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Abstract
In this paper, we prove versions of Khan type and Dass–Gupta type contraction principles
in bv(s)-metric spaces. The results which we obtain generalize many known results in fixed
point theory. Examples show how these results can be applied in concrete situations.
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1 Introduction

A lot of generalizations of metric spaces exist, mostly introduced in order to obtain new types
of fixed point results using various contractive conditions. Some of these results appear to be
simple reformulations of the known results from the framework of metric spaces, with just
slightly modified proofs, or even their direct consequences. However, the work in some of
generalized spaces is essentially harder. We mention here two of such types of spaces.
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Bakhtin [5] and Czerwik [7] introduced b-metric spaces, modifying the triangle inequality
to the following form

d(x, z) ≤ s[d(x, y) + d(y, z)], (1.1)

where s ≥ 1 is a fixed real number. Going in this direction, Aydi and Czerwik [4] initiated
the concept of generalized b-metric spaces, see also [16]. On the other hand, Branciari [6]
substituted the triangle inequality by a polygonal inequality of the form

d(x, z) ≤ d(x, y1) + d(y1, y2) + · · · + d(yv, z), (1.2)

for arbitrary x, z and for all distinct points y1, y2, . . . , yv , each of them different from x and
z (in particular, for v = 2, the inequality (1.2) is called rectangular). Further, a lot of fixed
point results for single and multi-valued mappings were obtained in both kind of spaces by
various authors (see [3,11,14,15] and references contained therein).

George et al. [10], as well as Roshan et al. [21], independently introduced b-rectangular
metric spaces, by combining inequalities (1.1) and (1.2) (in the case v = 2). Finally,Mitrović
and Radenović defined in [18] the concept of bv(s)-metric space for arbitrary positive inte-
ger v (see the definition in the next section), thus generalizing all the mentioned types of
spaces. They obtained some fixed point results in this new framework. It should be noted that
these spaces might not be Hausdorff, that a bv(s)-metric need not be continuous and that a
convergent sequence might not be a Cauchy one.

Rational expressions in contractive conditions were firstly used by Dass and Gupta [8],
Khan [17] (corrected by Fisher [9]) and Jaggi [12]. Later on, there have been a lot of papers
using several variants of such conditions in various contexts, see, e.g., [1,2,19–21].

In this paper, we use contractive conditions involving rational expressions of Khan type,
as well as of Dass–Gupta type, to obtain some fixed point results in the framework of bv(s)-
metric spaces. Thus, we obtain generalizations of several known fixed point results from the
literature. Examples are given to show how these results can be applied in concrete situations.

2 bv(s)-metric spaces

Definition 2.1 [18] Let X be a non-empty set, s ≥ 1 be a real number, v ∈ N and let d be
a function from X × X into [0,∞). Then (X , d) is said to be a bv(s)-metric space if for all
x, y, z ∈ X and for all distinct points y1, y2, . . . , yv ∈ X , each of them different from x and
z the following hold:

(B1) d(x, y) = 0 if and only if x = y;
(B2) d(x, y) = d(y, x);
(B3) d(x, z) ≤ s[d(x, y1) + d(y1, y2) + · · · + d(yv, z)].

Note that:

(1) b1(1)-metric space is a usual metric space,
(2) b1(s)-metric space is a b-metric space with coefficient s of [5] and [7],
(3) b2(1)-metric space is a rectangular metric space of [6],
(4) b2(s)-metric space is a rectangular b-metric space with coefficient s of [10] and [21],
(5) bv(1)-metric space is a v-generalized metric space of [6].

Example Consider the set X = { 1n : n ∈ N, n ≥ 2}. Define d : X × X → [0,∞) by

d

(
1

k
,
1

m

)
=

{
|k − m|, if |k − m| �= 1,
1
2 , if |k − m| = 1.
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It is an easy task to verify that (X , d) is a b3(3)-metric space.

The notions of a convergent sequence, a Cauchy sequence and completeness of a bv(s)-
metric space are introduced in the same way as in standard metric spaces.

We will make use of the following lemmas obtained in [18].

