

On some classes of Dunford–Pettis-like operators

Ioana Ghenciu¹

Received: 7 June 2019 / Accepted: 11 October 2019 / Published online: 23 October 2019 © Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Abstract

In this paper we give characterizations of weak Dunford–Pettis, weak∗ Dunford–Pettis, weak *p*-convergent, and weak[∗] *p*-convergent operators.

Keywords Weak Dunford–Pettis operator · Weak[∗] Dunford–Pettis operator · Weak *p*-convergent operator · Weak[∗] *p*-convergent operator · The Dunford–Pettis property of order *p*

Mathematics Subject Classification 46B20 · 46B25 · 46B28

1 Introduction

In this paper Dunford–Pettis sets and limited sets are used to characterize the classes of weak Dunford–Pettis and weak∗ Dunford–Pettis operators. The classes of weak *p*-convergent and weak∗ *p*-convergent operators are also studied.

Our major results are Theorems [2,](#page-2-0) [6,](#page-4-0) [14,](#page-8-0) and [18.](#page-10-0) As consequences, we obtain equivalent characterizations of Banach spaces with the Dunford–Pettis property, *D P*∗-property, Dunford–Pettis property of order *p*, and *D P*∗-property of order *p*. We generalize some results in [\[1](#page-13-0)[,5](#page-13-1)[,11](#page-14-0)[,15](#page-14-1)[,18](#page-14-2)].

2 Definitions and notation

Throughout this paper, *X* and *Y* will denote real Banach spaces. The unit ball of *X* will be denoted by B_X and X^* will denote the continuous linear dual of X. An operator $T : X \to Y$ will be a continuous and linear function. The space of all operators from *X* to *Y* will be denoted by $L(X, Y)$.

The operator *T* is *completely continuous (or Dunford–Pettis)* if *T* maps weakly convergent sequences to norm convergent sequences.

B Ioana Ghenciu ioana.ghenciu@uwrf.edu

¹ Mathematics Department, University of Wisconsin-River Falls, River Falls, WI 54022, USA

A Banach space *X* has the Dunford–Pettis property (*DPP*) if every weakly compact operator *T* with domain *X* is completely continuous. Equivalently, *X* has the *DPP* if and only if $x_n^*(x_n) \to 0$ for all weakly null sequences (x_n) in *X* and (x_n^*) in X^* [\[8](#page-14-3), Theorem 1]. Schur spaces, $C(K)$ spaces, and $L_1(\mu)$ spaces have the *DPP*. The reader can check [\[7](#page-14-4)[–9\]](#page-14-5), and [\[2\]](#page-13-2) for a guide to the extensive classical literature dealing with the *DPP*, equivalent formulations of the preceding definitions, and undefined notation and terminology.

A subset *A* of *X* is called a *Dunford–Pettis* (*D P*) subset (resp. *limited* subset) of *X* if each weakly null (resp. w^* -null) sequence (x_n^*) in X^* tends to 0 uniformly on *A* [\[2](#page-13-2)] (resp. [\[3](#page-13-3)[,24\]](#page-14-6)); i.e.

$$
\sup_{x \in A} |x_n^*(x)| \to 0.
$$

If *A* is a limited subset of *X*, then $T(A)$ is relatively compact for any operator $T: X \to c_0$ [\[3](#page-13-3), p. 56], [\[24](#page-14-6), p. 23]. The subset *A* of *X* is a *DP* subset of *X* if and only if $T(A)$ is relatively compact whenever $T : X \to Y$ is a weakly compact operator [\[2](#page-13-2)] if and only if $T(A)$ is relatively compact whenever $T : X \rightarrow Y$ is an operator with weakly precompact adjoint [\[20\]](#page-14-7).

A bounded subset *S* of *X* is said to be *weakly precompact* provided that every sequence from *S* has a weakly Cauchy subsequence. Every *D P* subset of *X* is weakly precompact [\[2](#page-13-2)]. Since any limited set is a *D P* set, any limited set is weakly precompact. An operator $T: X \rightarrow Y$ is called *weakly precompact (or almost weakly compact)* if $T(B_X)$ is weakly precompact.

A Banach space *X* has the *D P*∗-property (*D P*∗*P*) if all weakly compact sets in *X* are limited [\[4](#page-13-4)[,5](#page-13-1)[,21](#page-14-8)]. The space *X* has the DP^*P if and only if $x_n^*(x_n) \to 0$ for all weakly null sequences (x_n) in *X* and w^* -null sequences (x_n^*) in X^* [\[16](#page-14-9)]. If *X* has the DP^*P , then it has the *DPP*. If *X* is a Schur space or if *X* has the *DPP* and the Grothendieck property (weak and weak∗ convergence of sequences in *X*∗ coincide), then *X* has the *D P*∗*P*.

3 Weak Dunford–Pettis operators and weak∗ Dunford–Pettis operators

An operator $T : X \to Y$ is called *weak Dunford–Pettis* [\[1](#page-13-0), p. 349] if $\langle T(x_n), y_n^* \rangle \to 0$, whenever (x_n) is a weakly null sequence in *X* and (y_n^*) is a weakly null sequence in *Y*^{*}. An operator *T* : *X* \rightarrow *Y* is called weak^{*} *Dunford–Pettis* [\[11](#page-14-0)] if $\langle T(x_n), y_n^* \rangle \rightarrow 0$, whenever (x_n) is a weakly null sequence in *X* and (y_n^*) is a w^{*}-null sequence in Y^* .

In this section we give some characterizations of weak Dunford–Pettis and weak^{*} Dunford–Pettis operators.

Observation 1 If $T : X \to Y$ is an operator, then $T(B_X)$ is a DP (resp. limited) subset of *Y* if and only if $T^* : Y^* \to X^*$ is completely continuous (resp. T^* is w^{*}-norm sequentially continuous).

To see this, note that $T(B_X)$ is a DP (resp. limited) subset of Y if and only if

$$
0 = \lim_{n} \sup \{ |\langle y_n^*, T(x) \rangle| : x \in B_X \} = \lim_{n} \sup \{ |\langle T^*(y_n^*), x \rangle| : x \in B_X \} = \lim_{n} \| T^*(y_n^*) \|
$$

for each weakly null (resp. w^* -null) sequence (y_n^*) in Y^* ; that is, $T^* : Y^* \to X^*$ is completely continuous (resp. T^* is w^* -norm sequentially continuous).

Theorem 1 [\[1,](#page-13-0) Theorem 5.99, p. 351] *Let* $T : X \rightarrow Y$ *be an operator. The following statements are equivalent:*

(1) *T is a weak Dunford–Pettis operator.*

- (2) *T carries weakly compact subsets of X to Dunford–Pettis subsets of Y .*
- (3) If $S: Y \to Z$ is a weakly compact operator, then $ST: X \to Z$ is completely continuous, *for any Banach space Z.*

We are now giving our first major result. It gives characterizations of weak Dunford–Pettis operators and generalizes [\[1,](#page-13-0) Theorem 5.99, p. 351].

Theorem 2 Let X and Y be Banach spaces, and let $T : X \rightarrow Y$ be an operator. The following *statements are equivalent.*

- (1) *T is a weak Dunford–Pettis operator.*
- (2) *T carries weakly precompact subsets of X to Dunford–Pettis subsets of Y .*
- (3) *For all Banach spaces Z, if* $S: Y \rightarrow Z$ *has a weakly precompact adjoint, then* ST : $X \rightarrow Z$ *is completely continuous.*
- (4) If $S: Y \rightarrow c_0$ has a weakly precompact adjoint, then $ST: X \rightarrow c_0$ is completely *continuous.*
- (5) If (x_n) is a weakly null sequence in X and (y_n^*) is a weakly Cauchy sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0.$

Proof (1) \Rightarrow (2) Let *A* be a weakly precompact subset of *X*. Suppose by contradiction that *T*(*A*) is not a Dunford–Pettis subset of *Y*. Suppose that (y_n^*) is a weakly null sequence in *Y*^{*}, (x_n) is a sequence in *A*, and $\epsilon > 0$ such that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for all *n*. Without loss of generality assume that (x_n) is weakly Cauchy.

Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|\langle y_{n_2}^*, T(x_{n_1}) \rangle| < \epsilon/2$. We can do this since (y_n^*) is w[∗]-null. Continue inductively. Choose $n_k > n_{k-1}$ so that $|\langle y_{n_k}^*, T(x_{n_{k-1}}) \rangle| < \epsilon/2$. Since *T* is a weak Dunford–Pettis operator, $\langle y_{n_k}^*, T(x_{n_k} - x_{n_{k-1}}) \rangle \rightarrow 0$. However,

$$
|\langle y_{n_k}^*, T(x_{n_k} - x_{n_{k-1}})\rangle| \ge |\langle y_{n_k}^*, T(x_{n_k})\rangle| - |\langle y_{n_k}^*, T(x_{n_{k-1}})\rangle| > \epsilon/2,
$$

a contradiction.

(2) \Rightarrow (3) Let *S* : *Y* → *Z* be an operator such that *S*[∗] : *Z*[∗] → *Y*[∗] is weakly precompact. Suppose (x_n) is a weakly null sequence in *X*. Since $\{T(x_n) : n \in \mathbb{N}\}\)$ is a Dunford–Pettis set in *Y* and *S*^{*} is weakly precompact, $\{ST(x_n) : n \in \mathbb{N}\}\$ is relatively compact [\[20,](#page-14-7) Corollary 4]. Then $||ST(x_n)|| \rightarrow 0$, and thus $ST : X \rightarrow Z$ is completely continuous.

 $(3) \Rightarrow (4)$ and $(5) \Rightarrow (1)$ are obvious.

(4) \Rightarrow (1) Suppose (x_n) is weakly null in *X* and (y_n^*) is weakly null in *Y*^{*}. Define $S: Y \to c_0$ by $S(y) = (y_i^*(y))$. Then $S^* : \ell_1 \to Y^*$, $S^*(b) = \sum b_i y_i^*$. Note that S^* maps B_{ℓ_1} into the closed and absolutely convex hull of $\{y_i^* : i \in \mathbb{N}\}\)$, which is relatively weakly compact [\[9](#page-14-5), p. 51]. Then S^* is weakly compact. Hence $ST : X \to c_0$ is completely continuous. Therefore $\langle T(x_n), y_n^* \rangle \leq ||ST(x_n)|| = \sup_i |\langle y_i^*, T(x_n) \rangle| \to 0$, and *T* is weak Dunford–Pettis.

(1) \Rightarrow (5) Suppose that (x_n) is a weakly null sequence in *X*, (y_n^*) is a weakly Cauchy sequence in Y^* , and $\langle y_n^*, T(x_n) \rangle \nrightarrow 0$. Without loss of generality suppose that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for each $n \in \mathbb{N}$, for some $\epsilon > 0$.

Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|\langle y_{n_1}^*, T(x_{n_2}) \rangle| < \epsilon/2$. We can do this since $(T(x_n))$ is weakly null. Continue inductively. Choose $n_{k+1} > n_k$ so that $|\langle y_{n_k}^*, T(x_{n_{k+1}}) \rangle| < \epsilon/2$. Since *T* is weak Dunford–Pettis, $\langle y_{n_{k+1}}^* - y_{n_k}^*, T(x_{n_{k+1}}) \rangle \to 0$. Since

$$
|\langle y_{n_{k+1}}^* - y_{n_k}^*, T(x_{n_{k+1}})\rangle| \ge |\langle y_{n_{k+1}}^*, T(x_{n_{k+1}})\rangle| - |\langle y_{n_k}^*, T(x_{n_{k+1}})\rangle| > \epsilon/2,
$$

we have a contradiction.

$$
1151\\
$$

 \mathcal{L} Springer

Corollary 3 Let X and Y be Banach spaces, and let $T : X \rightarrow Y$ be an operator. The following *statements are equivalent.*

- (i) *T is a weak Dunford–Pettis operator.*
- (ii) *For all Banach spaces Z, if* $S : Z \rightarrow X$ *is a weakly precompact operator, then* $TS :$ $Z \rightarrow Y$ has a completely continuous adjoint.
- (iii) *If* $S: \ell_1 \to X$ is a weakly precompact operator, then $TS: \ell_1 \to Y$ has a completely *continuous adjoint.*
- (iv) $If(x_n)$ is a weakly Cauchy sequence in X and (y_n^*) is a weakly null sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0.$

Proof (i) \Rightarrow (ii) Let *S* : *Z* \rightarrow *X* be a weakly precompact operator. Then $TS(B_Z)$ is a Dunford–Pettis set. Thus $TS: Z \rightarrow Y$ has a completely continuous adjoint.

(iii) \Rightarrow (iv) Suppose (*x_n*) is a weakly Cauchy sequence in *X* and (*y_n*^{*}) is a weakly null sequence in Y^* . Define $S: \ell_1 \to X$ by

$$
S(b) = \sum b_n x_n,
$$

where $b = (b_n) \in \ell_1$. Since $S(B_{\ell_1})$ is contained in the closed and absolutely convex hull of ${x_n : n \in \mathbb{N}}$, which is weakly precompact [\[24](#page-14-6), p. 27], *S* is weakly precompact.

By assumption, $(T S)^* = S^* T^*$ is completely continuous. Note that $S^*(x^*) = (\langle x^*, x_i \rangle)_i$, *x*[∗] ∈ *X*^{*}, and *S*^{*}*T*^{*}(*y*_{*n*}^{*}) = ($\langle T^*(y_n^*), x_i \rangle$)_{*i*}. Hence

$$
\langle y_n^*, T(x_n) \rangle = \langle T^*(y_n^*), x_n \rangle \leq \| S^* T^*(y_n^*) \| = \sup_i |\langle T^*(y_n^*), x_i \rangle| \to 0.
$$

 $(ii) \Rightarrow (iii)$ and $(iv) \Rightarrow (i)$ are obvious.

The following two corollaries provide equivalent characterizations of spaces with the Dunford–Pettis property.

Corollary 4 *Let X be a Banach space. Then the following statements are equivalent:*

- (i) *X has the D P P.*
- (ii) *The identity operator* $i: X \rightarrow X$ *is a weak Dunford–Pettis operator; that is, every weakly precompact subset of X is a Dunford–Pettis set.*
- (iii) [\[8](#page-14-3)] *Every operator* $S: X \to Z$ *with weakly precompact adjoint is completely continuous, for any Banach space Z.*
- (iv) [\[8](#page-14-3)] *Every operator* $S: X \to c_0$ *with weakly precompact adjoint is completely continuous.*
- (v) $[8]$ $[8]$ *If* (x_n) *is a weakly null sequence in* X *and* (x_n^*) *is a weakly Cauchy sequence in* X^* *, then* $x_n^*(x_n) \to 0$.

Proof Apply Theorem [2](#page-2-0) to the identity operator $i : X \to X$.

We note that *X* has the *DPP* if and only if weakly precompact sets and *D P* sets coincide (since every DP set is weakly precompact $[2]$).

Corollary 5 *Let X be a Banach space. Then the following statements are equivalent:*

- (i) *X has the D P P.*
- (ii) [\[8](#page-14-3)] *For all Banach spaces Z, every weakly precompact operator* $S : Z \rightarrow X$ *has a completely continuous adjoint.*
- (iii) *Every weakly precompact operator* $S: \ell_1 \to X$ has a completely continuous adjoint.

(iv) [\[8](#page-14-3)] If (x_n) is a weakly Cauchy sequence in X and (x_n^*) is a weakly null sequence in X^* , *then* $x_n^*(x_n) \to 0$.

Proof Apply Corollary [3](#page-2-1) to the identity operator $i: X \to X$.

An operator $T : X \to Y$ is called *limited* if $T(B_X)$ is limited in *Y*. The operator $T : X \to Y$ is limited if and only if T^* : $Y^* \to X^*$ is w^* -norm sequentially continuous (by Observation 1).

