

On some classes of Dunford-Pettis-like operators

Ioana Ghenciu¹

Received: 7 June 2019 / Accepted: 11 October 2019 / Published online: 23 October 2019 © Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Abstract

In this paper we give characterizations of weak Dunford–Pettis, weak* Dunford–Pettis, weak *p*-convergent, and weak* *p*-convergent operators.

Keywords Weak Dunford–Pettis operator · Weak* Dunford–Pettis operator · Weak *p*-convergent operator · Weak* *p*-convergent operator · The Dunford–Pettis property of order p

Mathematics Subject Classification 46B20 · 46B25 · 46B28

1 Introduction

In this paper Dunford–Pettis sets and limited sets are used to characterize the classes of weak Dunford–Pettis and weak* Dunford–Pettis operators. The classes of weak *p*-convergent and weak* *p*-convergent operators are also studied.

Our major results are Theorems 2, 6, 14, and 18. As consequences, we obtain equivalent characterizations of Banach spaces with the Dunford–Pettis property, DP^* -property, Dunford–Pettis property of order p, and DP^* -property of order p. We generalize some results in [1,5,11,15,18].

2 Definitions and notation

Throughout this paper, X and Y will denote real Banach spaces. The unit ball of X will be denoted by B_X and X^* will denote the continuous linear dual of X. An operator $T : X \to Y$ will be a continuous and linear function. The space of all operators from X to Y will be denoted by L(X, Y).

The operator *T* is *completely continuous (or Dunford–Pettis)* if *T* maps weakly convergent sequences to norm convergent sequences.

☑ Ioana Ghenciu ioana.ghenciu@uwrf.edu

¹ Mathematics Department, University of Wisconsin-River Falls, River Falls, WI 54022, USA

A Banach space X has the Dunford–Pettis property (DPP) if every weakly compact operator T with domain X is completely continuous. Equivalently, X has the DPP if and only if $x_n^*(x_n) \rightarrow 0$ for all weakly null sequences (x_n) in X and (x_n^*) in X^* [8, Theorem 1]. Schur spaces, C(K) spaces, and $L_1(\mu)$ spaces have the DPP. The reader can check [7–9], and [2] for a guide to the extensive classical literature dealing with the DPP, equivalent formulations of the preceding definitions, and undefined notation and terminology.

A subset A of X is called a *Dunford–Pettis* (*DP*) subset (resp. *limited* subset) of X if each weakly null (resp. w^* -null) sequence (x_n^*) in X^* tends to 0 uniformly on A [2] (resp. [3,24]); i.e.

$$\sup_{x \in A} |x_n^*(x)| \to 0$$

If *A* is a limited subset of *X*, then T(A) is relatively compact for any operator $T : X \to c_0$ [3, p. 56], [24, p. 23]. The subset *A* of *X* is a *DP* subset of *X* if and only if T(A) is relatively compact whenever $T : X \to Y$ is a weakly compact operator [2] if and only if T(A) is relatively compact whenever $T : X \to Y$ is an operator with weakly precompact adjoint [20].

A bounded subset *S* of *X* is said to be *weakly precompact* provided that every sequence from *S* has a weakly Cauchy subsequence. Every *DP* subset of *X* is weakly precompact [2]. Since any limited set is a *DP* set, any limited set is weakly precompact. An operator $T : X \rightarrow Y$ is called *weakly precompact (or almost weakly compact)* if $T(B_X)$ is weakly precompact.

A Banach space X has the DP^* -property (DP^*P) if all weakly compact sets in X are limited [4,5,21]. The space X has the DP^*P if and only if $x_n^*(x_n) \to 0$ for all weakly null sequences (x_n) in X and w^* -null sequences (x_n^*) in X^* [16]. If X has the DP^*P , then it has the DPP. If X is a Schur space or if X has the DPP and the Grothendieck property (weak and weak* convergence of sequences in X^* coincide), then X has the DP^*P .

3 Weak Dunford–Pettis operators and weak* Dunford–Pettis operators

An operator $T : X \to Y$ is called *weak Dunford–Pettis* [1, p. 349] if $\langle T(x_n), y_n^* \rangle \to 0$, whenever (x_n) is a weakly null sequence in X and (y_n^*) is a weakly null sequence in Y^* . An operator $T : X \to Y$ is called weak^{*} *Dunford–Pettis* [11] if $\langle T(x_n), y_n^* \rangle \to 0$, whenever (x_n) is a weakly null sequence in X and (y_n^*) is a w^* -null sequence in Y^* .

In this section we give some characterizations of weak Dunford–Pettis and weak* Dunford–Pettis operators.

Observation 1 If $T : X \to Y$ is an operator, then $T(B_X)$ is a DP (resp. limited) subset of Y if and only if $T^* : Y^* \to X^*$ is completely continuous (resp. T^* is w^* -norm sequentially continuous).