Lemma 2.2 Let (X , d) be a bv(s)-metric space, T : X → X and let {xn} be a sequence in
X defined by x0 ∈ X and xn+1 = T xn such that xn �= xn+1, (n ≥ 0). Suppose there exists
λ ∈ [0, 1) such that

d(xn+1, xn) ≤ λd(xn, xn−1) for all n ∈ N.

Then xn �= xm for all distinct n,m ∈ N.

Lemma 2.3 Let (X , d) be a bv(s)-metric space and let {xn} be a sequence in X such that
the elements xn are all different (n ≥ 0). Suppose there exist λ ∈ [0, 1) and c1, c2 real
nonnegative numbers such that

d(xm, xn) ≤ λd(xm−1, xn−1) + c1λ
m + c2λ

n, for all m, n ∈ N.

Then {xn} is a Cauchy sequence.

3 A fixed point theorem of Khan type in bv(s)-metric spaces

Let (X , d) be a bv(s)-metric space and T : X → X be amapping.We introduce the following
function k : X × X → [0, 1] by

kxy =
⎧⎨
⎩

d(x, T y)

max{d(x, T y), d(y, T x)} , if max{d(x, T y), d(y, T x)} �= 0

1/2, if max{d(x, T y), d(y, T x)} = 0.

Theorem 3.1 Let (X , d) be a complete bv(s)-metric space and T : X → X be a mapping
satisfying

d(T x, T y) ≤ λmax{d(x, y), kxyd(x, T x) + kyxd(y, T y)}, (3.1)

for all x, y ∈ X, where λ ∈ [0, 1). Then T has a unique fixed point.

Proof Let x0 ∈ X be arbitrary. Define a sequence {xn} by xn+1 = T xn for all n ≥ 0. If
for some n, xn = xn+1, then xn is a fixed point of T and there is nothing to prove. Hence,
suppose that xn �= xn+1 for all n ≥ 0. From the condition (3.1), we obtain

d(xn+1, xn) ≤ λmax{d(xn, xn−1), kxnxn−1d(xn, xn+1) + kxn−1xn d(xn−1, xn)}. (3.2)

We distinguish two cases.
1. For all n ≥ 1, d(xn−1, xn+1) �= 0.

In this case, we obtain

kxnxn−1 = d(xn, xn)

max{d(xn, xn), d(xn−1, xn+1)} ,

so, kxnxn−1 = 0. Now, from (3.2) we have

d(xn+1, xn) ≤ λd(xn, xn−1), (3.3)
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for all n ∈ N.
2. For some n ≥ 1, d(xn−1, xn+1) = 0.

Then we have that kxnxn−1 = 1
2 . It follows from (3.2) that

d(xn+1, xn) ≤ λmax{d(xn, xn−1),
1

2
d(xn, xn+1) + 1

2
d(xn−1, xn)}.

We get from the above inequality

d(xn+1, xn) ≤ λd(xn, xn−1), (3.4)

or

d(xn+1, xn) ≤ λ

2 − λ
d(xn, xn−1).

Since max{λ, λ
2−λ

} = λ, we have d(xn+1, xn) ≤ λd(xn, xn−1). We conclude from the two
cases that (3.3) holds for all n ∈ N. Then from Lemma 2.2 we obtain

xn �= xm for all distinct n,m ∈ N.

By (3.3), it follows

d(xn+1, xn) ≤ λnd(x1, x0), (3.5)

for all n ∈ N. Let m, n ∈ N such that m �= n − 1 and m �= n + 1. Then
max{d(xn, xm+1), d(xm, xn+1)} �= 0, therefore

kxnxm = d(xn, xm+1)

max{d(xn, xm+1), d(xm, xn+1)} ≤ 1 (3.6)

and

kxmxn = d(xm, xn+1)

max{d(xn, xm+1), d(xm, xn+1)} ≤ 1. (3.7)

Letm, n ∈ N be such that |m−n| �= 1 (if |m−n| = 1, (3.5) is used). Then from (3.1), (3.5),
(3.6) and (3.7), we obtain

d(xm, xn) ≤ λmax{d(xm−1, xn−1), kxm−1xn−1d(xm−1, xm)

+ kxn−1xm−1d(xn−1, xn)}
≤ λmax{d(xm−1, xn−1), λ

m−1d(x0, x1) + λn−1d(x0, x1)}
≤ λd(xm−1, xn−1) + (λm + λn)d(x0, x1).

