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Abstract
We study the Cauchy problem of the Ostrovsky equation (Ost) �

t
u + �3

x
u − �−1

x
u + u�

x
u = 0 , 

where the data in analytic Gevrey spaces on the line and the circle is considered and its 
local well-posedness in these spaces is proved. The proof is based on bilinear estimates in 
Bourgain type spaces. Also, Gevrey regularity of the solution in time variable is provided.

Keywords Ostrovsky equation · Well-posedness · Analytic Gevrey spaces · Bourgain 
spaces · Bilinear estimates · Time regularity
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1 Introduction

In this paper we investigate a nonlinear model of long waves which describes the propaga-
tion of surface waves in the ocean

(1.1)
{

�tu + �3
x
u − �−1

x
u + u�xu = 0, x ∈ ℝ or 𝕋 , t ∈ ℝ

u(x, 0) = �(x),
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where the operator �−1
x

 denotes a certain antiderivative with respect to the variable x defined 
for 0-mean value periodic function by the Fourier transform (̂�−1

x
f ) =

f̂ (�)

i�
 . The model (1.1) 

was introduced by Ostrovsky [1]. This type of problem comes from the Korteweg-de Vries-
Burgers equation

The Eq.  (1.2) appears in the literature as a dissipative version of the Korteweg-de Vries 
equation

In some typical situations, due to the effects of viscosity, it is impossible to neglect dissipa-
tive effects, and which can lead to the KdV-Burgers equation [2]. Therefore this is a model 
for the propagation of waves in a non-linear medium that is both dispersive and dissipative. 
In [3], it was shown that the equations of Kadomtsev–Petviashvili–Burgers

model the propagation of electromagnetic waves in a saturated ferromagnetic medium. 
We can consider these equations as models for the propagation of two-dimensional waves 
taking into account damping effects. These equation is also dissipative versions of the 
Kadomtsev–Petviashvili equation

In the context of waves, (KP) equations are universal models for non-linear, nearly unidi-
rectional dispersive waves with weak transverse effects. The sign � = + 1 corresponds to 
the equation of (KP-II), while the sign � = − 1 corresponds to the equation of (KP-I). The 
KP-II equation models long waves with small surface tension effects, whereas the KP-I 
equation models the flow in the presence of strong surface tension effects. These equations 
are two-dimensional extensions of the Korteweg-de Vries (KdV) equation. By disturbing 
the Korteweg Vries equation (KdV) with a non-local term, we can obtain the Ostrovsky 
equation (1.1)1 . Several papers have been published and many results have been obtained 
in classical Sobolev spaces Hs(ℝ) for dynamical system generated by nonlinear partial dif-
ferentiel equations (see [4–10], and references therein).

Our main goal here is to show, where data in analytic Gevrey spaces on the line and the cir-
cle, that the considered problem admits a local well-posedness in analytic Gevrey Bourgain-
spaces. The proof is based on bilinear estimates in Bourgain type spaces. Also, Gevrey regu-
larity of the solution in time variable is provided. There is few results about this subject so far.

We are working mainly on the integral equivalent formulation of (1.1) given as follows

where the unit operator related to the corresponding linear equation is

With � we denote the phase function as follows

(1.2)�tu + �3
x
u − �xxu + u�xu = 0.

(1.3)�tu + �3
x
u + u�xu = 0.

(1.4)�x(�tu + �3
x
u − �2

x
u + u�xu) + ��2

y
u = 0, � = ±1.

(1.5)�x(�tu + �3
x
u + u�xu) + ��2

y
u = 0, � ± 1.

(1.6)u(t) = S(t)� −
1

2 ∫
t

0

S(t − t�)(�xu
2(t�))dt�,

(1.7)(S(t)�)(x) = ∫
ℝ

ei(x�+t�(�))�̂(�)d�.
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We define the needed spaces begining by the spaces of analytic Gevrey functions that con-
tain our initial data. For s ∈ ℝ , � ≥ 1 , a ≥ 0 and 𝛿 > 0 , denote

where

and in the periodic case we define

for

Here ⟨⋅⟩ stands for (1 + | ⋅ |2) 1

2.
The completion of the Schwartz class S(ℝ2) is given by Xa

�,�,s,b
(ℝ2) , subjected to the 

norm

For the periodic case, it is defined as the completion of the space of the functions defined 
on 𝕋 ×ℝ that are in the Schwartz class in t and are supposed smooth in x, with the norm

For a given interval I = [−T , T], T > 0 , with Xa
�,�,s,b

(I ×ℝ) we denote the restriction of 
Xa
�,�,s,b

(ℝ2) on I ×ℝ with the following norm

The paper is organized as follows. In Sect. 2, our main results regarding the well-posedness 
and regularity in the analytic Gevrey–Bourgain spaces for (1.1) are stated. In Sect. 3, time 
regularity is proved in details.

