that the effect of the fear factor on the growth rates were seven times more 
than the effect of direct killing of them. Altendorf et al. [1] found that mule deer, under 
the fear of mountain lions, refrained themselves from searching for food to a large extent. 
Creel et al. [3] found that elk (one of the largest species of the deer family) faces changes 
in reproductive physiology due to the predation fear of wolves. It has also been found that 
birds flee from their nests as an anti-predator behaviour when they discover the sound of 
predator (first sign of danger) [5]. A recent experiment, performed by Zanette et al. [45], 
on song sparrows during an entire breeding season, found their reproduction rate to have 
fallen down by 40% only by the fear of predator (sound of predator). A study of Krapivsky 
et al. [22] shows that different positions and different numbers of the predator (lion) com-
pel lambs to behave differently.

Recently, an observation has brought it into notice that prey population is reduced by 
the fear of large carnivores and thereby the number of species that the prey population 
feeds on or competes with has increased. Das and Samanta [7] has found that predator 
population dominates prey population because of high cost of fear. It emerged out in a 
field experiment along the shoreline of British Columbia that the racoon’s predation rate 
and its hunting of intertidal crabs, subtidal red rock crabs and intertidal fish decreased for 
fear of carnivorous animals and the abundance of intertidal crabs, subtidal red rock crabs 
and intertidal fish went up by 97%, 61% and 81% respectively [40]. Again, the findings in 
the cases of Siberian Jay by Eggers et al. [12], dugongs by Wirsing et al. [44] and birds by 
Ghalambor et al. [13] and Hua et al. [18, 19] have led mathematicians to believe that fear 
factor plays a key role in population dynamics. Many researchers have studied prey–preda-
tor models, but mathematical models considering fear factor have only been successfully 
developed by Wang et al. [41, 42]. Despite having a lot of field experimental results, there 
is little evidence which upholds the fact that population dynamics is affected by fear [9, 10, 
27–29].
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Existence of toxic substance in environment is a major concern for bioeconomic 
modeling. Involving toxic substance in mathematical model is started with the studies 
of Hallam and Clark [15], Hallam and De Luna [16], Dubey and Hussain [11], Kar and 
Chaudhuri [21], Samanta [36], etc. General single species or two species communities 
without any special emphasis on aquatic environments are considered in most of the 
models. The toxin released by one species or by environment not only affects that spe-
cies but may affect the growth of the other species also (such as predator of that spe-
cies). Day by day industries are producing a huge amount of toxicants in to the environ-
ment because of growing human needs. These toxicants mostly affect the species which 
are living there. Maynard Smith [39] incorporated the effects of toxic substances in a 
two species Lotka–Volterra competitive system by considering that in presence of other 
species each species produces a toxic substance.

To evaluate the effect of environmental noises on dynamical systems some researches 
[23, 26, 35] have introduced Gaussian white noise as a model of environmental vari-
ations. May in 1973 [26] pointed out that all the parameters such as birth rates, death 
rates, competition coefficient, carrying capacity etc. involved in a dynamical system can 
be randomly fluctuated to a great lesser extent for the cause of continuous fluctuation in 
the environment. Das and Samanta [6] have shown that the environmental noise effects 
on extinction and persistence of the system.

In the present work, we have considered a prey–predator system in a randomly fluc-
tuating environment incorporating fear of predator (felt by prey) and prey is directly 
affected by toxic substance and predator gets affected by consuming infected prey.

We have divided the rest of this work into some sections and subsections. Section 2 
contains formulation of the model which is divided into four subsections. In Sect. 2.1 
functional response is described and Sect.  2.2 deals with fear function. Deterministic 
model is formulated in Sect. 2.3 followed by stochastic model in Sect. 2.4. Positivity of 
solutions of both the deterministic and stochastic model is analyzed in Sect. 3 followed 
by boundedness of solutions in Sect. 4. Section 5 contains uniform continuity criterion 
of solutions of the stochastic system. In Sect. 6 extinction scenario in presence of envi-
ronmental noise is discussed. Most important theorem of persistence of the system is 
discussed in Sect. 7. In Sect. 8 numerical simulation justify the mathematical findings 
numerically using MATLAB. In Sect. 9, we have given some conclusion of our findings.

2 � Model formulation

We shall discuss a predator prey model with the effect of anti-predator defense because 
of fear (felt by prey) in presence of predator and effect of toxic substance present in the 
environment (released by some other external sources). It is assumed that the infection 
among the individuals of the prey species is caused directly by some external toxic sub-
stance and the predator gets affected by consuming infected prey.

Let us consider x(t) and y(t) to represent the biomass of prey and predator respec-
tively at any time t > 0. Let us model the effect of fear (felt by prey) through a function 
f (� , �, y) called fear function that accounts for the cost of anti-predator defence. Here � 
represents the cost of minimum fear and 1

�
 stands for the level of fear which causes the 

anti-predator behavior of the prey. We consider the following system:
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The term h(x) is the prey density dependent function which defines the intake rate for pred-
ator. Here, g is the coefficient of birth rate of the prey, r is the coefficient of the rate of 
intraspecific competition among the individuals of the prey species, d1 and d2 are the natu-
ral mortality rates of prey and predator respectively, a1 ∈ (0, 1] is the conversion rate.

Now we introduce the term c1x3 that accounts for direct transmission of the infection 
among the individuals of the prey species by external toxic substances and the term 
c2y

2 which comes indirectly through the infection of the predator by consuming infected 
prey. So, system (2.1) becomes:

2.1 � Functional response

The consuming rate per predator towards prey is called functional response in ecology. 
Ecologist C.S. Holling [17] described functional response into three types: Holling type 
I, II and III. Holling type II is the mostly used functional response among them and we 
also consider Holling type II as the functional response in our model. We have consid-
ered the following particular form of h(x) in our proposed model:

Here, �
�

 is the maximum consumption rate and 1
�

 is the half saturation constant which are 

non negative.