We are now giving our second major result. It gives a characterization of weak∗ Dunford– Pettis operators and generalizes [\[11,](#page-14-0) Theorem 3.2].

Theorem 6 Let X and Y be Banach spaces and let $T : X \rightarrow Y$ be an operator. The following *statements are equivalent.*

- (1) *T is a* w*eak*∗ *Dunford–Pettis operator.*
- (2) *T carries weakly precompact subsets of X to limited subsets of Y .*
- (3) If $S : Z \to X$ is a weakly precompact operator, then $TS : Z \to Y$ is limited, for any *Banach space Z.*
- (4) *If* $S: \ell_1 \rightarrow X$ *is a weakly precompact operator, then* $TS: \ell_1 \rightarrow Y$ *is limited.*
- (5) If (x_n) is a weakly null sequence in X and (y_n^*) is a w^{*}-Cauchy sequence in Y^{*}, then $\langle y_n^*, T(x_n) \rangle \to 0.$

Proof (1) \Rightarrow (2) is similar to the proof of (1) \Rightarrow (2) in Theorem [2.](#page-2-0)

(2) \Rightarrow (3) Suppose *S* : *Z* → *X* is weakly precompact. Then *T S*(*B_Z*) is limited, and thus *T S* is limited.

 $(3) \Rightarrow (4)$ and $(5) \Rightarrow (1)$ are obvious.

(4) \Rightarrow (1) Let (x_n) be a weakly null sequence in *X* and (y_n^*) be a w^{*}-null sequence in *Y*^{*}. Define *S* : $\ell_1 \rightarrow X$ by

$$
S(b) = \sum b_n x_n,
$$

where $b = (b_n) \in \ell_1$. Since $S(B_{\ell_1})$ is contained in the closed and absolutely convex hull of $\{x_n : n \in \mathbb{N}\}\$, which is relatively weakly compact [\[9,](#page-14-5) p. 51], *S* is weakly compact. By assumption, *T S* is limited. Suppose (e_n^*) denotes the unit vector basis of ℓ_1 . Then

$$
\langle y_n^*, T(x_n) \rangle = \langle y_n^*, TS(e_n^*) \rangle \to 0.
$$

 $(1) \Rightarrow (5)$ is similar to the proof of $(1) \Rightarrow (5)$ in Theorem [2.](#page-2-0)

Corollary 7 Let X and Y be Banach spaces and let $T : X \rightarrow Y$ be an operator. The following *statements are equivalent.*

- (i) *T is a* w*eak*∗ *Dunford–Pettis operator.*
- (ii) If (x_n) is a weakly Cauchy sequence in X and (y_n^*) is a w^* -null sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0.$
- (iii) *If* $S : Y \rightarrow Z$ *is an operator such that* $S^*(B_{Z^*})$ *is* w^* -sequentially compact, then $ST: X \rightarrow Z$ *is completely continuous.*
- (iv) *If* $S: Y \to c_0$ *is an operator, then* $ST: X \to c_0$ *is completely continuous.*

Proof (i) \Rightarrow (ii) Suppose that (x_n) is a weakly Cauchy sequence in *X* and (y_n^*) is a w^{*}-null sequence in *Y*^{*}. Since $(T(x_n))$ is limited in *Y*, $\langle y_n^*, T(x_n) \rangle \to 0$.

(ii) \Rightarrow (iii) Let *S* : *Y* → *Z* be an operator such that *S*[∗](*B*_Z∗) is w[∗]-sequentially compact, but $ST : X \to Z$ is not completely continuous. Let (x_n) be weakly null in X so that

 $||ST(x_n)|| > \epsilon$, for some $\epsilon > 0$. Choose (z_n^*) in B_{Z^*} so that $\langle z_n^*, ST(x_n) \rangle > \epsilon$. Without loss of generality $(S^*(z_n^*))$ is w[∗]-convergent. Hence $\langle S^*(z_n^*), T(x_n) \rangle = \langle z_n^*, ST(x_n) \rangle \to 0$, a contradiction.

(iii) \Rightarrow (iv) Let *S* : *Y* \rightarrow *c*₀ be an operator. Note that B_{ℓ_1} , and thus $S^*(B_{\ell_1})$ is w^* sequentially compact (since c_0 is separable). Then $ST : X \rightarrow c_0$ is completely continuous.

(iv) \Rightarrow (i) Suppose (*x_n*) is a weakly null sequence in *X* and (*y_n*^{*}) is a *w*^{*}-null sequence in *Y*^{*}. Define *S* : *Y* → *c*₀ by *S*(*y*) = (*y*^{*}(*y*)). Since *ST* : *X* → *c*₀ is completely continuous, $\langle y_n^*, T(x_n) \rangle \leq \|ST(x_n)\| \to 0.$

The following corollary provides a characterization of spaces with the *D P*∗*P* and generalizes [\[11,](#page-14-0) Corollary 3.3].

Corollary 8 *Let X be a Banach space. Then the following statements are equivalent:*

- (i) *X* has the DP^*P .
- (ii) [\[16\]](#page-14-9) *The identity operator* $i : X \rightarrow X$ *is a weak*^{*} *Dunford–Pettis operator; that is, every weakly precompact subset of X is a limited set.*
- (iii) $[16]$ *Every weakly precompact operator* $S: Z \rightarrow X$ *is limited, for any Banach space Z.*
- (iv) *Every weakly precompact operator* $S: \ell_1 \rightarrow X$ *is limited.*
- (v) $[16]$ *If* (x_n) *is a weakly null sequence in* X *and* (x_n^*) *is a* w^* *-Cauchy sequence in* X^* *, then* $x_n^*(x_n) \to 0$.

Proof Apply Theorem [6](#page-4-0) to the identity operator $i : X \to X$.

We note that *X* has the *D P*∗*P* if and only if weakly precompact sets and limited sets coincide (since every limited set is weakly precompact [\[3](#page-13-3)]).

Corollary 9 *Let X be a Banach space. Then the following statements are equivalent:*

- (i) *X* has the DP^*P .
- *(ii)* [\[16\]](#page-14-9) *If* (x_n) *is a weakly Cauchy sequence in X and* (x_n^*) *is a w**-*null sequence in* Y^* *, then* $x_n^*(x_n) \to 0$.
- (iii) $[16]$ *If* $S : X \rightarrow Z$ *is an operator such that* $S^*(B_{Z^*})$ *is* w^* -sequentially compact, then *S is completely continuous.*
- (iv) [\[5](#page-13-1)] *Every operator* $S: X \rightarrow c_0$ *is completely continuous.*

Proof Apply Corollary [7](#page-4-1) to the identity operator $i: X \to X$.

Corollary 10 (i) If Y^* does not contain a copy of ℓ_1 , then every weak Dunford–Pettis oper*ator* $T : X \rightarrow Y$ *is completely continuous.*

- (ii) *If BY* [∗] *is* w∗*-sequentially compact (in particular if Y is separable), then every weak*[∗] *Dunford–Pettis operator* $T : X \rightarrow Y$ *is completely continuous.*
- (iii) *If X or Y has the DPP, then every operator* $T : X \rightarrow Y$ *is weak Dunford–Pettis.*
- (iv) *If* X or Y has the DP^{*}P, then every operator $T : X \rightarrow Y$ is weak^{*} Dunford–Pettis.
- *Proof* (i) Let $i: Y \rightarrow Y$ be the identity operator on *Y*. Suppose that $T: X \rightarrow Y$ is a weak Dunford–Pettis operator. Since Y^* does not contain a copy of ℓ_1 , i^* is weakly precompact (by Rosenthal's ℓ_1 theorem). Then $T = iT$ is completely continuous by Theorem [2.](#page-2-0)
- (ii) Let $i : Y \rightarrow Y$ be the identity operator on *Y*. Suppose $T : X \rightarrow Y$ is a weak^{*} Dunford–Pettis operator. Since $i^*(B_{Y^*})$ is w^{*}-sequentially compact, $T = iT$ is completely continuous by Corollary [7.](#page-4-1)

- (iii) Let $T : X \to Y$ be an operator. If *Y* has the *DPP*, then the identity operator $i : Y \to Y$ is weak Dunford–Pettis. Hence $T = iT$ is weak Dunford–Pettis. If *X* has the *DPP*, then the identity operator $i: X \to X$ is weak Dunford–Pettis. Hence $T = T i$ is weak Dunford–Pettis.
- (iv) The proof is similar to that of (iii).