Now, from Lemma 2.3, (by putting c1 = c2 = d(x0, x1)), we obtain that {xn} is a Cauchy
sequence in X . By the completeness of (X , d), there exists x∗ ∈ X such that

lim
n→∞ xn = x∗.

We will prove that x∗ is the unique fixed point of T .
If there exists a subsequence {xnk } of sequence {xn} such that xnk = x∗ for all k ∈ N, we
obtain

d(x∗, T x∗) = d(xnk , xnk+1) ≤ λnk d(x1, x0).

Letting k tend to ∞ yields that x∗ = T x∗. Similarly, if xnk = T x∗ for all k ∈ N, we obtain

d(T x∗, T (T x∗)) = d(xnk , xnk+1) ≤ λnk d(x1, x0),
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and so again x∗ = T x∗.
Otherwise, there exists n0 ∈ N such that for any n ≥ n0, xn /∈ {x∗, T x∗}.

Let us consider the following two cases:
1. lim inf

n→∞ d(xn, T x∗) = 0.

In this case, there exists a subsequence {xnk }k≥0 of {xn} having the property that
limk→∞ d(xnk , T x

∗) = 0. Using (3.5), we have

d(x∗, T x∗) ≤ s[d(x∗, xnk−v+1) + d(xnk−v+1, xnk−v+2) + · · · +
d(xnk−2, xnk−1) + d(xnk−1, xnk ) + d(xnk , T x

∗)]

= s

⎡
⎣d(x∗, xnk−v+1) + d(xnk , T x

∗) +
nk−1∑

i=nk−v+1

d(xi+1, xi )

⎤
⎦

≤ s

⎡
⎣d(x∗, xnk−v+1) + d(xnk , T x

∗) +
nk−1∑

i=nk−v+1

λi d(x1, x0)

⎤
⎦

≤ s

[
d(x∗, xnk−v+1) + d(xnk , T x

∗) + λnk−v+1

1 − λ
d(x1, x0)

]
.

Since λ ∈ [0, 1) and limk→∞ d(x∗, xnk−v+1) = 0, we get d(T x∗, x∗) = 0, i.e., T x∗ = x∗.
2. lim inf

n→∞ d(xn, T x∗) = c > 0.

Then there exists a subsequence {xnk }k≥0 of {xn} such that limk→∞ d(xnk , T x
∗) = c. Using

again (3.5), we have

d(x∗, T x∗) ≤ s[d(x∗, xnk−v+2) + d(xnk−v+2, xnk−v+3) + · · ·+
d(xnk−1, xnk ) + d(xnk , xnk+1) + d(xnk+1, T x

∗)]

= s

⎡
⎣d(x∗, xnk−v+2) + d(xnk+1, T x

∗) +
nk∑

i=nk−v+2

d(xi+1, xi )

⎤
⎦

≤ s

⎡
⎣d(x∗, xnk−v+2) + d(xnk+1, T x

∗) +
nk∑

i=nk−v+2

λi d(x1, x0)

⎤
⎦

≤ s

[
d(x∗, xnk−v+2) + d(xnk+1, T x

∗) + λnk−v+2

1 − λ
d(x1, x0)

]
.

From (3.1), we obtain

d(xnk+1, T x
∗) = λmax{d(xnk , x

∗), kxnk x∗d(xnk , xnk+1) + kx∗xnk d(x∗.T x∗)}.
Since

kxnk x∗ = d(xnk , T x
∗)

max{d(xnk , T x
∗), d(x∗, xnk+1)} → 1 as k → ∞,

and

kx∗xnk = d(x∗, xnk+1)

max{d(x∗, xnk+1), d(xnk , T x
∗)} → 0 as k → ∞,

we have limk→∞ d(xnk+1, T x∗) = 0. We deduce that d(x∗, T x∗) = 0, that is, T x∗ = x∗.