2.2 � Fear function

As per the experimental evidences, the prey population will be diminished due to the 
fear effect, so it is reasonable to assume that f (� , �, y) has the following properties, 
where � ∈ [0, 1] represents the cost of minimum fear and 1

�
 stands for the level of fear:

Now we consider the following function as the fear function for our model:

(2.1)

dx

dt
= gxf (� , �, y) − d1x − rx2 − h(x)y

dy

dt
= a1h(x)y − d2y

(2.2)

dx

dt
= gxf (� , �, y) − d1x − rx2 − h(x)y − c1x

3

dy

dt
= a1h(x)y − d2y − c2y

2

(2.3)h(x) =
�x

1 + �x

(2.4)

(i) lim
1

𝛽
→0

f (𝜁 , 𝛽, y) = 1 (ii)f (𝜁 , 𝛽, 0) = 1 (iii) lim
1

𝛽
→∞

f (𝜁 , 𝛽, y) = 𝜁

(iv) lim
y→∞

f (𝜁 , 𝛽, y) = 𝜁 (v)
𝜕f (𝜁 , 𝛽, y)

𝜕
1

𝛽

< 0 (vi)
𝜕f (𝜁 , 𝛽, y)

𝜕y
< 0
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which satisfies all the conditions stated in (2.4). We can consider the fear function in many 
ways satisfying the conditions described in (2.4) and 0 ≤ � ≤ 1.

2.3 � Deterministic model

We take the functions f (� , �, y) and h(x) as described in (2.5) and (2.3) respectively in system 
(2.2) and obtain the following system:

Let us consider �1 = g� and � = a1� , then system (2.6) becomes:

with initial conditions x0 > 0 and y0 > 0.

2.4 � Stochastic model

Introducing Gaussian white noise on birth rate and death rate of prey and predator respec-
tively, the following stochastic system arises:

The parameters g and d2 have been perturbed by independent Gaussian white noise terms 
�1 and �2 in system (2.7) because these are the vital parameters subject to coupling the envi-
ronment where the species live [37]. The terms �1 and �2 are independent Gaussian white 
noises characterised by:

⟨�j(t)⟩ = 0 and ⟨�j(t1)�j(t2)⟩ = �2
j
�j(t1 − t2), for j = 1, 2.

having the respective intensities 𝜎1 > 0, 𝜎2 > 0 . The functions �j(x) are the Dirac delta 
function defined as follows:

and ⟨⋅⟩ represents the ensemble average. System (2.7) becomes:

(2.5)f (� , �, x) = � +
1 − �

1 +
y

�

(2.6)

dx

dt
= gx

[
� +

�(1 − � )

� + y

]
− d1x − rx2 −

�xy

1 + �x
− c1x

3

dy

dt
= a1

�xy

1 + �x
− d2y − c2y

2

(2.7)

dx

dt
= x

[
g� +

�1(1 − � )

� + y

]
− d1x − rx2 −

�xy

1 + �x
− c1x

3

dy

dt
=

�xy

1 + �x
− d2y − c2y

2

dx =

[
(g + �1)�x +

�1(1 − � )x

� + y
− d1x − rx2 −

�xy

1 + �x
− c1x

3

]
dt

dy =

[
�xy

1 + �x
− (d2 + �2)y − c2y

2

]
dt

⎧⎪⎨⎪⎩

�j(x) = 0, for x ≠ 0,

�
∞

−∞

�j(x)dx = lim
�→0+ �

�

−�

�j(x)dx = 1,
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with initial conditions x0 > 0 and y0 > 0 , where �1 = �1
dw1

dt
 , �2 = �2

dw2

dt
 and two-dimen-

sional standard Brownian motion is expressed as w =
{
w1,w2, t ≥ 0

}
.

3 � Positivity

Theorem  3.1  If (x0, y0) ∈ ℝ
2
+
 be any initial value, then system (2.7) has global positive 

solution (x(t), y(t)) which is unique for all t ≥ 0.

Proof  The right hand side of system (2.7) is continuous and locally Lipschitz on ℝ2
+
 , the 

solution (x(t), y(t)) of system (2.7) exists and unique on [0, �] , � ∈ (0,∞) . From (2.7):

Hence the theorem. 	�  ◻

Lemma 3.1  [8] z ≤ 2(z + 1 − loge(z)) − 2(2 − loge(2)), ∀z > 0.

Theorem 3.2  For system (2.8): (x(t), y(t)) ∈ ℝ
2
+
, ∀t > 0 , almost surely.

Proof  Since coefficients of system (2.8) satisfy local Lipschitz condition, for any 
(x0, y0) ∈ ℝ

2
+
 there exists a unique local solution x(t), y(t) ∈ [0, �e) , where �e is the explo-

sion time. To prove that it is a global positive solution, we have to show that �e = ∞ . Let 

s0 ≥ 0 be sufficiently large so that both x0 and y0 lie in the interval 
[
1

s0
, s0

]
 . We define stop-

ping time (�s) for each integer s ≥ s0 such that

with inf� = ∞ ( � denotes the empty set). It is easy to observe that �s increases as t → ∞ . 
Here we set �∞ = lim

r→∞
�s , whence �∞ ≤ �e a.s. If it can be proved that �∞ = ∞, then it is 

easy to conclude that �e = ∞ and (x(t), y(t)) ∈ ℝ
2
+
 for all t ≥ 0 almost surely. So, to com-

plete the proof, we need to show that �∞ = ∞ . It can be proved by contradiction. If possi-
ble, suppose the statement is false, then there exists a pair of constants T > 0 and � ∈ (0, 1) 
such that

So, there exists an integer s1 ≥ s0 such that

(2.8)
dx = x

[
(g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2

]
dt + ��1xdw1

dy = y

[
�x

1 + �x
− d2 − c2y

]
dt − �2ydw2

x(t) = x0 exp�
t

0

[
g𝜁 +

𝛽1(1 − 𝜁 )

𝛽 + y
− d1 − rx −

𝛼y

1 + 𝜂x
− c1x

2

]
ds > 0, ∀t ≥ 0

y(t) = y0 exp�
t

0

[
𝜃x

1 + 𝜂x
− d2 − c2y

]
ds > 0, ∀t ≥ 0.