Clearly each completely continuous operator $T : X \to Y$ is weak^{*} Dunford–Pettis and each weak∗ Dunford–Pettis operator is weak Dunford–Pettis. By Corollary [10,](#page-5-0) we obtain the following result.

Corollary 11 *If* Y^* *does not contain a copy of* ℓ_1 *, then the families of completely continuous operators, weak^{*} Dunford–Pettis operators, and weak Dunford–Pettis operators* $T : X \rightarrow Y$ *coincide.*

Examples (a) Note that ℓ_{∞} has the DP^*P (since it has the DPP and the Grothendieck property [\[5\]](#page-13-1)). Then the identity operator $i : \ell_{\infty} \to \ell_{\infty}$ is weak^{*} Dunford–Pettis and is not completely continuous.

(b) A space *X* has the DP^*P if and only if every operator $T : X \to c_0$ is completetely continuous [\[5](#page-13-1)]. Since the identity operator $i : c_0 \rightarrow c_0$ is not completetely continuous, c_0 does not have the DP^*P . Thus $i : c_0 \to c_0$ is weak Dunford–Pettis (since c_0 has the DPP) and not weak∗ Dunford–Pettis.

- **Corollary 12** (i) *Suppose that Y has the DPP. If* $T : X \rightarrow Y$ *is an operator such that* T^* *is not completely continuous, then T fixes a copy of* ℓ_1 *.*
- (ii) *Suppose that Y has the DP^{*}P. If* $T : X \to Y$ *is a non-limited operator, then T fixes a copy of* ℓ_1 *.*

Proof (i) Suppose that T^* is not completely continuous. Let (y_n^*) be weakly null in Y^* so that $||T^*(y_n^*)|| \nrightarrow 0$. Suppose (x_n) is a sequence in B_X such that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for some $\epsilon > 0$. We claim that (x_n) has no weakly Cauchy subsequence. If the claim is false, suppose without loss of generality that (x_n) is weakly Cauchy. Since *Y* has the *DPP*, *T* is weak Dunford–Pettis. Then $\langle y_n^*, T(x_n) \rangle \to 0$ by Corollary [3.](#page-2-1) This contradiction shows that (x_n) has no weakly Cauchy subsequence. By Rosenthal's ℓ_1 theorem, (x_n) has a subsequence equivalent to the ℓ_1 basis. Suppose without loss of generality that (x_n) is equivalent to (e_n^*) , where (e_n^*) denotes the basis of ℓ_1 .

Now, since $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ and *Y* has the *DPP*, $(T(x_n))$ has no weakly Cauchy subsequence (by Corollary [5\)](#page-3-0). By Rosenthal's ℓ_1 theorem, $(T(x_n))$ has a subsequence equivalent to (e_n^*) . Suppose without loss of generality that $(T(x_n))$ is equivalent to (e_n^*) . Hence *T* fixes a copy of ℓ_1 .

(ii) The proof is similar to that of (i).

Corollary [12](#page-6-0) (ii) generalizes [\[5](#page-13-1), Theorem 2.3] (which states that if *X* and *Y* have the the DP^*P and $T: X \to Y$ is a non-limited operator, then *T* fixes a copy of ℓ_1).

A Banach space *X* has the *Dunford–Pettis relatively compact property (DPrcP)* if every DP subset of *X* is relatively compact [\[13\]](#page-14-10). Schur spaces have the *DPrcP*. The space *X* does not contain a copy of ℓ_1 if and only if X^* has the *DPrcP* [\[12](#page-14-11)[,13\]](#page-14-10). We note that if X^* does not contain a copy of ℓ_1 , then X^{**} , thus *X*, has the *DPrcP* [\[12](#page-14-11)[,13](#page-14-10)].

The space *X* has the *Gelfand–Phillips (GP)* property (or *X* is a *Gelfand–Phillips* space) if every limited subset of *X* is relatively compact. Schur spaces and separable spaces have the Gelfand–Phillips property [\[3\]](#page-13-3).

 \Box

 \Box

An operator $T : X \rightarrow Y$ is called *Dunford–Pettis completely continuous (DPcc)* if T carries weakly null and DP sequences to norm null ones [\[22\]](#page-14-12). An operator $T : X \rightarrow Y$ is called *limited completely continuous (lcc)* if *T* maps weakly null limited sequences to norm null sequences [\[23\]](#page-14-13).

The sets of all limited completely continuous, Dunford–Pettis completely continuous operators, weak Dunford Pettis, and weak∗ Dunford Pettis operators from *X* to *Y* will be respectively denoted by $LCC(X, Y)$, $DPCC(X, Y)$, $WDP(X, Y)$, and $W^*DP(X, Y)$.

In the following result, we characterize Banach spaces *X* on which every weak (resp. weak∗) Dunford–Pettis operator is a DPcc (resp. lcc) operator.

- **Corollary 13** (i) *A Banach space X has the DPrcP if and only if* $DPCC(X, \ell_{\infty})$ *=* $WDP(X, \ell_{\infty})$.
- (ii) *A Banach space X has the GP property if and only if* $LCC(X, \ell_{\infty}) = W^*DP(X, \ell_{\infty})$ *.*
- *Proof* (i) A Banach space *X* has the *DPrcP* if and only if $DPCC(X, \ell_{\infty}) = L(X, \ell_{\infty})$ [\[22\]](#page-14-12). Since ℓ_{∞} has the *DPP*, $L(X, \ell_{\infty}) = WDP(X, \ell_{\infty})$.
- (ii) A Banach space *X* has the *GP* property if and only if $LCC(X, \ell_{\infty}) = L(X, \ell_{\infty})$ [\[23\]](#page-14-13).
Since ℓ_{∞} has the $DP^*P \ L(X \ell_{\infty}) = W^*DP(X \ell_{\infty})$ Since ℓ_{∞} has the DP^*P , $L(X, \ell_{\infty}) = W^*DP(X, \ell_{\infty})$.

If *X* has the *DPrcP*, then *X* has the *G P* property (since any limited set is a DP set). Thus, if *X* has the *DPrcP*, then $L(X, \ell_{\infty}) = LCC(X, \ell_{\infty}) = DPCC(X, \ell_{\infty}) = WDP(X, \ell_{\infty}) =$ $W^*DP(X,\ell_\infty).$

Example We note that the identity operator $i : \ell_{\infty} \to \ell_{\infty}$ is weak^{*} Dunford–Pettis and not lcc (since ℓ_{∞} does not have the *GP* property). Further, $i : \ell_{\infty} \to \ell_{\infty}$ is weak Dunford–Pettis (since ℓ_{∞} has the *DPP*) and not DPcc (since ℓ_{∞} does not have the *DPrcP*).

4 Weak *p***-convergent operators and weak[∗]** *p***-convergent operators**

For $1 \leq p < \infty$, p^* denotes the conjugate of p. If $p = 1$, we take c_0 instead of ℓ_{p^*} . The unit vector basis of ℓ_p will be denoted by (e_n) .

Let $1 \leq p < \infty$. A sequence (x_n) in X is called *weakly p-summable* if $(x^*(x_n)) \in \ell_p$ for each $x^* \in X^*$ [\[10](#page-14-14), p. 32]. Let $\ell_p^w(X)$ denote the set of all weakly *p*-summable sequences in *X*. The space $\ell_p^w(X)$ is a Banach space with the norm

$$
||(x_n)||_p^w = \sup \left\{ \left(\sum_{n=1}^{\infty} |\langle x^*, x_n \rangle|^p \right)^{1/p} : x^* \in B_{X^*} \right\}
$$

We recall the following isometries: $L(\ell_{p^*}, X) \simeq \ell_p^w(X)$ for $1 < p < \infty$; $L(c_0, X) \simeq$ $\ell_p^w(X)$ for $p = 1$; that are obtained via the isometry $T \to (T(e_n))$ [\[10,](#page-14-14) Proposition 2.2, p. 36].