To see this, note that $T(B_X)$ is a DP (resp. limited) subset of Y if and only if

$$0 = \limsup_{n} \sup\{|\langle y_{n}^{*}, T(x) \rangle| : x \in B_{X}\} = \limsup_{n} \sup\{|\langle T^{*}(y_{n}^{*}), x \rangle| : x \in B_{X}\} = \lim_{n} ||T^{*}(y_{n}^{*})||$$

for each weakly null (resp. w^* -null) sequence (y_n^*) in Y^* ; that is, $T^* : Y^* \to X^*$ is completely continuous (resp. T^* is w^* -norm sequentially continuous).

Theorem 1 [1, Theorem 5.99, p. 351] Let $T : X \to Y$ be an operator. The following statements are equivalent:

(1) *T* is a weak Dunford–Pettis operator.

- (2) T carries weakly compact subsets of X to Dunford–Pettis subsets of Y.
- (3) If S: Y → Z is a weakly compact operator, then ST : X → Z is completely continuous, for any Banach space Z.

We are now giving our first major result. It gives characterizations of weak Dunford–Pettis operators and generalizes [1, Theorem 5.99, p. 351].

Theorem 2 Let X and Y be Banach spaces, and let $T : X \to Y$ be an operator. The following statements are equivalent.

- (1) *T* is a weak Dunford–Pettis operator.
- (2) T carries weakly precompact subsets of X to Dunford–Pettis subsets of Y.
- (3) For all Banach spaces Z, if S : Y → Z has a weakly precompact adjoint, then ST : X → Z is completely continuous.
- (4) If $S : Y \to c_0$ has a weakly precompact adjoint, then $ST : X \to c_0$ is completely continuous.
- (5) If (x_n) is a weakly null sequence in X and (y_n^*) is a weakly Cauchy sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0$.

Proof (1) \Rightarrow (2) Let *A* be a weakly precompact subset of *X*. Suppose by contradiction that *T*(*A*) is not a Dunford–Pettis subset of *Y*. Suppose that (y_n^*) is a weakly null sequence in *Y*^{*}, (x_n) is a sequence in *A*, and $\epsilon > 0$ such that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for all *n*. Without loss of generality assume that (x_n) is weakly Cauchy.

Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|\langle y_{n_2}^*, T(x_{n_1}) \rangle| < \epsilon/2$. We can do this since (y_n^*) is w^* -null. Continue inductively. Choose $n_k > n_{k-1}$ so that $|\langle y_{n_k}^*, T(x_{n_{k-1}}) \rangle| < \epsilon/2$. Since *T* is a weak Dunford–Pettis operator, $\langle y_{n_k}^*, T(x_{n_k} - x_{n_{k-1}}) \rangle \to 0$. However,

$$|\langle y_{n_k}^*, T(x_{n_k} - x_{n_{k-1}})\rangle| \ge |\langle y_{n_k}^*, T(x_{n_k})\rangle| - |\langle y_{n_k}^*, T(x_{n_{k-1}})\rangle| > \epsilon/2,$$

a contradiction.

(2) \Rightarrow (3) Let $S: Y \to Z$ be an operator such that $S^*: Z^* \to Y^*$ is weakly precompact. Suppose (x_n) is a weakly null sequence in X. Since $\{T(x_n): n \in \mathbb{N}\}$ is a Dunford–Pettis set in Y and S^* is weakly precompact, $\{ST(x_n): n \in \mathbb{N}\}$ is relatively compact [20, Corollary 4]. Then $\|ST(x_n)\| \to 0$, and thus $ST: X \to Z$ is completely continuous.

 $(3) \Rightarrow (4)$ and $(5) \Rightarrow (1)$ are obvious.

(4) \Rightarrow (1) Suppose (x_n) is weakly null in X and (y_n^*) is weakly null in Y*. Define $S: Y \to c_0$ by $S(y) = (y_i^*(y))$. Then $S^*: \ell_1 \to Y^*$, $S^*(b) = \sum b_i y_i^*$. Note that S^* maps B_{ℓ_1} into the closed and absolutely convex hull of $\{y_i^*: i \in \mathbb{N}\}$, which is relatively weakly compact [9, p. 51]. Then S^* is weakly compact. Hence $ST: X \to c_0$ is completely continuous. Therefore $\langle T(x_n), y_n^* \rangle \leq \|ST(x_n)\| = \sup_i |\langle y_i^*, T(x_n) \rangle| \to 0$, and T is weak Dunford–Pettis.

(1) \Rightarrow (5) Suppose that (x_n) is a weakly null sequence in X, (y_n^*) is a weakly Cauchy sequence in Y^* , and $\langle y_n^*, T(x_n) \rangle \neq 0$. Without loss of generality suppose that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for each $n \in \mathbb{N}$, for some $\epsilon > 0$.

Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|\langle y_{n_1}^*, T(x_{n_2})\rangle| < \epsilon/2$. We can do this since $(T(x_n))$ is weakly null. Continue inductively. Choose $n_{k+1} > n_k$ so that $|\langle y_{n_k}^*, T(x_{n_{k+1}})\rangle| < \epsilon/2$. Since *T* is weak Dunford–Pettis, $\langle y_{n_{k+1}}^* - y_{n_k}^*, T(x_{n_{k+1}})\rangle \to 0$. Since

$$|\langle y_{n_{k+1}}^* - y_{n_k}^*, T(x_{n_{k+1}})\rangle| \ge |\langle y_{n_{k+1}}^*, T(x_{n_{k+1}})\rangle| - |\langle y_{n_k}^*, T(x_{n_{k+1}})\rangle| > \epsilon/2,$$

we have a contradiction.

Deringer

Corollary 3 Let X and Y be Banach spaces, and let $T: X \to Y$ be an operator. The following statements are equivalent.

- (i) T is a weak Dunford–Pettis operator.
- (ii) For all Banach spaces Z, if $S: Z \to X$ is a weakly precompact operator, then TS: $Z \rightarrow Y$ has a completely continuous adjoint.
- (iii) If $S : \ell_1 \to X$ is a weakly precompact operator, then $TS : \ell_1 \to Y$ has a completely continuous adjoint.
- (iv) If (x_n) is a weakly Cauchy sequence in X and (y_n^*) is a weakly null sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0.$

Proof (i) \Rightarrow (ii) Let $S: Z \rightarrow X$ be a weakly precompact operator. Then $TS(B_Z)$ is a Dunford–Pettis set. Thus $TS: Z \rightarrow Y$ has a completely continuous adjoint.

(iii) \Rightarrow (iv) Suppose (x_n) is a weakly Cauchy sequence in X and (y_n^*) is a weakly null sequence in Y^* . Define $S : \ell_1 \to X$ by

$$S(b) = \sum b_n x_n,$$

where $b = (b_n) \in \ell_1$. Since $S(B_{\ell_1})$ is contained in the closed and absolutely convex hull of $\{x_n : n \in \mathbb{N}\}$, which is weakly precompact [24, p. 27], S is weakly precompact.

By assumption, $(TS)^* = S^*T^*$ is completely continuous. Note that $S^*(x^*) = (\langle x^*, x_i \rangle)_i$, $x^* \in X^*$, and $S^*T^*(y_n^*) = (\langle T^*(y_n^*), x_i \rangle)_i$. Hence

$$\langle y_n^*, T(x_n) \rangle = \langle T^*(y_n^*), x_n \rangle \le \|S^*T^*(y_n^*)\| = \sup_i |\langle T^*(y_n^*), x_i \rangle| \to 0.$$

(ii) \Rightarrow (iii) and (iv) \Rightarrow (i) are obvious.

The following two corollaries provide equivalent characterizations of spaces with the Dunford-Pettis property.

Corollary 4 Let X be a Banach space. Then the following statements are equivalent:

- (i) X has the DPP.
- (ii) The identity operator $i: X \to X$ is a weak Dunford–Pettis operator; that is, every weakly precompact subset of X is a Dunford–Pettis set.
- (iii) [8] Every operator $S: X \to Z$ with weakly precompact adjoint is completely continuous, for any Banach space Z.
- (iv) [8] Every operator $S: X \to c_0$ with weakly precompact adjoint is completely continuous.
- (v) [8] If (x_n) is a weakly null sequence in X and (x_n^*) is a weakly Cauchy sequence in X^* , then $x_n^*(x_n) \to 0$.

Proof Apply Theorem 2 to the identity operator $i : X \to X$.

We note that X has the DPP if and only if weakly precompact sets and DP sets coincide (since every *DP* set is weakly precompact [2]).

Corollary 5 Let X be a Banach space. Then the following statements are equivalent:

- (i) X has the DPP.
- (ii) [8] For all Banach spaces Z, every weakly precompact operator $S: Z \to X$ has a completely continuous adjoint.
- (iii) Every weakly precompact operator $S: \ell_1 \to X$ has a completely continuous adjoint.

(iv) [8] If (x_n) is a weakly Cauchy sequence in X and (x_n^*) is a weakly null sequence in X^* , then $x_n^*(x_n) \to 0$.

Proof Apply Corollary 3 to the identity operator $i : X \to X$.

An operator $T : X \to Y$ is called *limited* if $T(B_X)$ is limited in Y. The operator $T : X \to Y$ is limited if and only if $T^* : Y^* \to X^*$ is w^* -norm sequentially continuous (by Observation 1).

We are now giving our second major result. It gives a characterization of weak* Dunford– Pettis operators and generalizes [11, Theorem 3.2].

Theorem 6 Let X and Y be Banach spaces and let $T : X \to Y$ be an operator. The following statements are equivalent.