(1.8)�(�) = �3 − �−1.

(1.9)G𝜎,𝛿,s,a(ℝ) =
�
𝜑 ∈ L2(ℝ);‖𝜑‖G𝜎,𝛿,s,a (ℝ) < ∞

�
,

‖�‖2
G�,�,s,a(ℝ)

= ∫
ℝ

e2�∣�∣
1
� ⟨�⟩2(s+a)���−2a��̂(�)�2d�,

(1.10)G𝜎,𝛿,s,a(� ) =
�
𝜑 ∈ L2(� );‖𝜑‖G𝜎,𝛿,s,a(� ) < ∞

�
,

‖�‖2
G�,�,s,a(𝕋 )

=
�

k ∈ ℤ

k ≠ 0

e2�∣k∣
1
� ⟨k⟩2(s+a)�k�−2a��̂(k)�2.

(1.11)‖u‖Xa
�,�,s,b

(ℝ2) =

�
∫
ℝ2

e2�∣�∣
1
� ⟨�⟩2(s+a)���−2a⟨� − �(�)⟩2b ∣ û(�, �) ∣2 d�d�

� 1

2

.

(1.12)

‖u‖Xa
�,�,s,b

(𝕋×ℝ) =

⎛⎜⎜⎜⎜⎜⎝

�
k ∈ ℤ

k ≠ 0

� e2�∣k∣
1
� ⟨k⟩2(s+a)�k�−2a⟨� − �(k)⟩2b ∣ û(k, �) ∣2 d�

⎞⎟⎟⎟⎟⎟⎠

1

2

.

‖u‖XT ,a

�,�,s,b
∶= ‖u‖Xa

�,�,s,b
(I×ℝ) = inf

�
∥ U ∥Xa

�,�,s,b
(ℝ2)∶ U ∣I×ℝ= u

�
.
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2  Main results and proofs

For a b ∈ ℝ with b± we denote b ± � for 𝜖 > 0 small enough

Theorem 2.1 Let s ≥ s0 = −
5

8
+, b > 1

2
, 𝜎 ≥ 1 and 𝛿 > 0 . Then for any � ∈ G�,�,s,a , where 

a =
1

2
− , there exists T = T(∥ � ∥G�,�,s0,a ) such that (1.1) with the initial condition u ∣t=0= � 

has a solution u, satisfying

Moreover, this solution is unique in the class of XT ,a

�,�,s,b
 , and the mapping

is Lipschitz continuous.

Our next goal is to study Gevrey’s temporal regularity of the unique solution obtained 
in Theorem . A periodic and non-periodic function f(x) is the Gevrey class of order � , if 
there exists a constant C > 0 such that

Here we will show that for x ∈ ℝ or �  , for every t ∈ (−T , T) and j, l ∈ {0, 1, 2,…} , there 
exist C > 0 such that,

i.e, u(⋅, t) ∈ G� in spacial variable and u(x, ⋅) ∈ G3� in time variable .

Theorem  2.2 Let s > −
5

8
+, 𝜎 ≥ 1, a =

1

2
− and 𝛿 > 0 . If � ∈ G�,�,s,a , then the solution 

u ∈ C
(
[−T , T],G�,�,s,a

)
 , given by Theorem 2.1, belongs to the Gevrey class G3� in time 

variable.

To prove our main results we have a need of some bilinear estimates in the ana-
lytic Bourgain spaces. Note that the spaces Xa

�,�,s,b
 are continuously embedded in 

C
(
[−T , T],G�,�,s,a(ℝ)

)
 , provided b > 1∕2 . We start with the following useful lemma.

Lemma 2.3 Let b >
1

2
, s ∈ ℝ, 𝜎 ≥ 1, 𝛿 > 0 and a ≥ 0 . Then, for all T > 0 we have

and

Proof Observe that the operator A, defined by

u ∈ X
T ,a

𝜎,𝛿,s,b
⊆ C

(
[−T , T],G𝜎,𝛿,s,a

)
.

F ∶ G�,�,s,a
⟶ X

a,T

�,�,s,b
, � ↦ u,

(2.1)sup
x∈ℝor𝕋

∣ �l
x
f (x) ∣≤ Cl+1(l!)� l = 0, 1, 2,… .

(2.2)
sup

t ∈ (−T , T)

x ∈ ℝor𝕋

∣ �
j

t�
l
x
u(x, t) ∣≤ Cj+l+1(j!)3�(l!)� .