A series $\sum x_n$ in *X* is said to be *weakly unconditionally convergent (wuc)* if for every x^* ∈ *X*[∗], the series $\sum |x^*(x_n)|$ is convergent. An operator *T* : *X* → *Y* is *unconditionally converging* if it maps weakly unconditionally convergent series to unconditionally convergent ones.

Let $1 \leq p \leq \infty$. An operator $T : X \to Y$ is called *p-convergent* if T maps weakly *p*-summable sequences into norm null sequences. The set of all *p*-convergent operators from *X* to *Y* is denoted by $C_p(X, Y)$ [\[6](#page-14-15)].

The 1-convergent operators are precisely the unconditionally converging operators and the ∞ -convergent operators are precisely the completely continuous operators. If $p < q$, then $C_q(X, Y) \subseteq C_p(X, Y)$.

A sequence (x_n) in *X* is called *weakly p-convergent* to $x \in X$ if the sequence $(x_n$ *x*) is weakly *p*-summable [\[6\]](#page-14-15). Weakly ∞ -convergent sequences are precisely the weakly convergent sequences.

Let $1 \leq p \leq \infty$. A bounded subset *K* of *X* is *relatively weakly p-compact* if every sequence in *K* has a weakly *p*-convergent subsequence. An operator $T : X \rightarrow Y$ is *weakly p*-compact if $T(B_X)$ is relatively weakly *p*-compact [\[6](#page-14-15)].

The set of weakly *p*-compact operators $T : X \to Y$ is denoted by $W_p(X, Y)$. If $p < q$, then $W_p(X, Y) \subseteq W_q(X, Y)$. A Banach space $X \in C_p$ (resp. $X \in W_p$) if $id(X) \in C_p(X, X)$ (resp. $id(X) \in W_p(X, X)$) [\[6\]](#page-14-15), where $id(X)$ is the identity map on X.

A sequence (x_n) in *X* is called *weakly p-Cauchy* if $(x_{n_k} - x_{m_k})$ is weakly *p*-summable for any increasing sequences (n_k) and (m_k) of positive integers.

Every weakly *p*-convergent sequence is weakly *p*-Cauchy, and the weakly ∞ -Cauchy sequences are precisely the weakly Cauchy sequences.

Let $1 \leq p \leq \infty$. A subset *S* of *X* is called *weakly p-precompact* if every sequence from *S* has a weakly *p*-Cauchy subsequence [\[18](#page-14-2)]. An operator $T : X \rightarrow Y$ is called *weakly p*-precompact if $T(B_X)$ is weakly *p*-precompact.

Let $1 \le p \le \infty$. A Banach space *X* has the *Dunford–Pettis property of order p* (*DPP_p*) $(1 \leq p \leq \infty)$ if every weakly compact operator $T : X \rightarrow Y$ is *p*-convergent, for any Banach space *Y* [\[6](#page-14-15)]. Equivalently, *X* has the DPP_p if and only if $x_n^*(x_n) \to 0$ whenever (x_n) is weakly *p*-summable in *X* and (x_n^*) is weakly null in X^* [\[6](#page-14-15), Proposition 3.2].

If *X* has the *DPP_p*, then it has the *DPP_q*, if $q < p$. Also, the *DPP*_∞ is precisely the *DPP*, and every Banach space has the *DPP*1. *C*(*K*) spaces and *L*¹ have the *DPP*, and thus the *DPP_p* for all *p*. If $1 < r < \infty$, then ℓ_r has the *DPP_p* for $p < r^*$. If $1 < r < \infty$, then $L_r(\mu)$ has the *DPP_p* for $p < min(2, r^*)$. Tsirelson's space *T* has the *DPP_p* for all $p < \infty$. Since *T* is reflexive, it does not have the *DPP*. Tsirelson's dual space T^* does not have the DPP_p , if $p > 1$ [\[6](#page-14-15)].

Let $1 \le p \le ∞$. A Banach space *X* has the *DP*^{*}-property of order p (*DP*^{*}*P_p*) if all weakly *p*-compact sets in *X* are limited [\[14](#page-14-16)]. Equivalently, *X* has the DP^*P_p if and only if *x*^{*}_{*n*}</sub>(*x_n*) → 0 whenever (*x_n*) is weakly *p*-summable in *X* and (*x*^{*}_n) is weakly null in *X*^{*} [\[14\]](#page-14-16).

If *X* has the DP^*P_q , then it has the DP^*P_p , if $q > p$. Further, the DP^*P_∞ is precisely the DP^*P and every Banach space has the DP^*P_1 . If *X* has the DP^*P , then *X* has the DP^*P_p , $1 \leq p \leq \infty$. If *X* has the DP^*P_p , then *X* has the DPP_p .

Let $1 \leq p < \infty$. An operator $T : X \to Y$ is called *weak p-convergent* if $\langle y_n^*, T(x_n) \rangle \to 0$ whenever (x_n) is weakly *p*-summable in *X* and (y_n^*) is weakly null in Y^* [\[15\]](#page-14-1). An operator *T* : *X* → *Y* is called weak^{*} *p*-convergent if $\langle y_n^*, T(x_n) \rangle$ → 0 whenever (x_n) is weakly *p*-summable in *X* and (y_n^*) is w^{*}-null in Y^* [\[15](#page-14-1)].

In the following we study weak *p*-convergent and weak∗ *p*-convergent operators. The following result generalizes [\[18](#page-14-2), Theorem 8].

Theorem 14 Let X and Y be Banach spaces, and let $1 < p < \infty$. The following statements *are equivalent about an operator* $T : X \rightarrow Y$.

- (1) *T is weak p-convergent.*
- (2) *T takes weakly p-precompact subsets of X to DP subsets of Y.*
- (3) *For any Banach space Z, if* $S : Y \to Z$ *has a weakly precompact adjoint, then* ST : $X \rightarrow Z$ *is p-convergent.*
- (4) If $S: Y \to c_0$ has a weakly precompact adjoint, then $ST: X \to c_0$ is p-convergent.

(5) If (x_n) is a weakly p-summable sequence in X and (y_n^*) is a weakly Cauchy sequence in Y^* *, then* $\langle y_n^*, T(x_n) \rangle \to 0$ *.*

Proof (1) \Rightarrow (2) Let *A* be a weakly *p*-precompact subset of *X*. Suppose by contradiction that $T(A)$ is not a Dunford–Pettis subset of *Y*. Let (y_n^*) be a weakly null sequence in Y^* , and let (x_n) be a sequence in *A* such that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for all *n*, for some $\epsilon > 0$. By passing to a subsequence, we can assume that (x_n) is weakly *p*-Cauchy.

Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|\langle y_{n_2}^*, T(x_{n_1}) \rangle| < \epsilon/2$. We can do this since (y_n^*) is w[∗]-null. Continue inductively. Choose $n_k > n_{k-1}$ so that $|\langle y_{n_k}^*, T(x_{n_{k-1}}) \rangle| < \epsilon/2$. Since *T* is weak *p*-convergent, $\langle y_{n_k}^* , T(x_{n_k} - x_{n_{k-1}}) \rangle \rightarrow 0$. However,

$$
|\langle y_{n_k}^*, T(x_{n_k} - x_{n_{k-1}})\rangle| \ge |\langle y_{n_k}^*, T(x_{n_k})\rangle| - |\langle y_{n_k}^*, T(x_{n_{k-1}})\rangle| > \epsilon/2,
$$

a contradiction.