- (1) *T* is a weak^{*} Dunford–Pettis operator.
- (2) T carries weakly precompact subsets of X to limited subsets of Y.
- (3) If $S : Z \to X$ is a weakly precompact operator, then $TS : Z \to Y$ is limited, for any Banach space Z.
- (4) If $S : \ell_1 \to X$ is a weakly precompact operator, then $TS : \ell_1 \to Y$ is limited.
- (5) If (x_n) is a weakly null sequence in X and (y_n^*) is a w^* -Cauchy sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0$.

Proof (1) \Rightarrow (2) is similar to the proof of (1) \Rightarrow (2) in Theorem 2.

(2) \Rightarrow (3) Suppose $S : Z \to X$ is weakly precompact. Then $TS(B_Z)$ is limited, and thus TS is limited.

 $(3) \Rightarrow (4)$ and $(5) \Rightarrow (1)$ are obvious.

(4) \Rightarrow (1) Let (x_n) be a weakly null sequence in X and (y_n^*) be a w^* -null sequence in Y^* . Define $S : \ell_1 \to X$ by

$$S(b) = \sum b_n x_n,$$

where $b = (b_n) \in \ell_1$. Since $S(B_{\ell_1})$ is contained in the closed and absolutely convex hull of $\{x_n : n \in \mathbb{N}\}$, which is relatively weakly compact [9, p. 51], S is weakly compact. By assumption, TS is limited. Suppose (e_n^*) denotes the unit vector basis of ℓ_1 . Then

$$\langle y_n^*, T(x_n) \rangle = \langle y_n^*, TS(e_n^*) \rangle \to 0.$$

 $(1) \Rightarrow (5)$ is similar to the proof of $(1) \Rightarrow (5)$ in Theorem 2.

Corollary 7 Let X and Y be Banach spaces and let $T : X \to Y$ be an operator. The following statements are equivalent.

- (i) *T* is a weak^{*} Dunford–Pettis operator.
- (ii) If (x_n) is a weakly Cauchy sequence in X and (y_n^*) is a w^{*}-null sequence in Y^{*}, then $\langle y_n^*, T(x_n) \rangle \to 0$.
- (iii) If $S : Y \to Z$ is an operator such that $S^*(B_{Z^*})$ is w^* -sequentially compact, then $ST : X \to Z$ is completely continuous.
- (iv) If $S: Y \to c_0$ is an operator, then $ST: X \to c_0$ is completely continuous.

Proof (i) \Rightarrow (ii) Suppose that (x_n) is a weakly Cauchy sequence in X and (y_n^*) is a w^* -null sequence in Y^* . Since $(T(x_n))$ is limited in $Y, \langle y_n^*, T(x_n) \rangle \rightarrow 0$.

(ii) \Rightarrow (iii) Let $S: Y \to Z$ be an operator such that $S^*(B_{Z^*})$ is w^* -sequentially compact, but $ST: X \to Z$ is not completely continuous. Let (x_n) be weakly null in X so that

 $||ST(x_n)|| > \epsilon$, for some $\epsilon > 0$. Choose (z_n^*) in B_{Z^*} so that $\langle z_n^*, ST(x_n) \rangle > \epsilon$. Without loss of generality $(S^*(z_n^*))$ is w^* -convergent. Hence $\langle S^*(z_n^*), T(x_n) \rangle = \langle z_n^*, ST(x_n) \rangle \to 0$, a contradiction.

(iii) \Rightarrow (iv) Let $S : Y \rightarrow c_0$ be an operator. Note that B_{ℓ_1} , and thus $S^*(B_{\ell_1})$ is w^* -sequentially compact (since c_0 is separable). Then $ST : X \rightarrow c_0$ is completely continuous.

(iv) \Rightarrow (i) Suppose (x_n) is a weakly null sequence in X and (y_n^*) is a w^* -null sequence in Y^* . Define $S: Y \to c_0$ by $S(y) = (y_i^*(y))$. Since $ST: X \to c_0$ is completely continuous, $\langle y_n^*, T(x_n) \rangle \leq \|ST(x_n)\| \to 0$.

The following corollary provides a characterization of spaces with the DP^*P and generalizes [11, Corollary 3.3].

Corollary 8 Let X be a Banach space. Then the following statements are equivalent:

- (i) X has the DP^*P .
- (ii) [16] The identity operator $i : X \to X$ is a weak* Dunford–Pettis operator; that is, every weakly precompact subset of X is a limited set.
- (iii) [16] Every weakly precompact operator $S : Z \to X$ is limited, for any Banach space Z.
- (iv) Every weakly precompact operator $S : \ell_1 \to X$ is limited.
- (v) [16] If (x_n) is a weakly null sequence in X and (x_n^*) is a w^{*}-Cauchy sequence in X^{*}, then $x_n^*(x_n) \to 0$.

Proof Apply Theorem 6 to the identity operator $i : X \to X$.

We note that X has the DP^*P if and only if weakly precompact sets and limited sets coincide (since every limited set is weakly precompact [3]).