Xa
�,�,s,b(ℝ

2) ↪ C
(
ℝ,G�,�,s,a(ℝ)

)
,

X
T ,a

�,�,s,b
↪ C

(
[−T , T],G�,�,s,a(ℝ)

)
.
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satisfies the relations

and

where Xs,a,b is the space defined in [11]. From Lemma 1.1 of [11], we have that Au belongs 
to C(ℝ,Hs,a) and there exists C0 > 0 such that

Hence, it follows that u belongs to C
(
[−T , T],G�,�,s,a

)
 and

This completes the proof. □

2.1  Existence of solution

We take Fourier transform with respect to x and y of the Cauchy problems (1.1) and we get

Now we take a cut-off function � ∈ C∞
0
(ℝ) such that � = 1 in [−1, 1] and supp𝜓 ⊂ [−2, 2] . 

We consider the operator Φu , given by

where �T (t) = �(
t

T
) . Now we will estimate the fist part in the RHS of (2.4).

Lemma 2.4 Let s ∈ ℝ, b ≥ 0, 0 < a < 1, 𝛿 > 0 and � ≥ 1 . For any T > 0 , there is a con-
stant C > 0 , depending only on � and b, such that

for all � ∈ G�,�,s,a.

Proof We have

(2.3)Âu
x
(�, t) = e�∣�∣

1
�
ûx(�, t),

‖u‖Xa
�,�,s,b

= ‖Au‖Xs,a,b
,

‖u‖G�,�,s,a = ‖Au‖Hs,a ,

∥ Au ∥C(ℝ,Hs,a)≤ C0 ∥ Au ∥Xs,a,b
.

∥ u(x, t) ∥C([−T ,T],G�,�,s,a)≤ C0 ∥ u ∥Xa
�,�,s,b

.

u(t) = S(t)� −
1

2 ∫
t

0

S(t − t�)
(
�xu

2(t�)
)
dt�,

(2.4)Φ(u) = �(t)S(t)� −
�T (t)

2 ∫
t

0

S(t − t�)
(
�xu

2(t�)
)
dt�,

(2.5)‖�T (t)S(t)�‖Xa
�,�,s,b

≤ C T
1

2
−b‖�‖G�,�,s,a ,
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Then

For the inner integral, using that b > 1∕2and 0 < T < 1 , we obtain

This completes the proof. □

Now we will estimate the second part in RHS of (2.4).

Lemma 2.5 Let s ∈ ℝ , 0 < a < 1 , 𝛿 > 0 , � ≥ 1 and − 1

2
< b� ≤ 0 ≤ b ≤ b� + 1 , for any 

T > 0 . We have

Proof Define U(x, t) = �T (t) ∫ t

0
S(t − t�)F(x, t�)dt� . For the operator A, given by 2.3, we 

have

Thus,

Now, applying Lemma 2.3-(ii) from [11], we obtain

This completes the proof. □

�T (t)S(t)� = C�T (t)∫
+∞

−∞

ei(x�+t�(�))�̂(�)d�

= CT ∫
+∞

−∞ ∫
+∞

−∞

ei(x�+t�)�̂(T(� − �(�)))�̂(�)d�d�.

∥ �
T
(t)S(t)� ∥2

X
a

�,�,s,b

= CT
2 ∫

+∞

−∞ ∫
+∞

−∞

e
2�∣�∣

1

�
(
1+ ∣ � ∣2

)s+a
∣ � ∣−2a

(
1+ ∣ � − �(�) ∣2

)b
∣ �̂(T(� − �(�))) ∣2∣ �̂(�) ∣2 d�d�

= C ∫
+∞

−∞

e
2�∣�∣

1

�
(
1+ ∣ � ∣2

)s+a
∣ � ∣−2a∣ �̂(�) ∣2

(
T
2 ∫

+∞

−∞

∣ �̂(T(� − �(�))) ∣2
(
1+ ∣ � − �(�) ∣2

)b
d�

)
d�.

T2 �
+∞

−∞

∣ �̂(T(� − �(�))) ∣2
(
1+ ∣ � − �(�) ∣2

)b
d�

≤ CT2 �
+∞

−∞

∣ �̂(T(� − �(�))) ∣2 d� + CT2 �
+∞

−∞

∣ �̂(T(� − �(�))) ∣2∣ � − �(�) ∣2b d�

≤ CT + CT (1−2b) ≤ CT (1−2b).

(2.6)‖�T (t)�
t

0

S(t − t�)F(x, t�)dt�‖Xa
�,�,s,b

≤ CT1+b�−b‖F‖Xa

�,�,s,b�
.

ÂU
x
(�, t) = �T (t)∫

t

0

(
ei(t−t

�)�(�)
)
e�∣�∣

1
�
F̂x(�, t�)dt�

= �T (t)∫
t

0

̂[S(t − t�)(AF)]
x

(�, t�)dt�.

∥ U ∥Xa
�,�,s,b

=∥ AU ∥Xs,a,b
= ‖�T (t)∫

t

0

S(t − t�)AF(x, t�)dt�‖Xs,a,b
.