123



1198 Z. D. Mitrović et al.

In order to prove uniqueness, let y∗ be another fixed point of T . Then it follows from (3.1)
that

0 < d(x∗, y∗) = d(T x∗, T y∗)
≤ λmax{d(x∗, y∗), kx∗y∗d(x∗, T x∗) + ky∗x∗d(y∗, T y∗)},
≤ λd(x∗, y∗) < d(x∗, y∗),

which is a contradiction. Therefore, we must have d(x∗, y∗) = 0, i.e., x∗ = y∗. 	

Example Let X = {0, 1, 2} and define d : X × X → [0,+∞) as follows:

d (0, 2) = 2.2, d (1, 2) = 1.1, d (0, 1) = 1,

d (x, x) = 0 and d (x, y) = d (y, x) for all x, y ∈ X .

Then (X , d) is a b-metric space with s = 22
21 . Let T : X → X be defined by

T x =
{
0, if x �= 2,

1, if x = 2.

We shall check that for all x, y ∈ X the following contractive condition holds:

d (T x, T y) ≤

⎧⎪⎪⎨
⎪⎪⎩

γ max
{
d (x, y) ,

d(x,T x)d(x,T y)+d(y,T y)d(y,T x)
max{d(x,T y),d(T x,y)}

}
,

if max {d (x, T y) , d (T x, y)} �= 0,

0, if max {d (x, T y) , d (T x, y)} = 0.

(3.8)

We have the next three cases:
a) x = 0, y = 1. Then d (T 0, T 1) = d (0, 0) = 0. The condition (3.8) holds.
b) x = 0, y = 2. Then d (T 0, T 2) = d (0, 1). Since

max {d (0, T 2) , d (T 0, 2)} = max {d (0, 1) , d (0, 2)} = 2.2 �= 0,

we need

1 ≤ γ max

{
d (0, 2) ,

0 · d (0, 1) + d (2, 1) · d (2, 0)
}

= γ max {2.2, 1.1} = γ · 2.2.
Hence, (3.8) holds if γ ≥ 10

22 = 5
11 .

c) x = 1, y = 2, Then d (T 1, T 2) = d (0, 1) = 1. Again, since

max {d (1, T 2) , d (T 1, 2)} = max {d (0, 1) , d (0, 2)} = 2.2 �= 0

and we need

1 ≤ γ max

{
d (1, 2) ,

d (1.T 1) · d (1, T 2) + d (2, T 2) · d (2, T 1)

2.2

}

= γ max

{
1.1,

0 + 1.1 · 2.2
2.2

}
= γ · 1.1.

Hence, (3.8) holds if γ ≥ 10
11 .

We obtain that the contractive condition (3.8) holds for all x, y ∈ X where γ ∈ [ 1011 , 1).
So, by Theorem 3.1 in the context of b-metric spaces, T has a unique fixed point (which

is x∗ = 0).

123
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Remark 3.2 1. It is clear that Theorem 3.1 generalizes Banach contraction principle in bv(s)-
metric spaces (see Theorem 2.1. in [18]).

2. Also, Theorem 3.1 generalizes the result of Piri et al. (see Theorem 2.1. in [20]).

4 Two fixed point theorems of Dass–Gupta type in bv(s)-metric spaces

Let (X , d) be a bv(s)-metric space and T : X → X . We will use the following expressions:

M(x, y) = max

{
d(x, y),

d(y, T y)[1 + d(x, T x)]
1 + d(x, y)

,
d(x, T x)[1 + d(y, T y)]

1 + d(T x, T y)

}
,

m(x, y) = max

{
d(x, y),

d(y, T y)[1 + d(x, T x)]
1 + d(x, y)

}
,

N (x, y) = min{d(x, T x), d(y, T x)},
for x, y ∈ X .

Lemma 4.1 Let (X , d) be a complete bv(s)-metric space and T : X → X be a mapping
satisfying:

d(T x, T y) ≤ λM(x, y) + LN (x, y) (4.1)

for all x, y ∈ X, where λ ∈ [0, 1) and L ≥ 0. Then for any x0 ∈ X, the sequence {T nx0}
converges.