�s = inf
{
t ∈ [0, �e) ∶ x(t) ∉

(
1

s
, s
)
or y(t) ∉

(
1

s
, s
)}

,

P
{
𝜏∞ ≤ T

}
> 𝜖.



1507Modelling the fear effect in a two‑species predator–prey system…

1 3

Now we define a C2-function G ∶ ℝ
2
+
⟶ ℝ+ by

Since (z + 1 − loge(z)) ≥ 0, ∀z > 0 , so G(x, y) is positive.
Using Itô formula:

where, b1 =
(
g� − d1 +

�1(1−� )

�
+ r

)
, b2 =

(
�

�
− d2 + c2

)
and 

b3 = −

(
g� − d1 +

�1(1−� )

�
+

�

�
− d2 −

�2
1
�2+�2

2

2

)

Lemma 3.1 leads to the following result:

Let b4 = max
{
2b1, 2b2, b3

}
 . We define v1

⋀
v2 = min{v1, v2} . Hence for t1 ≤ T ,

(3.1)P
{
𝜏∞ ≤ T

}
> 𝜖, ∀s ≥ s1.

G(x, y) = (x + 1 − loge(x)) + (y + 1 − loge(y))

d(G(x, y)) =

[(
1 −

1

x

)
x

{
(g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2

}

+

(
1 −

1

y

)
y

{
�x

1 + �x
− d2 − c2y

}
+

�2
1
�2

2
+

�2
2

2

]
dt

+

[(
1 −

1

x

)
��1xdw1 −

(
1 −

1

y

)
�yydw2

]

=

[
(x − 1)

{
(g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2

}
+ (y − 1)

{
�x

1 + �x
− d2 − c2y

}
+

�2
1
�2 + �2

2

2

]
dt +

[
(x − 1)��1dw1 − (y − 1)�ydw2

]

≤
[
(x − 1)

{
(g� − d1) +

�1(1 − � )

�
− rx −

�y

1 + �x
− c1x

2

}
+ (y − 1)

{
�

�
− d2 − c2y

}
+

�2
1
�2 + �2

2

2

]
dt +

[
(x − 1)��1dw1 − (y − 1)�ydw2

]

≤
[
(g� − d1)x +

�1(1 − � )

�
− (g� − d1) −

�1(1 − � )

�
+ rx +

(
�

�
− d2 + c2

)
y

−
�

�
+ d2

]
dt +

[
(x − 1)��1dw1 − (y − 1)�ydw2

]

≤
[{

g� − d1 +
�1(1 − � )

�
+ r

}
x +

{
�

�
− d2 + c2

}
y −

{
g� − d1 +

�1(1 − � )

�

+
�

�
− d2 −

�2
1
�2 + �2

2

2

}]
dt +

[
(x − 1)��1dw1 − (y − 1)�ydw2

]

=(b1x + b2y + b3)dt +
[
(x − 1)��1dw1 − (y − 1)�ydw2

]

d(G(x(t), y(t))) <
[
2b1(x + 1 − loge(x)) + 2b2(y + 1 − loge(y)) + b3

]
dt + (x − 1)𝜁𝜎1dw1

− (y − 1)𝜎2dw2.
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Taking expectation on both sides, we get

By Gronwall inequality [24]:

where b5 =
(
G(x0, y0) + b4T

)
eb4T .

Define Ωs =
{
�s ≤ T

}
 for s ≥ s1 and by (3.1), P(Ωs) ≥ �. Note that for each �� ∈ Ωs , 

there exists at least one of x(�s, �
�), y(�s, �

�) which is equal either s or 1

s
 . So 

F
(
x
(
�s, �

′
)
, y
(
�s, �

′
))

 is not less than the smallest of

 Consequently,

From (3.1) and (3.2):

where 1Ωs
 is the indicator function of Ωs . Therefore, s → ∞ leads to the contradiction 

∞ > b5 = ∞ . Hence �∞ = ∞.
	�  ◻

4 � Boundedness

Let us discuss about boundedness of solutions of (2.8) and derive the conditions under 
which the solutions are bounded.

∫
𝜏s
⋀

t1

0

d(G(x(t), y(t))) < ∫
𝜏s
⋀

t1

0

b4(1 + G(x(t), y(t)))dt

+ ∫
𝜏s
⋀

t1

0

(x − 1)𝜁𝜎1dw1 − ∫
𝜏s
⋀

t1

0

(y − 1)𝜎2dw2

E
�
G
�
x
�
�s

�
t1

�
, y
�
�s

�
t1

��� ≤ G(x0, y0) + E �
�s
⋀

t1

0

b4(1 + G(x(t), y(t)))dt

≤ G(x0, y0) + b4t1 + b4E �
�s
⋀

t1

0

G(x(t), y(t))dt

≤ G(x0, y0) + b4T

+ b4 �
t1

0

E
�
G
�
x
�
�s

�
t1

�
, y
�
�s

�
t1

���
dt

(3.2)E(G(x(�s

⋀
t1), y(�s

⋀
t1))) ≤ b5,

s + 1 − loge(s) and
1

s
+ 1 − loge

(
1

s

)
=

1

s
+ 1 + loge(s).

G(x(�s, �
�), y(�s, �

�)) ≥ (
s + 1 − loge(s)

)⋀(
1

s
+ 1 + loge(s)

)
.

b5 ≥ E[1Ωs
G(x(�s, �

�), y(�s, �
�))]

≥ �

[(
s + 1 − loge(s)

)⋀(
1

s
+ 1 + loge(s)

)]
,
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We define M1(t) = ∫
t

0

�1dw1, M2(t) = ∫
t

0

�2dw2 are real valued continuous local 

martingales. Applying strong law of large numbers: lim
t→∞

M1(t)

t
= lim

t→∞

M2(t)

t
= 0.