‖�T (t)�
t

0

S(t − t�)AF(x, t�)dt�‖Xs,a,b
≤ CT1+b�−b‖AF‖Xs,a,b�

.



355Well-posedness of the Cauchy problem of Ostrovsky equation…

1 3

Lemma 2.6 Let s ≥ s0 = −
5

8
+, 𝜎 ≥ 1, 𝛿 > 0 . Then for a =

1

2
−, b� = −

1

2
+ and b > 1

2
 , one 

has

Proof Firstly, observe that

Since e�∣�∣
1
� ≤ e�∣�−�∣

1
� +�∣�∣

1
� , for all � ≥ 1 , we have

Now, applying Theorem 3.1 of [11], we get that there exists a constant C > 0 such that

This completes the proof. □

Now, we are ready to estimate all terms in (2.4) by using the bilinear estimates in the 
above Lemmas.

Lemma 2.7 Let s ≥ s0 = −
5

8
+, a =

1

2
−, 𝜎 ≥ 1, 𝛿 > 0 , b� = 1

2
− and b =

1

2
+

�

2
 . Then for 

� ∈ G�,�,s,a and 0 < T ≤ 1 , with some constant C > 0 , we have

and

Proof In order to prove (2.9), we use that

(2.7)∥ �x(u1u2) ∥Xa

�,�,s,b�
≤ C

(
∥ u1 ∥Xa

�,�,s,b
∥ u2 ∥Xa

�,�,s0,b
+ ∥ u1 ∥Xa

�,�,s0,b
∥ u2 ∥Xa

�,�,s,b

)
.

(2.8)

e�∣�∣
1
� û1u2 = (2�)−2e�∣�∣

1
� û1 ∗ û2

≤ (2�)−2 � � e�∣�−�∣
1
�
û1(� − �, � − �)e�∣�∣

1
�
û2(�, �)d�d�

= Âu1Au2.

∥ �x(u1u2) ∥Xa

�,�,s,b�
=∥ e�∣�∣

1
� ⟨�⟩(s+a) ∣ � ∣−a ⟨� − �(�)⟩b ̂�x(u1u2)(�, �) ∥L2

�,�

=∥ ⟨�⟩(s+a) ∣ � ∣−a ⟨� − �(�)⟩be�∣�∣ 1� �û1u2(�, �) ∥L2
�,�

≤∥ ⟨�⟩(s+a) ∣ � ∣−a ⟨� − �(�)⟩b ̂(�xAu1Au2)(�, �) ∥L2
�,�

=∥ �x(Au1Au2) ∥Xs,a,b�
.

∥ �x(Au1Au2) ∥Xs,a,b�
≤ C

(
∥ Au1 ∥Xs,a,b

∥ Au2 ∥Xs0,a,b
+ ∥ Au1 ∥Xs0,a,b

∥ Au2 ∥Xs,a,b

)

= C
(
∥ u1 ∥Xa

�,�,s,b
∥ u2 ∥Xa

�,�,s0,b
+ ∥ u1 ∥Xa

�,�,s0,b
∥ u2 ∥Xa

�,�,s,b

)
.

(2.9)∥ Φ(u) ∥Xa
�,�,s,b

≤ C
(
∥ � ∥G�,�,s,a +T1+b�−b ∥ u ∥2

Xa
�,�,s,b

)
, for all u ∈ Xa

�,�,s,b,

(2.10)
∥ Φ(u) − Φ(v) ∥Xa

�,�,s,b
≤ CT1+b�−b ∥ u − v ∥Xa

�,�,s,b
∥ u + v ∥Xa

�,�,s,b
, for all u, v ∈ Xa

�,�,s,b
.
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For the estimate (2.10), we observe that

where � = �xu
2 − �xv

2 is now given by

Thus, from the previous results, we obtain (2.10). This completes the proof. □

We shall exhibit that the map Φ is a contraction on the ball �(0, r) to �(0, r) where,

with r = 2C‖�‖G�,�,s,a.

Lemma 2.8 Let s ≥ s0 = −
5

8
+ , a =

1

2
− , � ≥ 1 , 𝛿 > 0 and b =

1

2
+

�

2
 . Then for � ∈ G�,�,s,a , 

there exist c0 ≤ 1 and 𝛽 > 1 such that for

the map Φ ∶ �(0, r) → �(0, r) is a contraction. Here �(0, r) is given by

with r = 2C‖�‖G�,�,s,a.