Proof Let x0 ∈ X be arbitrary. Define a sequence {xn} by xn+1 = T xn for all n ≥ 0. We
have

M(xn, xn+1) = max

{
d(xn, xn+1),

d(xn+1, xn+2)[1 + d(xn, xn+1)]
1 + d(xn+1, xn)

,

d(xn, xn+1)[1 + d(xn+1, xn+2)]
1 + d(xn+1, xn+2)

}

= max{d(xn, xn+1), d(xn+1, xn+2)}
and

N (xn, xn+1) = min{d(xn, xn+1), d(xn+1, xn+1)} = 0.

From the condition (4.1), we have that

d(xn+1, xn+2) ≤ λmax{d(xn, xn+1), d(xn+1, xn+2)}.
Therefore,

d(xn+1, xn+2) ≤ λd(xn, xn+1), (4.2)

for all n ≥ 0. It follows from (4.2) that

d(xn+1, xn) ≤ λnd(x1, x0) for all n ≥ 1. (4.3)

If xn = xn+1 then xn is a fixed point of T . So, suppose that xn �= xn+1 for all n ≥ 0. Then
λ �= 0. From the conditions (4.1) and (4.3) we obtain

d(xm, xn) ≤ λmax

{
d(xm−1, xn−1),

d(xn−1, xn)[1 + d(xm−1, xm)]
1 + d(xm−1, xn−1)

,

123
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d(xm−1, xm)[1 + d(xn−1, xn)]
1 + d(xm, xn)

}

+ L min{d(xm−1, xm), d(xn−1, xm)}
≤ λmax {d(xm−1, xn−1), d(xn−1, xn)[1 + d(xm−1, xm)],
d(xm−1, xm)[1 + d(xn−1, xn)]}
+ Ld(xm−1, xm)

≤ λd(xm−1, xn−1) + λd(xn−1, xn)[1 + d(x0, x1)]
+ d(xm−1, xm)[λ(1 + d(x0, x1)) + L]

≤ λd(xm−1, xn−1) + [λm(1 + d(x0, x1)) + Lλm−1]
d(x0, x1) + λn[1 + d(x0, x1)]d(x0, x1).

Now, from Lemma 2.3, (by putting c1 = [1 + d(x0, x1) + L/λ]d(x0, x1), c2 = [1 +
d(x0, x1)]d(x0, x1) we obtain that {xn} is a Cauchy sequence in X . By the completeness
of (X , d) there exists x∗ ∈ X such that limn→∞ xn = x∗. 	


The following theorem is an analogue ofDass–Gupta contraction principle in bv(s)-metric
spaces.

Theorem 4.2 Let (X , d) be a complete bv(s)-metric space and T : X → X be a mapping
satisfying:

d(T x, T y) ≤ λM(x, y) + LN (x, y)

for all x, y ∈ X, where λ ∈ [0, 1) and L ≥ 0. Then T has a unique fixed point x∗ and for any
x0 ∈ X the sequence {T nx0} converges to x∗ if one of the following conditions is satisfied

(i) T is continuous, or
(ii) λs < 1.

Proof Let x0 ∈ X be arbitrary. Define a sequence {xn} by xn+1 = T xn for all n ≥ 0. From
Lemma 4.1 we obtain that there exists x∗ ∈ X such that limn→∞ xn = x∗.

(i) Let T be continuous. Then

x∗ = lim
n→∞ xn+1 = lim

n→∞ T xn = T ( lim
n→∞ xn) = T x∗.

(ii) λs < 1.
Without loss of generality, there exists n0 ∈ N such that for any n ≥ n0, xn /∈ {x∗, T x∗}. Let
us consider the following two cases:

1. lim inf
n→∞ d(xn, T x∗) = 0.

In this case, there exists a subsequence {xnk }k≥0 of {xn} having the property that
limk→∞ d(xnk , T x

∗) = 0. Proceeding similarly as the proof of Theorem 3.1, we get
d(T x∗, x∗) = 0, i.e., T x∗ = x∗.

2. lim inf
n→∞ d(xn, T x∗) = c > 0.

Then there exists a subsequence {xnk }k≥0 of {xn} such that limk→∞ d(xnk , T x
∗) = c. Again,

as in the proof of Theorem 3.1, we have

d(x∗, T x∗) ≤ s[d(x∗, xnk−v+2) + d(xnk+1, T x
∗) + λnk−v+2

1 − λ
d(x1, x0)].