Theorem  4.1  Let (x(t),  y(t)) be a solution of system (2.8) with (x0, y0) ∈ ℝ
2
+
 , then 

E(xp(t)) ≤ M(p),∀p ≥ 1 , where

and for �
�
+

p − 1

2
�2
2
≤ d2 , E(yp(t)) ≤ y

p

0
.

Proof  From system (2.8), we have

We take V(x, t) = etxp and apply Itô formula:

Let h(x) = xp
(
1

p
+ (g� − d1) +

�1(1 − � )

�
− rx +

(p − 1)

2
�2�2

1

)

Hence, hmax =
�p
r

�p⎡⎢⎢⎣

1

p
+ (g� − d1) +

�1(1−� )

�
+

(p−1)

2
�2�2

1

p + 1

⎤⎥⎥⎦

p+1

M(p) = max

⎧⎪⎨⎪⎩
x
p

0
, p
�p
r

�p⎡⎢⎢⎣

1

p
+ g� +

�1(1−� )

�
+

p−1

2
�2�2

1

p + 1

⎤⎥⎥⎦

p+1⎫⎪⎬⎪⎭
,

dx = x

[
(g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2

]
dt + ��1xdw1

dV(t) =

[
etxp + petxp−1x

{
(g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2

}

+
p(p − 1)

2
etxp−2�2�2

1
x2
]
dt + petxp��1xdw1

=petxp
[
1

p
+ (g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2

+
(p − 1)

2
�2�2

1

]
dt + petxp��1xdw1

∴E(V(t)) ≤xp
0
+ p�

t

0

esE

[
xp
(
1

p
+ (g� − d1) +

�1(1 − � )

�
− rx

+
(p − 1)

2
�2�2

1

)]
ds

∴h�(x) = pxp−1
(
1

p
+ (g� − d1) +

�1(1 − � )

�
+

(p − 1)

2
�2�2

1

)
− r(p + 1)xp = 0

⟹ x =
1 + p(g� − d1) +

p�1(1−� )

�
+

p(p−1)

2
�2�2

1

r(p + 1)
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∴ E(v(t)) ≤ x
p

0
+ p

�p
r

�p⎡⎢⎢⎣

1

p
+ (g� − d1) +

�1(1−� )

�
+

(p−1)

2
�2�2

1

p + 1

⎤
⎥⎥⎦

p+1

(et − 1)

So, for t = 0 , E(xp) ≤ x
p

0
 and for t → ∞

E(xp) ≤ p
(

p

r

)p
(

1

p
+(g�−d1)+

�1 (1−� )

�
+

(p−1)

2
�2�2

1

p+1

)p+1

.

Now let

Hence, E(xp) ≤ M(p).

From second equation of (2.8), we have

Let G(y) = loge(y) and applying Itô formula:

Now for �
�
+

p − 1

2
�2
2
≤ d2 , E(yp(t)) ≤ y

p

0
.

Hence the theorem.
	�  ◻

So, E(xp) ≤
⎡
⎢⎢⎢⎣
x
p

0
− p

�p
r

�p⎛⎜⎜⎝

1

p
+ (g� − d1) +

�1(1−� )

�
+

(p−1)

2
�2�2

1

p + 1

⎞⎟⎟⎠

p+1⎤
⎥⎥⎥⎦
e−t

+ p
�p
r

�p⎛⎜⎜⎝

1

p
+ (g� − d1) +

�1(1−� )

�
+

(p−1)

2
�2�2

1

p + 1

⎞⎟⎟⎠

p+1

M(p) = max

⎧⎪⎨⎪⎩
x
p

0
, p
�p
r

�p⎡⎢⎢⎣

1

p
+ (g� − d1) +

�1(1−� )

�
+

p−1

2
�2�2

1

p + 1

⎤⎥⎥⎦

p+1⎫⎪⎬⎪⎭
.

dy = y

[
�x

1 + �x
− d2 − c2y

]
dt − �2ydw2

≤
[
�

�
y − d2y

]
dt − �2ydw2

d(log(y)) ≤
[
�

�
− d2 −

�2
2

2

]
dt − �2

2
dw2

⟹ log(y) ≤ log y0 +

[
�

�
− d2 −

�2
2

2

]
t −M2

⟹ y(t) ≤ y0e

(
�

�
−d2−

�2
2

2

)
t−M2

⟹ yp(t) ≤ y
p

0
e
p

(
�

�
−d2−

�2
2

2

)
t−pM2

∴E(yp(t)) ≤ y
p

0
e
p

(
�

�
−d2+

(p−1)�2
2

2

)
t

.
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5 � Some groundworks

Theorem 5.1  Let (x(t), y(t)) be the solution of (2.8) with (x0, y0) ∈ ℝ
2
+
, then

	 (i)	 �(t) ≤ x(t) ≤ Φ(t)

	 (ii)	 �(t) ≤ y(t) ≤ Ψ(t),

where

Proof  From system (2.8), we have

Let us consider Φ(t) be the unique solution of the following equation:

Considering H1(t) =
1

Φ(t)
with H1(0) =

1

x0
 and applying Itô formula, we get

After solving this stochastic differential equation, we get

Hence,

�(t) =
1

r+c1 ∫ t

0
Φ(s)ds

g�−� ∫ t

0
�(s)ds−d1−�

2�2
1

+

[
1

x0
−

r+c1 ∫ t

0
Φ(s)ds

g�−� ∫ t

0
�(s)ds−d1−�

2�2
1

]
e(� ∫ t

0
�(s)ds−g�+d1+�

2�2
1)t−�M1(t)

Φ(t) =
1

r

g�−d1−�
2�2

1
+

�1 (1−� )

�

+

[
1

x0
−

r

g�−d1−�
2�2

1
+

�1 (1−� )

�

]
e

(
�2�2

1
−g�+d1−

�1 (1−� )

�

)
t−�M1(t)

�(t) =
1

−
c2

(d2+�2
2)

+

[
1

y0
+

c2

(d2+�2
2)

]
e(d2+�

2
2)t+M2(t)