Corollary 9 Let X be a Banach space. Then the following statements are equivalent:

- (i) X has the DP^*P .
- (ii) [16] If (x_n) is a weakly Cauchy sequence in X and (x_n^*) is a w^* -null sequence in Y^* , then $x_n^*(x_n) \to 0$.
- (iii) [16] If $S : X \to Z$ is an operator such that $S^*(B_{Z^*})$ is w^* -sequentially compact, then *S* is completely continuous.
- (iv) [5] Every operator $S: X \to c_0$ is completely continuous.

Proof Apply Corollary 7 to the identity operator $i : X \to X$.

Corollary 10 (i) If Y^* does not contain a copy of ℓ_1 , then every weak Dunford–Pettis operator $T : X \to Y$ is completely continuous.

- (ii) If B_{Y^*} is w^* -sequentially compact (in particular if Y is separable), then every weak^{*} Dunford–Pettis operator $T : X \to Y$ is completely continuous.
- (iii) If X or Y has the DPP, then every operator $T: X \to Y$ is weak Dunford–Pettis.
- (iv) If X or Y has the DP^*P , then every operator $T: X \to Y$ is weak^{*} Dunford–Pettis.
- **Proof** (i) Let $i : Y \to Y$ be the identity operator on Y. Suppose that $T : X \to Y$ is a weak Dunford–Pettis operator. Since Y^* does not contain a copy of ℓ_1 , i^* is weakly precompact (by Rosenthal's ℓ_1 theorem). Then T = iT is completely continuous by Theorem 2.
- (ii) Let $i : Y \to Y$ be the identity operator on Y. Suppose $T : X \to Y$ is a weak^{*} Dunford–Pettis operator. Since $i^*(B_{Y^*})$ is w^* -sequentially compact, T = iT is completely continuous by Corollary 7.

- (iii) Let $T : X \to Y$ be an operator. If Y has the *DPP*, then the identity operator $i : Y \to Y$ is weak Dunford–Pettis. Hence T = iT is weak Dunford–Pettis. If X has the *DPP*, then the identity operator $i : X \to X$ is weak Dunford–Pettis. Hence T = Ti is weak Dunford–Pettis.
- (iv) The proof is similar to that of (iii).

Clearly each completely continuous operator $T : X \to Y$ is weak* Dunford–Pettis and each weak* Dunford–Pettis operator is weak Dunford–Pettis. By Corollary 10, we obtain the following result.

Corollary 11 If Y^* does not contain a copy of ℓ_1 , then the families of completely continuous operators, weak* Dunford–Pettis operators, and weak Dunford–Pettis operators $T : X \to Y$ coincide.

Examples (a) Note that ℓ_{∞} has the DP^*P (since it has the DPP and the Grothendieck property [5]). Then the identity operator $i : \ell_{\infty} \to \ell_{\infty}$ is weak^{*} Dunford–Pettis and is not completely continuous.

(b) A space *X* has the DP^*P if and only if every operator $T : X \to c_0$ is completely continuous [5]. Since the identity operator $i : c_0 \to c_0$ is not completely continuous, c_0 does not have the DP^*P . Thus $i : c_0 \to c_0$ is weak Dunford–Pettis (since c_0 has the DPP) and not weak* Dunford–Pettis.

- **Corollary 12** (i) Suppose that Y has the DPP. If $T : X \to Y$ is an operator such that T^* is not completely continuous, then T fixes a copy of ℓ_1 .
- (ii) Suppose that Y has the DP^*P . If $T : X \to Y$ is a non-limited operator, then T fixes a copy of ℓ_1 .

Proof (i) Suppose that T^* is not completely continuous. Let (y_n^*) be weakly null in Y^* so that $||T^*(y_n^*)|| \neq 0$. Suppose (x_n) is a sequence in B_X such that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for some $\epsilon > 0$. We claim that (x_n) has no weakly Cauchy subsequence. If the claim is false, suppose without loss of generality that (x_n) is weakly Cauchy. Since Y has the *DPP*, T is weak Dunford–Pettis. Then $\langle y_n^*, T(x_n) \rangle \to 0$ by Corollary 3. This contradiction shows that (x_n) has no weakly Cauchy subsequence. By Rosenthal's ℓ_1 theorem, (x_n) has a subsequence equivalent to the ℓ_1 basis. Suppose without loss of generality that (x_n) is equivalent to (e_n^*) , where (e_n^*) denotes the basis of ℓ_1 .

Now, since $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ and *Y* has the *DPP*, $(T(x_n))$ has no weakly Cauchy subsequence (by Corollary 5). By Rosenthal's ℓ_1 theorem, $(T(x_n))$ has a subsequence equivalent to (e_n^*) . Suppose without loss of generality that $(T(x_n))$ is equivalent to (e_n^*) . Hence *T* fixes a copy of ℓ_1 .