From (4.1), we obtain

d(xnk+1, T x
∗) = λmax

{
d(xnk , x

∗), d(x∗, T x∗)[1 + d(xnk , xnk+1)]
1 + d(xnk , x

∗)
,

123
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d(xnk , xnk+1)[1 + d(x∗, T x∗)]
1 + d(xnk+1, T x∗)

}

+ L min{d(xnk , xnk+1), d(x∗, xnk+1)}
→ λd(x∗, T x∗) as k → ∞.

Therefore, d(x∗, T x∗) ≤ sλd(x∗, T x∗). Since sλ < 1, we get d(x∗, T x∗) = 0 and so
T x∗ = x∗.

In order to prove uniqueness, let y∗ be another fixed point of T . Then from (4.1), we have

0 < d(x∗, y∗) = d(T x∗, T y∗)

≤ λmax

{
d(x∗, y∗), d(y∗, T y∗)[1 + d(x∗, T x∗)]

1 + d(x∗, y∗)
,

d(x∗, T x∗)[1 + d(y∗, T y∗)]
1 + d(T x∗, T y∗)

}

+ L min{d(x∗, T x∗), d(y∗, T x∗)}
= λd(x∗, y∗) < d(x∗, y∗),

which is a contradiction. Therefore, x∗ = y∗. 	

Here, it is another version of Dass–Gupta type theorem.

Theorem 4.3 Let (X , d) be a complete bv(s)-metric space and T : X → X be a mapping
satisfying

d(T x, T y) ≤ λm(x, y) (4.4)

for all x, y ∈ X, where λ ∈ [0, 1). Then T has a unique fixed point x∗ and for any x0 ∈ X
the sequence {T nx0} converges to x∗.

Proof Let x0 ∈ X be arbitrary. Define a sequence {xn} by xn+1 = T xn for all n ≥ 0. Suppose
that xn �= xn+1 for all each n ≥ 0 (otherwise, nothing is to prove). Sincem(x, y) ≤ M(x, y)
for all x, y ∈ X , from Lemma 4.1 we obtain that there exists x∗ such that {T nx0} converges to
x∗. Without loss of generality, there exists n0 ∈ N such that for any n ≥ n0, xn /∈ {x∗, T x∗}.
From inequality (B3), we obtain

d(x∗, T x∗) ≤ s[d(x∗, xn+1) + d(xn+1, xn+2) + · · · +
d(xn+v−3, xn+v−2) + d(xn+v−2, xn+v−1) + d(xn+v, T x

∗)]

= s

[
d(x∗, xn+1) + d(xn+v, T x

∗) +
n+v−2∑
i=n+1

d(xi , xi+1)

]

≤ s

[
d(x∗, xn+1) + d(xn+v, T x

∗) +
n+v−2∑
i=n+1

λi d(x0, x1)

]

≤ s

[
d(x∗, xn+1) + d(xn+v, T x

∗) + λn+1

1 − λ
d(x0, x1)

]
.

From condition (4.4), we have

d(T x∗, xn+v) = λmax

{
d(x∗, xn+v−1),

d(xn+v−1, xn+v)[1 + d(x∗, T x∗)]
1 + d(x∗, xn+v)

}
,

→ 0 as k → ∞.
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At the limit, we get d(x∗, T x∗) = 0, that is, T x∗ = x∗.
To prove the uniqueness, let y∗ be another fixed point of T . Then from (4.4) we have

0 < d(x∗, y∗) = d(T x∗, T y∗)

≤ λmax

{
d(x∗, y∗), d(y∗, T y∗)[1 + d(x∗, T x∗)]

1 + d(x∗, y∗)

}

= λd(x∗, y∗) < d(x∗, y∗),

a contradiction. It follows that x∗ = y∗. 	

Remark 4.4 1. If v = 1 (resp. v = 2), from Theorems 3.1, 4.2, 4.3, we obtain results for
b-metric spaces (resp. rectangular b-metric spaces).