Proof From Lemma 2.7, for any u ∈ �(0, r) , we have

If we take � =
1

1+b�−b
 and c0 = (8C2)

−
1

1+b�−b , then for T given by (2.11), we have that 
T1+b�−b ≤ 1

4Cr
 . Hence,

Then, Φ maps �(0, r) into �(0, r) , which is a contraction, because

∥ Φ(u) ∥Xa
�,�,s,b

≤ ‖�T (t)S(t)�‖Xa
�,�,s,b

+ ‖�T (t)�
t

0

S(t − t�)
�
�xu

2
�
(t�)dt�‖Xa

�,�,s,b

≤ C ∥ � ∥G�,�,s,a +CT1+b�−b ∥ �xu
2 ∥Xa

�,�,s,b�

≤ C ∥ � ∥G�,�,s,a +CT1+b�−b ∥ u ∥2
Xa
�,�,s,b

.

Φ(u) − Φ(v) = �T (t)∫
t

0

S(t − t�)
(
�xu

2 − �xv
2
)
(x, t�)dt�,

� = �x(u
2 − v2) = �x[(u + v)(u − v)].

�(0, r) = {u ∈ Xa
�,�,s,b;‖u‖Xa

�,�,s,b
≤ r},

(2.11)T =
c0

(1+ ∥ � ∥G�,�,s,a )�
,

�(0, r) = {u ∈ Xa
�,�,s,b;‖u‖Xa

�,�,s,b
≤ r},

∥ Φ(u) ∥Xa
�,�,s,b

≤ C
(
∥ � ∥G�,�,s,a +T1+b�−b ∥ u ∥2

Xa
�,�,s,b

) ≤ r

2
+ CT1+b�−br2.

∥ Φ(u) ∥Xa
�,�,s,b

≤ r, ∀u ∈ �(0, r).
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This completes the proof. □

2.2  The uniqueness

Note that the following embedding

is a key for the persistence property. Let u, v ∈ X
T ,a

�,�,s0,b
 be two solutions of (1.1) with exten-

sions ũ, ṽ ∈ Xa
𝜎,𝛿,s0,b

 such that

Define u∗(t) = ũ(t + T �), v∗(t) = ũ(t + T �) for T � ≤ t ≤ T − T � . Since u and v are two solu-
tions of (1.1), we have

for T � ≤ t ≤ T − T � . Therefore, for a small 𝜆 > 0 , we get

Choosing � small enough, one can conclude that u∗(t) = v∗(t) for |t| ≤ � . This implies that 
u(t + T �) = v(t + T �) , for |t| ≤ � , which contradicts with the definition of T ′ . If u, v did not 
coincide on [−T , 0] , we would obtain a similar contradiction.

2.3  Continuous dependence on the initial data

We need to prove the following Lemma.

Lemma 2.9 Let s ≥ s0 = −
5

8
+ , a =

1

2
− , � ≥ 1 , 𝛿 > 0 and b =

1

2
+

�

2
 . Then for 

� ∈ G�,�,s,a , and T = T(‖�‖G�,�,s,a ) be given as in (2.11). Suppose that the solution 
u ∈ X

T ,a

𝜎,𝛿,s,b
⊆ C

(
[−T , T],G𝜎,𝛿,s,a

)
 of (1.1) is unique. Then, for a given T � ∈ (0, T) there 

exists R = R(T �) > 0 such that

is a Lipschitz map. Here W is defined by

∥ Φ(u) − Φ(v) ∥Xa
�,�,s,b

≤ CT1+b�−b ∥ u − v ∥Xa
�,�,s,b

∥ u + v ∥Xa
�,�,s,b

≤ CT1+b�−b2r ∥ u − v ∥Xa
�,�,s,b

≤ 1

2
∥ u − v ∥Xa

�,�,s,b
, ∀u, v ∈ �(0, r).

Xa
𝜎,𝛿,s,b

⊆ C
(
ℝ,G𝜎,𝛿,s,a

)
,

T � = sup {t ∈ [0, T] ∶ u(t) = v(t)} < T .

u∗(t) − v∗(t) = �T (t)∫
t

0

S(t − t�)
(
�xu

∗2
)
(x, t�)dt� − �T (t)∫

t

0

S(t − t�)
(
�xv

∗2
)
(x, t�)dt�,

‖��(t)(u
∗ − v∗)‖Xa

�,�,s0,b
≤ C�1+b

�−b‖��(t)(u
∗ − v∗)‖Xa

�,�,s0,b

�
‖u∗‖Xa

�,�,s0,b
+ ‖v∗‖Xa

�,�,s0,b

�
.