Ψ(t) =
1

c2
�

�
−�2

2
−d2

+

[
1

y0
−

c2
�

�
−�2

2
−d2

]
e

(
�2
2
−

�

�
+d2

)
t+M2(t)

.

dx = x

[
(g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2

]
dt + ��1xdw1

≤
[(

g� − d1 +
�1(1 − � )

�

)
x − rx2

]
dt + ��1xdw1

dΦ(t) =

[(
g� − d1 +

�1(1 − � )

�

)
Φ(t) − rΦ(t)2

]
dt + ��1Φ(t)dw1 with Φ(0) = x0

dH1(t) =

⎡
⎢⎢⎣
−

g� − d1 +
�1(1−� )

�

Φ
+ r +

�2�2
1

Φ

⎤
⎥⎥⎦
dt −

��1

Φ
dw1

=

�
r −

�
g� − d1 +

�1(1 − � )

�

�
H1 + �2�2

1
H1

�
dt − ��1H1dw1

H1(t) =
r

g� − d1 − �2�2
1
+

�1(1−� )

�

+

⎡⎢⎢⎣
1

x0
−

r

g� − d1 − �2�2
1
+

�1(1−� )

�

⎤⎥⎥⎦
e

�
�2�2

1
−g�+d1−

�1 (1−� )

�

�
t−�M1(t)
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From system (2.8) we also have

Let us consider Ψ(t) be the unique solution of the following equation:

Considering H2(t) =
1

Ψ(t)
with H2(0) =

1

y0
 and applying Itô formula, we get

After solving this stochastic differential equation, we get

Hence,

Again from (2.8), we have

Let us consider �(t) be the unique solution of the following equation:

Considering H3(t) =
1

�(t)
with H3(0) =

1

y0
 and applying Itô formula, we get

(5.1)

Φ(t) =
1

r

g�−d1−�
2�2

1
+

�1 (1−� )

�

+

[
1

x0
−

r

g�−d1−�
2�2

1
+

�1 (1−� )

�

]
e

(
�2�2

1
−g�+d1−

�1 (1−� )

�

)
t−�M1(t)

and x(t) ≤ Φ(t)

dy = y

[
�x

1 + �x
− d2 − c2y

]
dt − �2ydw2

≤ y

[
�

�
− d2 − c2y

]
dt − �2ydw2

dΨ(t) =

[
�

�
− d2 − c2Ψ

]
Ψdt − �2Ψdw2 with Ψ(0) = y0

dH2(t) =

⎡
⎢⎢⎣
c2 −

�

�
− d2

Ψ
+

�2
2

Ψ

⎤
⎥⎥⎦
dt +

�2

Φ
dw2

=

�
c2 +

�
�2
2
−

�

�
+ d2

�
H2

�
dt + �2H2dw2

H2(t) =
c2

�

�
− �2

2
− d2

+

⎡⎢⎢⎣
1

y0
−

c2
�

�
− �2

2
− d2

⎤⎥⎥⎦
e

�
�2
2
−

�

�
+d2

�
t+M2(t)

(5.2)

Ψ(t) =
1

c2
�

�
−�2

2
−d2

+

[
1

y0
−

c2
�

�
−�2

2
−d2

]
e

(
�2
2
−

�

�
+d2

)
t+M2(t)

and y(t) ≤ Ψ(t)

dy ≥ y
(
−d2 − c2y

)
dt − �2ydw2

d�(t) = �
(
−d2 − c2�

)
dt − �2�dw2 with �(0) = y0
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After solving this stochastic differential equation, we get

Hence,

From first equation of system (2.8) and using (5.1), we also get

Let us consider �(t) be the unique solution of the following equation:

Considering H4(t) =
1

�(t)
with H4(0) =

1

x0
 and applying Itô formula, we get

After solving this stochastic differential equation, we get

Now, from (5.1), (5.2), (5.3) and (5.4) we can conclude that
�(t) ≤ x(t) ≤ Φ(t) and �(t) ≤ y(t) ≤ Ψ(t) Hence the theorem.
	�  ◻

dH3(t) =

(
c2 +

d2 + �2
2

�

)
dt +

�2

�
dw2

=
[
c2 + (d2 + �2

2
)H3

]
dt + �2H3dw2

H3(t) = −
c2(

d2 + �2
2

) +

[
1

y0
+

c2(
d2 + �2

2

)
]
e(d2+�

2
2)t+M2(t)

(5.3)
�(t) =

1

−
c2

(d2+�2
2)

+

[
1

y0
+

c2

(d2+�2
2)

]
e(d2+�

2
2)t+M2(t)

and y(t) ≥ �(t)

dx ≥ x
[
(g� − d1) − rx − �Ψ − c1Φx

]
dt + ��1xdw1

d�(t) = �
[
(g� − d1) − r� − �Ψ − c1Φ�

]
dt + ��1�dw1 with �(0) = x0

dH4(t) =

[
�Ψ

�
−

(g� − d1)

�
+ r + c1Φ +

�2�2
1

�

]
dt −

��1

�
dw1

=
[
r + c1Φ(�Ψ + g� + d1 + �2�2

1
)H4

]
dt − ��1H4dw1

H4(t) =
r + c1 ∫ t

0
Φ(s)ds

g� − � ∫ t

0
�(s)ds − d1 − �2�2

1

+

[
1

x0
−

r + c1 ∫ t

0
Φ(s)ds

g� − � ∫ t

0
�(s)ds − d1 − �2�2

1

]
e(� ∫ t

0
�(s)ds−g�+d1+�

2�2
1)t−�M1(t)

(5.4)

�(t) =
1

r+c1 ∫ t

0
Φ(s)ds

g�−� ∫ t

0
�(s)ds−d1−�

2�2
1

+

[
1

x0
−

r+c1 ∫ t

0
Φ(s)ds

g�−� ∫ t

0
�(s)ds−d1−�

2�2
1

]
e(� ∫ t

0
�(s)ds−g�+d1+�

2�2
1)t−�M1(t)

and y(t) ≥ �(t)
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Theorem 5.2  Let (x(t), y(t)) be a solution of system (2.8), then almost every sample path 
of (x(t),  y(t)) is uniformly continuous on t ≥ 0 for any initial value (x0, y0) ∈ ℝ

2
+
if 

�

�
+

p − 1

2
�2
2
≤ d2.