2. Theorem 4.2 generalizes a result obtained in the paper [13].
3. From Theorem 4.3, Theorem 2.1. in [18] is obtained.

Example Let X = {a, b, c, δ} , d (x, y) = d (y, x), d (x, x) = 0 for all x, y ∈ X . Further,
let d (a, b) = 1

5 , d (δ, c) = 5, d (a, c) = d (b, δ) = d (b, c) = d (a, δ) = 10. Then (X , d) is
a b1( 1110 )-metric space (i.e., a b-metric space with the parameter s = 11

10 ).
Define T : X → X by Ta = Tb = T δ = a, T c = b. We shall check that all conditions

of Theorem 4.3 are satisfied.
Indeed, if x = a, y = b, or x = a, y = δ or x = b, y = δ, the condition (4.4) trivially

holds. Let x = a, y = c. Then d (Ta, T c) = d (a, b) = 1
5 and

m (a, c) = max

{
d (a, c) ,

d (c, T c) [1 + d (a, Ta)]

1 + d (a, c)

}

= max

{
10,

10 [1 + 0]

1 + 10

}
= 10.

Hence, it is enough to have 1
5 ≤ λ · 10, i.e., λ ∈ [ 1

50 , 1
)
.

Let x = b, y = c. Then d (Tb, T c) = d (a, b) = 1
5 and

m (b, c) = max

{
d (b, c) ,

d (c, T c) [1 + d (b, Tb)]

1 + d (b, c)

}

= max

{
10,

10
[
1 + 1

5

]
1 + 10

}
= 10.

Again, it is enough that 1
5 ≤ λ · 10, i.e., λ ∈ [ 1

50 , 1
)
.

Let x = c, y = δ. Then d (T c, T δ) = d (b, a) = 1
5 and

m (c, δ) = max

{
d (c, δ) ,

d (δ, T δ) [1 + d (c, T c)]

1 + d (c, δ)

}

= max

{
5,

10 [1 + 10]

1 + 5

}
= 55

3
.

It follows that we need 1
5 ≤ λ · 55

3 ·, i.e., λ ∈ [ 3
275 , 1

)
.

Hence, for λ ∈ [ 1
50 , 1), all conditions of Theorem 4.3 are satisfied and in this case T has

a unique fixed point (which is x∗ = a).
It can be checked in a similar way that the same conclusion can be derived from Theo-

rem 4.2.
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Example [10, Example 2.2] Let X = A ∪ B, where A = { 12 , 1
3 ,

1
4 ,

1
5 } and B = [1, 2], be

equipped with d : X × X → [0,∞) defined by d( 12 ,
1
3 ) = d( 14 ,

1
5 ) = 0.03, d( 12 ,

1
5 ) =

d( 13 ,
1
4 ) = 0.02, d( 12 ,

1
4 ) = d( 13 ,

1
5 ) = 0.6, and d(x, y) = (x − y)2 in all other cases (with

d(x, x) = 0 and d(x, y) = d(y, x) for all x, y ∈ X ). Then (X , d) is a b2(4)-metric space. It
is easy to check that the mapping

T x =
{

1
4 , x ∈ A
1
5 , x ∈ B

satisfies the conditions of each of Theorems 3.1, 4.2 and 4.3 (for example, for Theorem 4.2,
one can take λ = 3

25 ). T has a unique fixed point x∗ = 1
4 .
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18. Mitrović, Z.D., Radenović, S.: The Banach and Reich contractions in bv(s)-metric spaces. J. Fixed Point

Theory Appl. 19, 3087–3095 (2017)
19. Mustafa, Z., Karapinar, E., Aydi, H.: A discussion on generalized almost contractions via rational expres-

sions in partially ordered metric spaces. J. Inequal. Appl. 2014, 219 (2014)
20. Piri, H., Rahrovi, S., Kumam, P.: Khan type fixed point theorems in a generalized metric space. J. Math.

Comput. Sci. 16, 211–217 (2016)
21. Roshan, J.R., Parvaneh, V., Kadelburg, Z., Hussain, N.: New fixed point results in b-rectangular metric

spaces. Nonlinear Anal. Model. Control 21(5), 614–634 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.3390/math7010084

	On some rational contractions in bv(s)-metric spaces
	Abstract
	1 Introduction
	2 bv(s)-metric spaces
	3 A fixed point theorem of Khan type in bv(s)-metric spaces
	4 Two fixed point theorems of Dass–Gupta type in bv(s)-metric spaces
	References