Γ ∶ W ⟶ X
T � ,a

𝜎,𝛿,s,b

ũ0 ↦ ũ,
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Proof Since T � ∈ (0, T) , there exists R > 0 so that

which is equivalent to

Also, if ũ0 ∈ W , we have

To obtain (2.13), we choose R so that

Since T ′ < T  , this involves that the RHS of (2.14) is positive. If ũ0, u∗0 ∈ W , with Γ(ũ0) = ũ 
and Γ(u∗

0
) = u∗ , then using Lemma 2.3, we obtain

As ũ is a fixed point of ΦT̃ and u∗ is a fixed point of ΦT∗ , the inequality (2.12) implies that 
𝜓T̃ = 𝜓T∗ on [−T �, T �] . Therefore

because ũ ∈ �(0, r̃) and u∗ ∈ �(0, r∗) , where

and

Since c0 =
(
8C2

)−� and � =
1

(1+b�−b)
 , we have

and

W =
�
ũ0 ∈ G𝜎,𝛿,s,a;‖ũ0 − 𝜑‖G𝜎,𝛿,s,a < R

�
.

(2.12)T � < T̃ ,∀ũ0 ∈ W,

(2.13)1 + ‖ũ0‖G𝜎,𝛿,s,a <
� c0

T �

�1∕𝛽

.

‖ũ0‖G𝜎,𝛿,s,a < R + ‖𝜑‖G𝜎,𝛿,s,a .

(2.14)0 < R <
� c0

T �

�1∕𝛽

−
�
1 + ‖ũ0‖G𝜎,𝛿,s,a

�
.

‖Γ(ũ0) − Γ(u∗
0
)‖C([−T � ,T �],G𝜎,𝛿,s,a)

= ‖ũ0 − u∗
0
‖C([−T � ,T �],G𝜎,𝛿,s,a)

≤ C0‖ũ0 − u∗
0
‖Xa

𝜎,𝛿,s,b
.

∥ ũ − u∗ ∥Xa
𝜎,𝛿,s,b

≤ ‖𝜓(t)S(t)(ũ0 − u∗
0
)‖Xa

𝜎,𝛿,s,b

+ ‖𝜓T � (t)�
t

0

S(t − t�)
�
𝜕xũ

2 − 𝜕xu
∗2
�
(x, t�)dt�‖Xa

𝜎,𝛿,s,b

≤ C ∥ ũ0 − u∗
0
∥G𝜎,𝛿,s,a +CT

�(1+b�−b)(r̃ + r∗) ∥ ũ − u∗ ∥Xa
𝜎,𝛿,s,b

,

r̃ = 2C‖ũ0‖G𝜎,𝛿,s,a

r∗ = 2C‖u∗
0
‖G�,�,s,a .

T
�(1+b�−b) ≤ T̃ (1+b�−b) = (4Cr̃)−1,

T
�(1+b�−b) ≤ T∗(1+b�−b) = (4Cr∗)−1.
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From here, CT �(1+b�−b)(r̃ + r∗) ≤ 1

2
 and

This completes the proof. □

3  Time regularity

In this section, we shall prove the time regularity of the solution as stated in Theo-
rem 1.2 on the circle, the proof on the line is analogous.

We begin by proving that solution u ∈ G� in spacial variable, i.e

Proposition 3.1 Let s > −
5

8
, 𝛿 > 0, 𝜎 ≥ 1, a =

1

2
− and let u ∈ C

(
[−T , T];G�,�,s,a

)
 be the 

solution to the Cauchy problem (1.1). Then u belong to G� in x variable, for all t ∈ [−T , T] 
and there exists a constant C > 0 for which

for all x ∈ ℝ or � , |t| ≤ T  , for all l ∈ {0, 1, 2,…}.

Proof For any t ∈ [−T , T] , we get

Observe that

This implies that

Thus,

‖Γ(ũ0) − Γ(u∗
0
)‖C([−T � ,T �],G𝜎,𝛿,s,a) ≤ 2CC0 ∥ ũ − u∗ ∥G𝜎,𝛿,s,a .

(3.1)sup
x∈�

|�l
x
u(x, t)| ≤ Cl+1(l!)� , l = 0, 1, 2,…

(3.2)|�l
x
u(x, t)| ≤ Cl+1(l!)� ,

‖�l
x
u(⋅, t)‖2

Hs,a =
�

k ∈ ℤ

k ≠ 0

�k�2l�k�−2a⟨k⟩2(s+a)�û(k, t)�2

=
�

k ∈ ℤ

k ≠ 0

�k�2le−2��k�
1
� ⟨k⟩2(s+a)�k�−2ae2��k�

1
� �û(k, t)�2.

e
2�

�
|k| 1� =

∞∑
j=0

1

j!

(
2�

�
|k| 1

�

)j ≥ 1

(2l)!