Proof  From system (2.8) we have:

We take Γ1(x(t), y(t)) ∶= x

[
(g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2

]
 and 

Γ2(x(t), y(t)) ∶= ��1x.

Hence, dx = Γ1(x(t), y(t))dt + Γ2(x(t), y(t))dw1.

Using Theorem 5.1 and A.M ≥ G.M.:

Also we have, E||Γ2(x(t), y(t))
||p ≤ �P�

p

1
M(p) = H2(p) (say)

Let us write the SDE in it’s stochastic integration form as follows:

From moment inequality [25] of Itô for 0 ≤ t1 < t2 < ∞ and p ≥ 2 , we have

Now we apply Hölder’s inequality for t2 − t1 ≤ 1 and (5.5),

dx = x

[
(g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2

]
dt + ��1xdw1

E||Γ1(x(t), y(t))
||p ≤ 1

2
E|x|2p + 1

2
E
||||(g� − d1) +

�1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2
||||
2p

≤ 1

2
E(x2p) +

42p−1

2

[(
g� − d1 +

�1(1 − � )

�

)2p

+ r2pE(x2p) + �2pE(y2p)

]

≤
(
1

2
+

42p−1

2
r2p

)
E(x2p) +

42p−1

2

(
g� − d1 +

�1(1 − � )

�

)2p

+
42p−1

2
�2pE(y2p)

≤
(
1

2
+

42p−1

2
r2p

)
M(2p) +

42p−1

2

(
g� − d1 +

�1(1 − � )

�

)2p

+
42p−1

2
�2pE(y

2p

0
) = H1(p) (say)

x(t) = x0 + ∫
t

0

Γ1(x(s), y(s))ds + ∫
t

0

Γ2(x(s), y(s))dw1(s)

(5.5)E
|||||�

t2

t1

Γ2(x(s), y(s))dw1(s)
|||||

p

≤
[
p(p − 1)

2

] p

2

(t2 − t1)
p−2

2 �
t2

t1

||Γ2(x(s), y(s))
||pds
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Hence it can be concluded that every sample path of x(t) is locally but uniformly Hölder 
continuous with exponent � ∈

(
0,

p−2

2p

)
 . So, it can be concluded that every sample path of 

x(t) is uniformly continuous on t ≥ 0 . Similarly, it can be shown that every sample path of 
y(t) is uniformly continuous on t ≥ 0.

	�  ◻

6 � Extinction

A species is said to be extinct if there exists no member which can reproduce or create a 
new generation in the habitat in long run. That can happen for various environmental and 
artificial reasons. In the next theorem we shall show that extinction of prey population pro-
pel predator population towards extinction.

Definition 6.1  Population x(t) is said to be going extinct with probability one if

Theorem 6.1  Let (x(t), y(t)) be the solution of system (2.8). Then the prey and predator 

both population go extinct in long run if g𝜁 + 𝛽1(1 − 𝜁 ) < d1 +
𝜎2
1
𝜁2

2
 , that is,

Proof  We take u(x) = log(x) and apply Itô formula on the first equation of system (2.8):

Let h(x) = (g� − d1) + b1(1 − � ) − rx − c1x
2 −

�2�2
1

2

E|x(t2) − x(t1)|p ≤ 2p−1E

[
�

t2

t1

Γ1(x(s), y(s))ds

]p
+ 2p−1E

[
�

t2

t1

Γ2(x(s), y(s))dw1(s)

]p

≤ 2p−1(t2 − t1)
(p−1) �

t2

t1

H1(p)ds

+ 2(p−1)
[
p(p − 1)

2

] p

2

(t2 − t1)
p−2

2 �
t2

t1

H2(p)ds

= 2p−1(t2 − t1)
pH1(p) + 2p−1

[
p(p − 1)

2

] p

2

(t2 − t1)
p

2H2(p)

≤ 2(p−1)(t2 − t1)
p

2

[
1 +

p(p − 1)

2

](
H1 + H2

)

lim
t→∞

x(t) = 0 a.s.

lim
t→∞

x(t) = lim
t→∞

y(t) = 0 a.s. if g𝜁 + 𝛽1(1 − 𝜁 ) < d1 +
𝜎2
1
𝜁2

2
.

d(log(x)) =

[
(g� − d1) +

b1(1 − � )

� + y
− rx −

�y

1 + �x
− c1x

2 −
�2�2

1

2

]
dt + ��1dw1

≤
[
(g� − d1) + b1(1 − � ) − rx − c1x

2 −
�2�2

1

2

]
dt + ��1dw1
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So, h�(x) = −r − 2c1x < 0. i.e., h(x) is a deceasing function. Hence, the supremum 
occurs at x = 0.

sup
x≥0

h(x) = (g� − d1) + b1(1 − � ) −
�2�2

1

2
.

Hence,

Therefore, for every 𝜖 > 0 there exists t0(> 0) and set Ω� such that P(Ω�) ≥ 1 − � and x < 𝜖 
for every t ≥ t0 and x ∈ Ω� .

Hence lim
t→∞

x(t) = 0 a.s.