(2) \Rightarrow (3) Suppose *S* : *Y* → *Z* is an operator with weakly precompact adjoint. Let (x_n) be a weakly *p*-summable sequence in *X*. By (2), $(T(x_n))$ is a *DP* subset of *Y*. Therefore $(ST(x_n))$ is relatively compact [\[20](#page-14-7), Corollary 4]. Hence $\|ST(x_n)\| \to 0$, and thus *ST* is *p*-convergent.

 $(3) \Rightarrow (4)$ and $(5) \Rightarrow (1)$ are obvious.

(4) \Rightarrow (1) Let (*x_n*) be a weakly *p*-summable sequence in *X* and (*y_n*^{*}) be a weakly null sequence in *Y*^{*}. Define $S: Y \to c_0$ by $S(y) = (y_i^*(y))$. Then $S^*: \ell_1 \to Y^*$, $S^*(b) = \sum b_i y_i^*$. Note that S^* maps B_{ℓ_1} into the closed and absolutely convex hull of {*y*[∗] *ⁱ* : *ⁱ* [∈] ^N}, which is relatively weakly compact [\[9,](#page-14-5) p. 51]. Then *^S*[∗] is weakly compact. Hence *ST* : $X \to c_0$ is *p*-convergent. Therefore $\langle T(x_n), y_n^* \rangle \leq ||ST(x_n)|| = \sup_i |\langle y_i^*, T(x_n) \rangle| \to$ 0, and *T* is weak *p*-convergent.

(1) \Rightarrow (5) Let (*x_n*) be a weakly *p*-summable sequence in *X* and (*y_n*^{*}) be a weakly Cauchy sequence in *Y*^{*}. Suppose $\langle y_n^*, T(x_n) \rangle \nrightarrow 0$. Without loss of generality suppose that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for each $n \in \mathbb{N}$, for some $\epsilon > 0$.

Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|\langle y_{n_1}^*, T(x_{n_2}) \rangle| < \epsilon/2$. We can do this since $(T(x_n))$ is weakly null. Continue inductively. Choose $n_{k+1} > n_k$ so that $|\langle y_{n_k}^*, T(x_{n_{k+1}}) \rangle| < \epsilon/2$. Since *T* is a weak *p*-convergent operator, $|\langle y_{n_{k+1}}^* - y_{n_k}^*, T(x_{n_{k+1}}) \rangle| \to 0$. However,

$$
|\langle y_{n_{k+1}}^* - y_{n_k}^*, T(x_{n_{k+1}})\rangle| \ge |\langle y_{n_{k+1}}^*, T(x_{n_{k+1}})\rangle| - |\langle y_{n_k}^*, T(x_{n_{k+1}})\rangle| > \epsilon/2,
$$

and we have a contradiction. 

Corollary 15 Let X and Y be Banach spaces, and let $1 < p < \infty$. The following statements *are equivalent about an operator* $T : X \rightarrow Y$.

- (i) *T is weak p-convergent.*
- (ii) *For every Banach space Z, if* $S : Z \rightarrow X$ *is a weakly p-precompact operator, then* $TS: Z \rightarrow Y$ has a completely continuous adjoint.
- (iii) [\[18\]](#page-14-2) *If* $S : \ell_{p^*} \to X$ *is an operator, then* $TS : \ell_{p^*} \to Y$ *has a completely continuous adjoint.*
- (iv) If (x_n) is a weakly p-Cauchy sequence in X and (y_n^*) is a weakly null sequence in Y^* , *then* $\langle y_n^*, T(x_n) \rangle \to 0$ *.*

Proof (i) \Rightarrow (ii) Let *S* : *Z* \rightarrow *X* be a weakly *p*-precompact operator. Then $TS(B_Z)$ is a *DP* set in *Y*. Hence $(TS)^*$ is completely continuous.

(ii) \Rightarrow (iii) Let *S* : ℓ_{p^*} → *X* be an operator. Since $1 < p < \infty$, $\ell_{p^*} \in W_p$ [\[6\]](#page-14-15). Hence *S* is weakly *p*-compact, and thus (*T S*)∗ is completely continuous.

$$
\qquad \qquad \Box
$$

(iii) \Rightarrow (i) Let (*x_n*) be weakly *p*-summable in *X* and let (*y_n*^{*}) be weakly null in *Y*^{*}. Define *S* : ℓ_{p^*} → *X* by *S*(*b*) = $\sum b_i x_i$ [\[10](#page-14-14), Proposition 2.2, p. 36]. Since *T S*($B_{\ell_{p^*}}$) is a *DP* set in $Y, \langle y_n^*, TS(e_n) \rangle = \langle y_n^*, T(x_n) \rangle \to 0.$

(i) \Rightarrow (iv) Let (*x_n*) be weakly *p*-Cauchy in *X* and let (*y_n*^{*}) be weakly null in *Y*^{*}. Since $(T(x_n))$ is a *DP* set in *Y*, $\langle y_n^*, T(x_n) \rangle \to 0$.

 $(iv) \Rightarrow (i)$ is obvious.

As a consequence of the previous two results we obtain the following characterizations of Banach spaces with the DPP_n .

Corollary 16 [\[19,](#page-14-17) Theorem 1] *Let* $1 < p < \infty$ *. The following statements are equivalent about a Banach space X.*

- (1) *X* has the DPP_p .
- (2) The identity operator $i : X \rightarrow X$ is weak p-convergent; that is, every weakly p*precompact subset of X is a Dunford–Pettis set.*
- (3) *Every operator* $S : X \rightarrow Z$ *with weakly precompact adjoint is p-convergent, for any Banach space Z.*
- (4) *Every operator* $S: X \to c_0$ *with weakly precompact adjoint is p-convergent.*
- (5) If (x_n) is a weakly p-summable sequence in X and (x_n^*) is a weakly Cauchy sequence in X^* *, then* $x_n^*(x_n) \to 0$ *.*

Proof Apply Theorem [14](#page-8-0) to the identity operator $i: X \to X$.

Corollary 17 [\[19,](#page-14-17) Theorem 1] *Let* $1 < p < \infty$ *. The following statements are equivalent about a Banach space X.*

- (i) *X* has the DPP_p .
- (ii) *For all Banach spaces Z, every weakly p-precompact operator* $S : Z \rightarrow X$ *has a completely continuous adjoint.*
- (iii) *Every operator* $S: \ell_{p^*} \to X$ *has a completely continuous adjoint.*
- (iv) If (x_n) is a weakly p-Cauchy sequence in X and (x_n^*) is a weakly null sequence in X^* , *then* $x_n^*(x_n) \to 0$.

Proof Apply Corollary [15](#page-9-0) to the identity map $i: X \to X$.

The following result generalizes [\[15,](#page-14-1) Theorem 2.11].

Theorem 18 Let X and Y be Banach spaces and $T : X \rightarrow Y$ be an operator. Let $1 < p < \infty$. *The following statements are equivalent.*

- (1) *T is* w*eak*∗ *p-convergent.*
- (2) *T carries weakly p-precompact subsets of X to limited subsets of Y .*
- (3) If $S : Z \to X$ is a weakly p-precompact operator, then $TS : Z \to Y$ is limited, for any *Banach space Z.*
- (4) *If* $S: \ell_{p^*} \to X$ *is an operator, then* $TS: \ell_{p^*} \to Y$ *is limited.*
- (5) If (x_n) is a weakly p-summable sequence in X and (y_n^*) is a w^* -Cauchy sequence in Y^* , *then* $\langle y_n^*, T(x_n) \rangle \to 0$ *.*

Proof (1) \Rightarrow (2) is similar to the proof of (1) \Rightarrow (2) in Theorem [14.](#page-8-0)

(2) \Rightarrow (3) Let *S* : *Z* → *X* be a weakly *p*-precompact operator. Then *T S*(*B_Z*) is limited, and thus $TS: Z \rightarrow Y$ is limited.

(3) \Rightarrow (4) Let *S* : $\ell_{p^*} \rightarrow X$ be an operator. Since $1 < p < \infty$, $\ell_{p^*} \in W_p$ [\[6\]](#page-14-15). Hence *S* is weakly *p*-compact, and thus *T S* limited.