(
2�

�

)2l

|k| 2l

� , ∀l ∈ {0, 1,…}, k ∈ ℤ.

|k|2le−2�|k|
1
� ≤ C2l

�,�
(2l)!� .
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Since (2l)! ≤ A2l
1
(l!)2 , for some A1 > 0 , if s ≥ 0 , then

Here C0 = ‖u‖G�,�,s,a and C1 = A1C�,� . This implies that u is Gevrey of order � in x, for s ≥ 0

.
Now, for − 5

8
< s < 0 , we have

We note that for any 0 < 𝜖 < 𝛿 and by (3.3) there exists a positive constant C2,C = Cs,𝜖 > 0 
such that

and

‖�l
x
u(⋅, t)‖2

Hs,a ≤C2l
�,�
(2l)!�

�
k ∈ ℤ

k ≠ 0

e2��k�
1
� ⟨k⟩2(s+a)�k�−2a�û(k, t)�2

=C2l
�,�(2l)!

�‖u(⋅, t)‖2
G�,�,s,a .

‖�l
x
u(⋅, t)‖L2 ≤ ‖�l

x
u(⋅, t)‖Hs,a ≤ C0C

l
1
(l)!� ∀ t ∈ [−T , T].

(3.3)

‖u(⋅, t)‖
H0,a =

�
k∈ℤ

⟨k⟩2a�k�−2a�û(k, t)�2

≤ C

�
k ∈ ℤ

k ≠ 0

1

⟨k⟩−2s ⟨k⟩
2a�k�−2a�û(k, t)�2

= C

�
k ∈ ℤ

k ≠ 0

⟨k⟩2(s+a)�k�−2a�û(k, t)�2

= C‖u(⋅, t)‖
Hs,a .

‖�l
x
u(⋅, t)‖H0,a ≤ Cl

2
(l)!�‖u‖G�,�−�,0,a ∀ t ∈ [−T , T].

‖u(⋅, t)‖G�,�−�,0,a =
�
k∈ℤ

e2(�−�)�k�
1
� ⟨k⟩2a�k�−2a�û(k, t)�2

≤ C
�

k ∈ ℤ

k ≠ 0

e2��k�
1
�

⟨k⟩−2s ⟨k⟩
2a�k�−2ae2(�−�)�k�

1
� �û(k, t)�2

= C
�

k ∈ ℤ

k ≠ 0

e2��k�
1
� ⟨k⟩2(s+a)�k�−2a�û(k, t)�2

= ‖u(⋅, t)‖G�,�,s,a .
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This implies that if u ∈ C
(
[−T , T];G�,�,s,a

)
 and s < 0 , then u ∈ C

(
[−T , T];G�,�−�,0,a

)
 , 

which allows us to conclude that u is in G� in x, for all s > −
5

8
 . This completes the proof.

 □

We follow now the strategy adopted by Petronilho et al. [12]. We start by introducing 
some notations. For 𝜖 > 0 , consider the sequences

and

where c is chosen (see [13]) such that the following inequality

holds. Removing the endpoints 0 and k in the left-hand side of (3.6) and using the sequence 
Mq , we obtain

Next, one can check that for any 𝜖 > 0 the sequence Mq satisfies the following inequality

Also, one can check that for a given C > 1 , there exists 𝜖0 > 0 such that for any 0 < 𝜖 ≤ 𝜖0 , 
we have

For j = 1 , it follows from the definition of M1 and M2 that

for some C > 0 . Also, define the following constants

Lemma 3.2 Let u(x, t) be the solution to the Cauchy problem (1.1). If u(x, t) satisfies the 
inequality (3.2), then there exists 𝜖0 > 0 such that for any 0 < 𝜖 ≤ 𝜖0 we have

for all x ∈ ℝ or 𝕋 , t ∈ [−T , T], j ∈ {0, 1, 2,…}, l ∈ {0, 1, 2,…}.

Lemma 3.3 For given n, k ∈ {0, 1, 2,…} , we have

(3.4)mq =
c(q!)�

(q + 1)2
, (q = 0, 1, 2,…),

(3.5)Mq = 𝜖1−qmq, 𝜖 > 0 and (q = 1, 2, 3,…),

(3.6)
∑
0≤l≤k

(
k

l

)
mlmk−l ≤ mk,

(3.7)
∑
0<l<k

(
k

l

)
MlMk−l ≤ Mk, for any 𝜖 > 0.

(3.8)Mj ≤ �Mj+1, for j ≥ 2.

(3.9)Cj+1(j!)� ≤ Mj, for j ≥ 2.

M1 = a�M2, where a =
9

4(2!)�
,

M0 =
c

8
and M = max{3,

8C

c
,
4C2

c
}.

(3.10)|�jt�lxu(x, t)| ≤ Mj+1Ml+3j,
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where Lj, j = 0, 1,… ,m are positive real numbers withm = n + 3k.