(ii) The proof is similar to that of (i).

Corollary 12 (ii) generalizes [5, Theorem 2.3] (which states that if X and Y have the the DP^*P and $T: X \to Y$ is a non-limited operator, then T fixes a copy of ℓ_1).

A Banach space X has the *Dunford–Pettis relatively compact property (DPrcP)* if every DP subset of X is relatively compact [13]. Schur spaces have the *DPrcP*. The space X does not contain a copy of ℓ_1 if and only if X* has the *DPrcP* [12,13]. We note that if X* does not contain a copy of ℓ_1 , then X**, thus X, has the *DPrcP* [12,13].

The space *X* has the *Gelfand–Phillips (GP)* property (or *X* is a *Gelfand–Phillips* space) if every limited subset of *X* is relatively compact. Schur spaces and separable spaces have the Gelfand–Phillips property [3].

An operator $T : X \to Y$ is called *Dunford–Pettis completely continuous (DPcc)* if T carries weakly null and DP sequences to norm null ones [22]. An operator $T : X \to Y$ is called *limited completely continuous (lcc)* if T maps weakly null limited sequences to norm null sequences [23].

The sets of all limited completely continuous, Dunford–Pettis completely continuous operators, weak Dunford Pettis, and weak^{*} Dunford Pettis operators from X to Y will be respectively denoted by LCC(X, Y), DPCC(X, Y), WDP(X, Y), and $W^*DP(X, Y)$.

In the following result, we characterize Banach spaces X on which every weak (resp. weak*) Dunford–Pettis operator is a DPcc (resp. lcc) operator.

Corollary 13 (i) A Banach space X has the DPrcP if and only if $DPCC(X, \ell_{\infty}) = WDP(X, \ell_{\infty})$.

- (ii) A Banach space X has the GP property if and only if $LCC(X, \ell_{\infty}) = W^*DP(X, \ell_{\infty})$.
- **Proof** (i) A Banach space X has the DPrcP if and only if $DPCC(X, \ell_{\infty}) = L(X, \ell_{\infty})$ [22]. Since ℓ_{∞} has the DPP, $L(X, \ell_{\infty}) = WDP(X, \ell_{\infty})$.
- (ii) A Banach space X has the GP property if and only if $LCC(X, \ell_{\infty}) = L(X, \ell_{\infty})$ [23]. Since ℓ_{∞} has the DP^*P , $L(X, \ell_{\infty}) = W^*DP(X, \ell_{\infty})$.

If X has the *DPrcP*, then X has the *GP* property (since any limited set is a DP set). Thus, if X has the *DPrcP*, then $L(X, \ell_{\infty}) = LCC(X, \ell_{\infty}) = DPCC(X, \ell_{\infty}) = WDP(X, \ell_{\infty}) = W^*DP(X, \ell_{\infty})$.

Example We note that the identity operator $i : \ell_{\infty} \to \ell_{\infty}$ is weak* Dunford–Pettis and not lcc (since ℓ_{∞} does not have the *GP* property). Further, $i : \ell_{\infty} \to \ell_{\infty}$ is weak Dunford–Pettis (since ℓ_{∞} has the *DPP*) and not DPcc (since ℓ_{∞} does not have the *DPrcP*).

4 Weak *p*-convergent operators and weak^{*} *p*-convergent operators

For $1 \le p < \infty$, p^* denotes the conjugate of p. If p = 1, we take c_0 instead of ℓ_{p^*} . The unit vector basis of ℓ_p will be denoted by (e_n) .

Let $1 \le p < \infty$. A sequence (x_n) in X is called *weakly p-summable* if $(x^*(x_n)) \in \ell_p$ for each $x^* \in X^*$ [10, p. 32]. Let $\ell_p^w(X)$ denote the set of all weakly *p*-summable sequences in X. The space $\ell_p^w(X)$ is a Banach space with the norm

$$||(x_n)||_p^w = \sup\left\{\left(\sum_{n=1}^\infty |\langle x^*, x_n \rangle|^p\right)^{1/p} : x^* \in B_{X^*}\right\}$$

We recall the following isometries: $L(\ell_{p^*}, X) \simeq \ell_p^w(X)$ for $1 ; <math>L(c_0, X) \simeq \ell_p^w(X)$ for p = 1; that are obtained via the isometry $T \to (T(e_n))$ [10, Proposition 2.2, p. 36].

A series $\sum x_n$ in X is said to be *weakly unconditionally convergent (wuc)* if for every $x^* \in X^*$, the series $\sum |x^*(x_n)|$ is convergent. An operator $T : X \to Y$ is *unconditionally converging* if it maps weakly unconditionally convergent series to unconditionally convergent ones.

Let $1 \le p \le \infty$. An operator $T : X \to Y$ is called *p*-convergent if T maps weakly *p*-summable sequences into norm null sequences. The set of all *p*-convergent operators from X to Y is denoted by $C_p(X, Y)$ [6].