(4) \Rightarrow (1) Suppose (*x_n*) is weakly *p*-summable in *X* and (*y_n*^{*}) is w[∗]-null in *Y*^{*}. Define *S* : ℓ_{p^*} → *X* by *S*(*b*) = $\sum b_i x_i$ [\[10,](#page-14-14) Proposition 2.2, p. 36]. Since *T S*($B_{\ell_{p^*}}$) is a limited set $\sin Y, \langle y_n^*, TS(e_n) \rangle = \langle y_n^*, T(x_n) \rangle \to 0.$

 $(1) \Rightarrow (5)$ is similar to the proof of $(1) \Rightarrow (5)$ in Theorem [14.](#page-8-0)

Corollary 19 Let X and Y be Banach spaces and $T : X \rightarrow Y$ be an operator. Let $1 < p < \infty$. *The following statements are equivalent.*

- (i) *T is* w*eak*∗ *p-convergent.*
- (ii) If (x_n) is a weakly p-Cauchy sequence in X and (y_n^*) is a w^* -null sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0.$
- (iii) *If* $S : Y \rightarrow Z$ *is an operator such that* $S^*(B_{Z^*})$ *is* w^* -sequentially compact, then $ST: X \rightarrow Z$ *is p-convergent.*
- (iv) *If* $S: Y \to c_0$ *is an operator, then* $ST: X \to c_0$ *is p-convergent.*

Proof (i) \Rightarrow (ii) Suppose that (x_n) is a weakly *p*-Cauchy sequence in *X* and (y_n^*) is a w^{*}-null sequence in *Y*^{*}. Since $(T(x_n))$ is limited in *Y*, $\langle y_n^*, T(x_n) \rangle \to 0$.

(ii) \Rightarrow (iii) Let *S* : *Y* → *Z* be an operator such that *S*[∗](*B_Z*∗) is *w*[∗]-sequentially compact, but *ST* : $X \rightarrow Z$ is not *p*-convergent. Let (x_n) be weakly *p*-summable in *X* so that $||ST(x_n)|| > \epsilon$, for some $\epsilon > 0$. Choose (z_n^*) in B_{Z^*} so that $\langle z_n^*, ST(x_n) \rangle > \epsilon$. Without loss of generality, $(S^*(z_n^*))$ is w^{*}-convergent. Then $\langle S^*(z_n^*), T(x_n) \rangle = \langle z_n^*, ST(x_n) \rangle \to 0$, a contradiction.

(iii) \Rightarrow (iv) Let *S* : *Y* \rightarrow *c*₀ be an operator. Note that B_{ℓ_1} , and thus $S^*(B_{\ell_1})$ is w^* sequentially compact. Then $ST : X \rightarrow c_0$ is *p*-convergent.

(iv) \Rightarrow (i) Let (x_n) be a weakly *p*-summable sequence in *X* and let (y_n^*) be a w^* null sequence in *Y*^{*}. Define *S* : *Y* \rightarrow *c*₀ by *S*(*y*) = ($y_i^*(y)$). Since *ST* is *p*-convergent, $\langle y_n^*, T(x_n) \rangle \leq \|ST(x_n)\| \to 0.$

The following two corollaries provide equivalent characterizations of spaces with the DP^*P_p .

Corollary 20 *Let* $1 < p < \infty$ *. The following statements are equivalent about a Banach space X.*

- (i) *X* has the DP^*P_p .
- (ii) [\[15\]](#page-14-1) *The identity operator* $i: X \rightarrow X$ *is weak*^{*} *p*-convergent; that is, every weakly *p-precompact subset of X is a limited set.*
- (iii) $[18]$ *Every weakly p-precompact operator* $S : Z \rightarrow X$ *is limited, for any Banach space Z.*
- (iv) [\[15\]](#page-14-1) *Every operator* $S: \ell_{p^*} \to X$ *is limited.*
- (v) $[18]$ *If* (x_n) *is a weakly p-summable sequence in X and* (x_n^*) *is a* w^* -Cauchy sequence *in* X^* *, then* $x_n^*(x_n) \to 0$ *.*

Proof Apply Theorem [18](#page-10-0) to the identity operator $i : X \to X$.

Corollary 21 *Let* $1 < p < \infty$ *. The following statements are equivalent about a Banach space X.*

- (i) *X* has the DP^*P_p .
- (ii) $[18]$ *If* (x_n) *is a weakly p-Cauchy sequence in X* and (x_n^*) *is a* w^* *-null sequence in* X^* *, then* $x_n^*(x_n) \to 0$.
- (iii) $[18]$ *If* $S : X \rightarrow Z$ *is an operator such that* $S^*(B_{Z^*})$ *is* w^* -sequentially compact, then *S is p-convergent.*
- (iv) $[15]$ *Every operator* $S: X \rightarrow c_0$ *is p-convergent.*

Proof Apply Corollary [19](#page-11-0) to the identity operator $i : X \to X$.

We note that an operator $T : X \to Y$ is *p*-convergent if and only if *T* takes weakly *p*-precompact subsets of *X* into norm compact subsets of *Y* .

Corollary 22 *Let* $1 < p < \infty$ *.*

- (i) *Suppose* $S : X \to Y$ *is weakly p-precompact and* $T : Y \to Z$ *is an operator with weakly precompact adjoint. If Y has the DPP_p, then TS is compact.*
- (ii) *Suppose* $S : X \to Y$ *is weakly p-precompact and* $T : Y \to Z$ *is an operator such that* $T^*(B_{Z^*})$ *is* w^{*}-sequentially compact. If Y has the DP^*P_n , then T S is compact.
- *Proof* (i) Suppose $S: X \to Y$ is weakly *p*-precompact and $T: Y \to Z$ is an operator such that T^* is weakly precompact. Since *Y* has the DPP_p , *T* is *p*-convergent by Corollary [16.](#page-10-1) Then $TS(B_X)$ is relatively compact, and thus TS is compact.
- (ii) The proof is similar to that of (i).

Corollary 23 *Let* $1 < p < \infty$ *.*

- (i) *If* Y^* *does not contain a copy of* ℓ_1 *, then every weak p-convergent operator* $T : X \to Y$ *is p-convergent.*
- (ii) *If By* is* w^* -sequentially compact (in particular if Y is separable), then every weak^{*} *p*-convergent operator $T : X \rightarrow Y$ is p-convergent.
- (iii) *If X or Y has the DPP_p, then every operator* $T : X \rightarrow Y$ *is weak p-convergent.*
- (iv) *If X* or *Y* has the DP^*P_p , then every operator $T : X \to Y$ is weak^{*} *p*-convergent.
- *Proof* (i) Let $i: Y \rightarrow Y$ be the identity operator on *Y*. Suppose $T: X \rightarrow Y$ is a weak *p*convergent operator. By Rosenthal's ℓ_1 theorem, *i*^{*} is weakly precompact. Then $T = iT$ is *p*-convergent by Theorem [14.](#page-8-0)
- (ii) The proof is similar to that of (ii).
- (iii) Let $T: X \to Y$ be an operator. If *Y* has the DPP_p , then the identity operator $i: Y \to Y$ is weak *p*-convergent. Hence $T = iT$ is weak *p*-convergent. If *X* has the DPP_p , then the identity operator $i : X \rightarrow X$ is weak *p*-convergent. Hence $T = Ti$ is weak *p*convergent.
- (iv) The proof is similar to that of (iii).

Clearly each *p*-convergent operator $T : X \rightarrow Y$ is weak^{*} *p*-convergent and each weak^{*} *p*-convergent operator is weak *p*-convergent. By Corollay [23,](#page-12-0) we obtain the following result. It generalizes [\[15,](#page-14-1) Proposition 2.5].

Corollary 24 *If* Y^* *does not contain a copy of* ℓ_1 *, then the families of p-convergent operators,* weak^{*} *p*-convergent operators, and weak *p*-convergent operators $T : X \rightarrow Y$ coincide.