Proof We will prove (3.10) using induction. Let j = 0 . For l = 0 , it follows from (3.2) and 
the definition of M, that

Similarly, for l = 1 , we have

For l ≥ 2 , it follows from (3.2) and (3.9), that there exists 𝜖0 > 0 such that for any 
0 < 𝜖 ≤ 𝜖0 we have

This completes the proof of (3.10) for j = 0 and l ∈ {0, 1,…}.
Next, we will assume that (3.10) is true for 0 ≤ q ≤ j and l ∈ {0, 1,…} and we will 

prove it for q = j + 1 and l ∈ {0, 1,…} . We begin by noticing that

Using the induction hypotheses and the condition M > 2 we estimate the term �jt�l+3x
u and 

�
j

t�
l−1
x

u in the following

Note that in the last inequality we have used the fact that l + 3j − 1 ≥ 2.
For the nonlinear term, applying Leibniz’s rule twice and using the induction hypoth-

esis, we obtain

(3.11)
n∑

p=0

k∑
q=0

(
n

p

)(
k

q

)
L(n−p)+3(k−q)Lp+3q ≤

m∑
r=1

(
m

r

)
LrLm−r,

|u(x, t)| ≤ C ≤ MM0, ∀x ∈ � , |t| ≤ T .

|�xu(x, t)| ≤ C2 ≤ MM1, ∀x ∈ � , |t| ≤ T .

|�l
x
u(x, t)| ≤≤ Cl+1(l!)� ≤ Ml ≤ MMl, ∀x ∈ � , |t| ≤ T .

|�j+1t �l
x
u| = |�jt�lx(�tu)| ≤ |�jt�l+3x

u| + |�jt�l−1x
u| + |�jt�l+1x

(u2)|.

(3.12)

|�jt�l+3x
u| ≤ Mj+1Ml+3+3j = M−1M(j+1)+1Ml+3(j+1)

≤ 1

3
M(j+1)+1Ml+3(j+1),

(3.13)|�jt�l−1x
u| ≤ Mj+1Ml−1+3j ≤ �4

3
M(j+1)+1Ml+3(j+1).

|�jt�l+1x
(u2)| ≤

l+1∑
p=0

j∑
q=0

(
l + 1

p

)(
j

p

)
|�j−qt �l+1−p

x
u||�qt �px u|

≤
l+1∑
p=0

j∑
q=0

(
l + 1

p

)(
j

p

)
M(j−q)+1Ml+1−p+3(j−q)M

q+1Mp+3q

= M(j+1)+1

l+1∑
p=0

j∑
q=0

(
l + 1

p

)(
j

p

)
Ml+1−p+3(j−q)Mp+3q.
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Next, using Lemma 3.3 with n = l + 1, k = j, Lj = Mj,m = l + 1 + 3j , we obtain

Thus,

Note that in the last inequality we have used the fact that l + 3j + 1 ≥ 2 . Now, we choose 

𝜖 ≤ 𝜖0 =

(
1

3(M0 + 𝜖)

) 1

2

< 1 and we obtain that

Then

This completes the proof. □

Proof of Theorem 1.2 We have

where

Applying this inequality for j ∈ {1, 2,…} and l = 0 , we obtain

(3.14)

l+1∑
p=0

j∑
q=0

(
l + 1

p

)(
j

p

)
Ml+1−p+3(j−q)Mp+3q

≤
m∑
r=1

(
m

r

)
LrLm−r ≤ (M0 + �)Mm

= (M0 + �)Ml+3j+1.

|�jt�l+1x
(u2)| ≤ M(j+1)+1(M0 + �)Ml+3j+1≤ M(j+1)+1�2(M0 + �)Ml+3(j+1)≤ �2(M0 + �)M(j+1)+1Ml+3(j+1).

�2(M0 + �) ≤ �2(M0 + 1) ≤ (M0 + 1)

(
1

3(M0 + 1)

)
=

1

3
.

|�jt�l+1x
(u2)| ≤ 1

3
M(j+1)+1Ml+3(j+1).

|�jt�lxu(x, t)| ≤ Mj+1Ml+3j, j ∈ {0, 1, 2,…}, l ∈ {0, 1, 2,…},

Mq = �1−q
c(q!)�

(q + 1)2
, q = 1, 2,…

(3.15)

|�jtu(x, t)| ≤ Mj+1M3j = MMj�1−3j
c((3j)!)�

(3j + 1)2

≤ M�c
(
M

�3

)j

((3j)!)�

≤ L0L
j((3j)!)�

≤ L0L
jA3�j(j!)3�

≤ A
j+1

0
(j!)3� ,
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where L0 = M�c, L =
M

�3
 since (3j)! ≤ A3j(j!)3 for A > 0 and A0 = max{L0, LA

3�} . We also 
have from (3.10) for j = 0, l = 0 that,

for all (x, t) ∈ � × [−T , T] . Setting C = max{M
c

8
,A0} , it follows from (3.15) and (3.16), for 

j ∈ {0, 1, 2,…} , that we have

for all (x, t) ∈ � × [−T , T] . Hence, u ∈ G3� in the time variable. This completes the proof.
 □
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