The 1-convergent operators are precisely the unconditionally converging operators and the ∞ -convergent operators are precisely the completely continuous operators. If p < q, then $C_q(X, Y) \subseteq C_p(X, Y)$.

A sequence (x_n) in X is called *weakly p-convergent* to $x \in X$ if the sequence $(x_n - x)$ is weakly *p*-summable [6]. Weakly ∞ -convergent sequences are precisely the weakly convergent sequences.

Let $1 \le p \le \infty$. A bounded subset K of X is *relatively weakly p-compact* if every sequence in K has a weakly *p*-convergent subsequence. An operator $T : X \to Y$ is *weakly p-compact* if $T(B_X)$ is relatively weakly *p*-compact [6].

The set of weakly *p*-compact operators $T : X \to Y$ is denoted by $W_p(X, Y)$. If p < q, then $W_p(X, Y) \subseteq W_q(X, Y)$. A Banach space $X \in C_p$ (resp. $X \in W_p$) if $id(X) \in C_p(X, X)$ (resp. $id(X) \in W_p(X, X)$) [6], where id(X) is the identity map on X.

A sequence (x_n) in X is called *weakly p-Cauchy* if $(x_{n_k} - x_{m_k})$ is weakly *p*-summable for any increasing sequences (n_k) and (m_k) of positive integers.

Every weakly *p*-convergent sequence is weakly *p*-Cauchy, and the weakly ∞ -Cauchy sequences are precisely the weakly Cauchy sequences.

Let $1 \le p \le \infty$. A subset *S* of *X* is called *weakly p-precompact* if every sequence from *S* has a weakly *p*-Cauchy subsequence [18]. An operator $T : X \to Y$ is called *weakly p-precompact* if $T(B_X)$ is weakly *p*-precompact.

Let $1 \le p \le \infty$. A Banach space X has the *Dunford–Pettis property of order* $p(DPP_p)$ $(1 \le p \le \infty)$ if every weakly compact operator $T : X \to Y$ is *p*-convergent, for any Banach space Y [6]. Equivalently, X has the DPP_p if and only if $x_n^*(x_n) \to 0$ whenever (x_n) is weakly *p*-summable in X and (x_n^*) is weakly null in X* [6, Proposition 3.2].

If X has the DPP_p , then it has the DPP_q , if q < p. Also, the DPP_{∞} is precisely the DPP, and every Banach space has the DPP_1 . C(K) spaces and L_1 have the DPP, and thus the DPP_p for all p. If $1 < r < \infty$, then ℓ_r has the DPP_p for $p < r^*$. If $1 < r < \infty$, then $L_r(\mu)$ has the DPP_p for $p < min(2, r^*)$. Tsirelson's space T has the DPP_p for all $p < \infty$. Since T is reflexive, it does not have the DPP. Tsirelson's dual space T^* does not have the DPP_p , if p > 1 [6].

Let $1 \le p \le \infty$. A Banach space X has the DP^* -property of order p (DP^*P_p) if all weakly p-compact sets in X are limited [14]. Equivalently, X has the DP^*P_p if and only if $x_n^*(x_n) \to 0$ whenever (x_n) is weakly p-summable in X and (x_n^*) is weakly null in X^* [14].

If X has the DP^*P_q , then it has the DP^*P_p , if q > p. Further, the DP^*P_∞ is precisely the DP^*P and every Banach space has the DP^*P_1 . If X has the DP^*P , then X has the DP^*P_p , $1 \le p \le \infty$. If X has the DP^*P_p , then X has the DPP_p .

Let $1 \le p < \infty$. An operator $T : X \to Y$ is called *weak p-convergent* if $\langle y_n^*, T(x_n) \rangle \to 0$ whenever (x_n) is weakly *p*-summable in *X* and (y_n^*) is weakly null in Y^* [15]. An operator $T : X \to Y$ is called *weak*^{*} *p-convergent* if $\langle y_n^*, T(x_n) \rangle \to 0$ whenever (x_n) is weakly *p*-summable in *X* and (y_n^*) is *w*^{*}-null in Y^* [15].

In the following we study weak *p*-convergent and weak* *p*-convergent operators. The following result generalizes [18, Theorem 8].

Theorem 14 Let X and Y be Banach spaces, and let $1 . The following statements are equivalent about an operator <math>T : X \to Y$.

- (1) T is weak p-convergent.
- (2) T takes weakly p-precompact subsets of X to DP subsets of Y.
- (3) For any Banach space Z, if S : Y → Z has a weakly precompact adjoint, then ST : X → Z is p-convergent.
- (4) If $S: Y \to c_0$ has a weakly precompact adjoint, then $ST: X \to c_0$ is p-convergent.

(5) If (x_n) is a weakly p-summable sequence in X and (y_n^*) is a weakly Cauchy sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0$.