Let $1 \leq p < \infty$. A Banach space *X* has the *p*-*Gelfand–Phillips* (*p*-*GP*) *property* (or is a *p*-*Gelfand–Phillips space*) if every limited weakly *p*-summable sequence in *X* is norm null $[15]$.

 \Box

 \Box

If *X* has the *GP* property, then *X* has the *p*-*GP* property for any $1 \leq p < \infty$. The space ℓ_{∞} does not have the *p*-*GP* property for any $1 \leq p < \infty$ [\[15\]](#page-14-1).

Let $1 \leq p < \infty$. A space *X* has the *p*-*Dunford Pettis relatively compact property* (*p*-*DPrcP*) if every DP weakly *p*-summable sequence (x_n) in *X* is norm null [\[17](#page-14-18)].

If *X* has the *DPrcP* property, then *X* has the *p*-*DPrcP* property for any $1 \leq p \leq \infty$.

Corollary 25 *Let* $1 \leq p < \infty$ *. If X* has the p-GP (resp. the p-DPrcP) property, then the *following are equivalent.*

- (i) *X* has the DP^*P_p (resp. the DPP_p).
- (ii) $X \in C_p$.

Proof (*i*) \Rightarrow (*ii*) We only prove the result when *X* has the the *p*-*GP* and the *DP*^{*}*P_p*. The other case is similar.

Let (x_n) be weakly *p*-summable in *X*. Then (x_n) is limited by Corollary [20.](#page-11-1) Therefore $\|x_n\| \to 0$, and thus $X \in C_p$.

Let $1 \leq p < \infty$. An operator $T : X \to Y$ is called *limited p-convergent* if it carries limited weakly *p*-summable sequences in *X* to norm null ones in *Y* [\[15](#page-14-1)]. An operator $T : X \to Y$ is called *DP p-convergent* if it takes DP weakly *p*-summable sequences to norm null sequences [\[17\]](#page-14-18).

The sets of all limited *p*-convergent, DP *p*-convergent, weak *p*-convergent, and weak∗ *p*convergent operators from *X* to *Y* will be respectively denoted by $LC_p(X, Y)$, $DPC_p(X, Y)$, $WC_p(X, Y)$, and $W^*C_p(X, Y)$.

Corollary 26 *Let* $1 \leq p < \infty$ *. Let X be a Banach space. The following statements hold.*

- (i) *X* has the p-DPrcP if and only if $WC_p(X, \ell_\infty) = DPC_p(X, \ell_\infty)$.
- (ii) *X* has the *p*-*GP* property if and only if $W^*C_p(X, \ell_\infty) = LC_p(X, \ell_\infty)$.

Proof (i) A Banach space *X* has the *p*-*DPrcP* if and only if $DPC_p(X, \ell_\infty) = L(X, \ell_\infty)$ [\[17\]](#page-14-18). Since ℓ_{∞} has the *DPP_p*, $L(X, \ell_{\infty}) = WC_p(X, \ell_{\infty})$.

(ii) A Banach space *X* has the *p*-*GP* if and only if $LC_p(X, \ell_\infty) = L(X, \ell_\infty)$ [\[17\]](#page-14-18). Since ℓ_{∞} has the DP^*P_p , $L(X, \ell_{\infty}) = W^*C_p(X, \ell_{\infty})$.

 \Box

Since any limited set is a DP set, any limited weakly *p*-summable sequence is also DP weakly *p*-summable. Hence if *X* has the *p*-*DPrcP*, then *X* has the *p*-*G P* property. Thus, if *X* has the *p*-*DPrcP*, then $L(X, \ell_{\infty}) = LC_p(X, \ell_{\infty}) = DPC_p(X, \ell_{\infty}) = WC_p(X, \ell_{\infty}) =$ $W^*C_p(X, \ell_\infty)$.

References

- 1. Aliprantis, C.D., Burknishaw, O.: Positive Operators. Springer, Dordrecht (2006). **(Reprint of the 1985 original copy)**
- 2. Andrews, K.: Dunford–Pettis sets in the space of Bochner integrable functions. Math. Ann. **241**, 35–41 (1979)
- 3. Bourgain, J., Diestel, J.: Limited operators and strict cosingularity. Math. Nachr. **119**, 55–58 (1984)
- 4. Borwein, J., Fabian, M., Vanderweff, J.: Characterizations of Banach spaces via convex and other locally Lipschitz functions. Acta Math. Vietnam **22**, 53–69 (1997)
- 5. Carrión, H., Galindo, P., Lourenço, M.L.: A stronger Dunford–Pettis property. Studia Math. **3**, 205–216 (2008). **(Lourenço)**
- 6. Castillo, J., Sánchez, F.: Dunford–Pettis like properties of continuous vector function spaces. Revista Mat. Univ. Complut. Madr. **6**, 43–59 (1993)
- 7. Diestel, J.: Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, vol. 92. Springer, Berlin (1984)
- 8. Diestel, J.: A survey of results related to the Dunford–Pettis property. Contemp. Math. **2**, 15–60 (1980)
- 9. Diestel, J., Uhl Jr., J.J.: Vector Measures, Mathematical Surveys, vol. 15. American Mathematical Society, Providence (1977)
- 10. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)
- 11. El Kaddouri, A., H'michane, J., Bouras, K., Moussa, M.: On the class of weak∗ Dunford-Pettis operators. Rend. Circ. Mat. Palermo **62**(2), 261–265 (2013)
- 12. Emmanuele, G.: A dual characterization of Banach spaces not containing ℓ^1 . Bull. Pol. Acad. Sci. Math. **34**, 155–160 (1986)
- 13. Emmanuele, G.: Banach spaces in which Dunford–Pettis sets are relatively compact. Arch. Math. **58**, 477–485 (1992)
- 14. Fourie, J.H., Zeekoei, E.D.: *D P*∗-properties of order *p* on Banach spaces. Quaest. Math. **37**, 349–358 (2014)
- 15. Fourie, J.H., Zeekoei, E.D.: On weak-star-*p*-convergent operators. Quaest. Math. (2017). [https://doi.org/](https://doi.org/10.2989/16073606.2017.1301591) [10.2989/16073606.2017.1301591](https://doi.org/10.2989/16073606.2017.1301591)
- 16. Ghenciu, I., Lewis, P.: Completely continuous operators. Colloq. Math. **126**(2), 231–256 (2012). [https://](https://doi.org/10.4064/cm126-2-7) doi.org/10.4064/cm126-2-7
- 17. Ghenciu, I.: Some classes of Banach spaces and complemented subspaces of operators. Adv. Oper. Theory (2018). [https://doi.org/10.15352/aot.1802-1318.](https://doi.org/10.15352/aot.1802-1318) ISSN 2538-225X (electronic)
- 18. Ghenciu, I.: Dunford–Pettis like properties on tensor products. Quaest. Math. **41**, 811–828 (2018)
- 19. Ghenciu, I.: A note on Dunford–Pettis like properties and complemented spaces of operators. Comment. Math. Univ. Carolin. **59**(2), 207–222 (2018)
- 20. Ghenciu, I.: *L*-Sets and property (*S R*∗) in spaces of compact operators. Monatsh. Math. **181**(3), 609–628 (2016). <https://doi.org/10.1007/s00605-016-0884-2>
- 21. Jaramillo, J.A., Prieto, A., Zaldueno, I.: Sequential convergence and Dunford–Pettis properties. An. Acad. Sci. Fenn. **25**, 467–475 (2000)
- 22. Jinxi, C., Yongming, W.: Characterizations of Banach spaces with relatively compact Dunford–Pettis sets. Adv. Math. (China) (2016). <https://doi.org/10.11845/sxjz.2014095b>
- 23. Salimi, M., Moshtaghiun, M.: The Gelfand–Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. **5**, 84–92 (2011)
- 24. Schlumprecht, T.: Limited sets in Banach spaces. Ph.D. Dissertation, Ludwig-Maximilians-Universität, Munich (1987)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.