From the second equation of (2.8):

Consider v(x) = loge(y) and use Itô formula:

Since, 𝜖(> 0) is arbitrarily small, therefore lim sup
t→∞

loge y(t)

t
< 0. So, we can conclude that 

lim
t→∞

y(t) = 0 a.s. 	�  ◻

7 � Persistent

In this section the persistence of system (2.8) will be discussed. First we shall define persis-
tence in mathematical terms.

d(log(x)) ≤
[
(g𝜁 − d1) + b1(1 − 𝜁 ) −

𝜁2𝜎2
1

2

]
dt + 𝜁𝜎1dw1

⟹ log(x) ≤ log(x0) +

[
(g𝜁 − d1) + b1(1 − 𝜁 ) −

𝜁2𝜎2
1

2

]
t + 𝜁M1

∴ lim sup
t→∞

log(x)

t
≤ (g𝜁 − d1) + b1(1 − 𝜁 ) −

𝜁2𝜎2
1

2
< 0

[
∵g𝜁 + 𝛽1(1 − 𝜁 ) < d1 +

𝜎2
1
𝜁2

2

]

dy = y

[
�x

1 + �x
− d2 − c2y

]
dt − �2ydw2.

d(loge y) =

[
𝜃x

1 + 𝜂x
− d2 − c2y −

𝜎2
2

2

]
dt − 𝜎2dw2

≤
[
𝜃x − d2 − c2y

𝜎2
2

2

]
dt − 𝜎2dw2

≤
[
𝜃𝜖 − d2 −

𝜎2
2

2

]
dt − 𝜎2dw2

⟹
loge y

t
<

loge y0

t
+

(
𝜃𝜖 − d2 −

𝜎2
2

2

)
−

M2

t

⟹ lim sup
t→∞

loge y

t
< 𝜃𝜖 − d2 −

𝜎2
2

2
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Definition 7.1  System (2.8) is said to be persistent in mean if lim inf
t→∞

⟨y⟩t > 0 , where 

⟨y⟩t = 1

t ∫
t

0

y(s)ds.

Lemma 7.1  [7] Suppose Z(t) ∈ ℂ(Ω × [0,∞),ℝ+).

(a)	� If there exist T , �, �0 ∈ ℝ+ such that 

loge Z(t) ≤ �t − �0 �
t

0

Z(s)ds +

n∑
i=1

�iW(t) a.s. ∀t ≥ T , where �i are constants for 

i = 1, 2, ..., n, then

(b)	� If there exist T , �, �0 ∈ ℝ+ such that

where �i are constants for i = 1, 2, ..., n, then

Lemma 7.2  [20] Consider the following one dimensional stochastic system:

 

(a)	� If 

(
g𝜁 +

𝛽1(1 − 𝜁 )

𝛽
− d1 −

𝜁2𝜎2
1

2

)
< 0, then lim

t→∞
z(t) = 0 a.s.

(b)	� If 

(
g𝜁 +

𝛽1(1 − 𝜁 )

𝛽
− d1 −

𝜁2𝜎2
1

2

)
> 0, then 

lim
t→∞

1

t ∫
t

0

z(s)ds = g� +
�1(1 − � )

�
− d1 −

�2�2
1

2
 and 

ℙ

{
lim
t→∞

1

t ∫
t

0

f (z(s))ds = ∫
ℝ+

f (x)�(x)dx

}
= 1 , where �(x) is the stationary density.

Theorem  7.1  Let us consider 

(
g𝜁 +

𝛽1(1 − 𝜁 )

𝛽
− d1 −

𝜁2𝜎2
1

2

)
> 0 and 

Λ = � ∫
∞

0

z

1 + �z
�(x)dx − d2 −

�2
2

2
. If (x(t),  y(t))be a solution of system (2.8) for any 

(x0, y0) ∈ ℝ
2
+
, then system (2.8) is persistent in mean provided Λ > 0.

⎧⎪⎨⎪⎩

lim sup
t→∞

⟨Z⟩t ≤ 𝛿

𝛿0
, a.s. if 𝛿 > 0,

lim
t→∞

⟨Z⟩t = 0, a.s. if 𝛿 < 0.

loge Z(t) ≥ �t − �0 �
t

0

Z(s)ds +

n∑
i=1

�iWi(t) a.s. ∀ t ≥ T ,

lim inf
t→∞

⟨Z⟩t ≥ �

�0
a.s.

(7.1)dz(t) = z(t)

(
g� +

�1(1 − � )

�
− d1 − rz(t)

)
dt + �1�z(t)dw1, with z(0) = x(0).
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Proof  From the first equation of system (2.8), applying Itô formula, we have

Now integrating both sides and dividing by t, we get

Applying Itô formula on (7.1), we have

Now integrating both sides and dividing by t, we get

From, (7.2) and (7.3) it can be easily observed that F1(t) ≤ F2(t)

Hence,

From second equation of system (2.8), applying Itô formula, we have

d(loge x(t)) =

[
(g − d1) +

�1(1 − � )

�
− rx −

�y

1 + �x
− c1x

2 −
�2
1

2

]
dt + ��1dw1

(7.2)

loge x(t) − loge x0

t
=

(
g� − d1 −

�2�2
1

2
+

�1(1 − � )

�

)
−

r

t ∫
t

0

x(s)ds

−
�

t ∫
t

0

y(s)

1 + �x(s)
ds +

�M1(t)

t
= F1(t)(say)

d(loge z(t)) =

[
g� +

�1(1 − � )

�
− d1 − rz −

�2�2
1

2

]
dt + ��1dw1.

(7.3)
loge z(t) − loge z0

t
=

(
g� +

�1(1 − � )

�
− d1 −

�2�2
1

2

)
−

r

t ∫
t

0

z(s)ds +
�M1

t

= F2(t) (say)

⇒
r

t �
t

0

(z(s) − x(s))ds ≤ �

t �
t

0

y(s)

1 + �x(s)
ds

⇒
1

t �
t

0

(z(s) − x(s))ds ≤ �

rt �
t

0

y(s)

1 + �x(s)
ds

≤ �

rt �
t

0

y(s)ds

(7.4)
1

t �
t

0

(z(s) − x(s))ds ≤ �

rt �
t

0

y(s)ds

d(loge y(t)) =

[
�x

1 + �x
− d2 − c2y −

�2
2

2

]
dt − �2dw2

=

[
�z

1 + �z
−

(
�z

1 + �z
−

�x

1 + �x

)
− d2 − c2y −

�2
2

2

]
dt − �2dw2

≥
[

�z

1 + �z
− �(z(t) − x(t)) − d2 − c2y −

�2
2

2

]
dt − �2dw2
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Integrating both side and dividing by t, we get

For sufficiently large t, using Lemma 7.1(b) and arbitrariness of �:

Therefore, from the definition of persistence of a system, it can be concluded that system 
(2.8) is persistence if Λ > 0 . Hence the theorem.

	�  ◻

8 � Numerical simulations

This section deals with numerical findings to validate theoretical outcomes that the previ-
ous sections offered. We approximate the solution of stochastic system (2.8) by numerical 
simulation using Euler Maruyama method in MATLAB.

To simulate the system, we set the values of biological and environmental parameters as 
follows:

We have started the simulating system (2.8) from the initial point (1.7, 0.72). It is found 
the effects of environmental noise on prey and predator population and observed that after 
some initial transients the biomass of prey population varies around 0.6 and predator popu-
lation varies around 0.3 which are depicted in (1.a) and (1.b) of Fig. 1 respectively.

In theoretical study, it is found that prey extincts if g𝜁 + 𝛽1(1 − 𝜁 ) < d1 +
𝜎2
1
𝜁2

2
 and 

extinction of prey propels predator population towards extinction. To satisfy the condition 
we take g = 0.5 and d1 = 0.55 i.e., �1 = g� = 0.5 and simulate system (2.8) in MATLAB. 
It is found in numerical simulation also that extinction of prey causes immediate extinction 
of predator population which is depicted in Fig. 2.

Theorem 7.1 affirms the persistence of system (2.8) under some conditions which are 
satisfied by the given set of values in Table 1. Figure 3 validates the mathematical result.

In this work, the fear function has been considered as f (� , �, x) = � +
1 − �

1 +
y

�

 where � 

represents the minimum fear level and 1
�
 is the cost of fear. We have tested the system for 

high fear level, i.e., for a low value of � . Value of � is considered as 0.1, i.e., 1
�
= 10 and 

loge y(t) − loge y0

t
≥
�
−d2 −

�2
2

2

�
+

�

t �
t

0

z(s)

1 + �z(s)
ds −

��

r �
t

0

y(s)ds

− c2 �
t

0

y(s)ds −
M2(t)

t

=

�
−d2 −

�2
2

2

�
− � + � �

∞

0

z

1 + �z
�(x)dx −

�
c2 +

��

r

�
⟨y⟩t

−
M2(t)

t

=Λ − � −

�
c2 +

��

r

�
⟨y⟩t −

M2(t)

t

lim inf
t→∞

⟨y⟩t ≥ rΛ

rc2 + ��
a.s.



1520	 A. Das, G. P. Samanta 

1 3

�1 = g� = 0.1 and it can be observed in Fig.  4 that fear affects negatively on predator 
population.

To test if the cost of fear is very high we have taken 1

�
= 100 , i.e., � = 0.01 and 

�1 = 0.01 . In Fig.  5 we observe that prey population persists but predator population 
extincts after a certain period of time.

Only for a lower fear level, say, for 1
�
= 0.0001 and � = 0.1 , it is observed that the sys-

tem persists which is a very normal situation in reality. This behavior is shown in Fig. 6.

Table 1   Values of parameters for numerical simulations

g � d
1

� �
1
= g� r � � c

1
� d

2
c
2

�
1

�
2

1 0.1 0.5 1 1 0.1 0.7 0.4 0.2 0.5 0.2 0.15 0.01 0.01
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Fig. 1   Trajectories of prey population varies around 0.6 and predator population varies around 0.3 
described in system (2.8) for the parametric values in Table 1
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Fig. 2   Extinction of prey and predator population under the stated condition in Theorem 6.1



1521Modelling the fear effect in a two‑species predator–prey system…

1 3

We have tested the effects of toxicity numerically. In all the figures from Figs.  1, 
2, 3, 4, 5 and 6, values of c1 and c2 have been considered as 0.2 and 0.15 respectively. 
Now we consider values of c1 and c2 as 1.5 and 0.8 in Fig. 7 and 3.5 and 2.8 in Fig. 8 
respectively. Here it is observed that both prey and predator population decrease but 
mostly predator population gets affected.

In Fig. 8, it is observed that prey population decreases and predator population is 
going to extinct after a certain period of time.

If we consider the system in a toxic free environment, i.e., c1 = 0 and c2 = 0 , then it 
is observed that prey–predator population persists together which is depicted in Fig. 9.
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Fig. 3   System (2.8) persists for the set of values in Table 1 which satisfy the conditions in Theorem 7.1
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Fig. 4   High fear affect negatively on predator population
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9 � Conclusion

In this work we have considered a Lotka–Volterra predator–prey model where prey spe-
cies is directly infected by some external toxic substances while the predator is indi-
rectly affected for feeding on these infected prey. This model also involves fear of preda-
tor felt by prey. Birth rate of prey and death rate of predator are considered as stochastic 
parameters and they are perturbed by introducing Gaussian white noise. Existence of 
unique global positive solutions are established for both deterministic and stochastic 
systems. It is found analytically that environmental noise plays an important role in the 
extinction of both the species. In numerical simulation through Fig.  2 this analytical 
finding is justified. Boundedness and uniform continuity criteria of the solution of the 
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Fig. 5   Very high cost of fear propel predator population toward extinction
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Fig. 6   System (2.8) persists in presence of minimum fear only
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underlying system (2.8) are also derived. We have also established most useful criteria 
of persistence of this system under some conditions.

In numerical simulations, it is observed how fear factor affects the system. It is also 
found that fear factor affects negatively on predator population (see Figs.  4, 5). It is 
observed in Fig. 5 that predator population is going to extinct for a very high cost of 
fear. It is shown in Fig.  6 that existence of only a lower fear level makes the system 
persistent.

Numerically, we have also observed the effects of toxicity. High toxicity affects both 
the species (see Figs. 7, 8). In Fig. 8 it is found that extremely high toxicity can be a 
cause of extinction of predator. In Fig. 9 we have found that the system persists if it is 
free from toxicity.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

t

P
op

ul
at
io
n

x(t)
y(t)x(t)

y(t)

Fig. 7   Predator population decreases for high toxic c
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= 1.5 and c
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= 0.8
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