Proof (1) \Rightarrow (2) Let *A* be a weakly *p*-precompact subset of *X*. Suppose by contradiction that *T*(*A*) is not a Dunford–Pettis subset of *Y*. Let (y_n^*) be a weakly null sequence in *Y**, and let (x_n) be a sequence in *A* such that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for all *n*, for some $\epsilon > 0$. By passing to a subsequence, we can assume that (x_n) is weakly *p*-Cauchy.

Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|\langle y_{n_2}^*, T(x_{n_1}) \rangle| < \epsilon/2$. We can do this since (y_n^*) is w^* -null. Continue inductively. Choose $n_k > n_{k-1}$ so that $|\langle y_{n_k}^*, T(x_{n_{k-1}}) \rangle| < \epsilon/2$. Since *T* is weak *p*-convergent, $\langle y_{n_k}^*, T(x_{n_k} - x_{n_{k-1}}) \rangle \to 0$. However,

$$|\langle y_{n_k}^*, T(x_{n_k} - x_{n_{k-1}})\rangle| \ge |\langle y_{n_k}^*, T(x_{n_k})\rangle| - |\langle y_{n_k}^*, T(x_{n_{k-1}})\rangle| > \epsilon/2,$$

a contradiction.

(2) \Rightarrow (3) Suppose $S: Y \to Z$ is an operator with weakly precompact adjoint. Let (x_n) be a weakly *p*-summable sequence in *X*. By (2), $(T(x_n))$ is a *DP* subset of *Y*. Therefore $(ST(x_n))$ is relatively compact [20, Corollary 4]. Hence $||ST(x_n)|| \to 0$, and thus *ST* is *p*-convergent.

 $(3) \Rightarrow (4)$ and $(5) \Rightarrow (1)$ are obvious.

(4) \Rightarrow (1) Let (x_n) be a weakly *p*-summable sequence in *X* and (y_n^*) be a weakly null sequence in *Y*^{*}. Define *S* : *Y* \rightarrow c_0 by $S(y) = (y_i^*(y))$. Then *S*^{*} : $\ell_1 \rightarrow Y^*$, $S^*(b) = \sum b_i y_i^*$. Note that *S*^{*} maps B_{ℓ_1} into the closed and absolutely convex hull of $\{y_i^* : i \in \mathbb{N}\}$, which is relatively weakly compact [9, p. 51]. Then *S*^{*} is weakly compact. Hence $ST : X \rightarrow c_0$ is *p*-convergent. Therefore $\langle T(x_n), y_n^* \rangle \leq ||ST(x_n)|| = \sup_i |\langle y_i^*, T(x_n) \rangle| \rightarrow$ 0, and *T* is weak *p*-convergent.

(1) \Rightarrow (5) Let (x_n) be a weakly *p*-summable sequence in *X* and (y_n^*) be a weakly Cauchy sequence in *Y*^{*}. Suppose $\langle y_n^*, T(x_n) \rangle \neq 0$. Without loss of generality suppose that $|\langle y_n^*, T(x_n) \rangle| > \epsilon$ for each $n \in \mathbb{N}$, for some $\epsilon > 0$.

Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|\langle y_{n_1}^*, T(x_{n_2})\rangle| < \epsilon/2$. We can do this since $(T(x_n))$ is weakly null. Continue inductively. Choose $n_{k+1} > n_k$ so that $|\langle y_{n_k}^*, T(x_{n_{k+1}})\rangle| < \epsilon/2$. Since *T* is a weak *p*-convergent operator, $|\langle y_{n_{k+1}}^* - y_{n_k}^*, T(x_{n_{k+1}})\rangle| \to 0$. However,

$$|\langle y_{n_{k+1}}^* - y_{n_k}^*, T(x_{n_{k+1}})\rangle| \ge |\langle y_{n_{k+1}}^*, T(x_{n_{k+1}})\rangle| - |\langle y_{n_k}^*, T(x_{n_{k+1}})\rangle| > \epsilon/2,$$

and we have a contradiction.

Corollary 15 Let X and Y be Banach spaces, and let $1 . The following statements are equivalent about an operator <math>T : X \to Y$.

- (i) T is weak p-convergent.
- (ii) For every Banach space Z, if $S : Z \to X$ is a weakly p-precompact operator, then $TS : Z \to Y$ has a completely continuous adjoint.
- (iii) [18] If $S : \ell_{p^*} \to X$ is an operator, then $TS : \ell_{p^*} \to Y$ has a completely continuous *adjoint*.
- (iv) If (x_n) is a weakly p-Cauchy sequence in X and (y_n^*) is a weakly null sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0$.

Proof (i) \Rightarrow (ii) Let $S : Z \to X$ be a weakly *p*-precompact operator. Then $TS(B_Z)$ is a DP set in Y. Hence $(TS)^*$ is completely continuous.

(ii) \Rightarrow (iii) Let $S : \ell_{p^*} \to X$ be an operator. Since $1 , <math>\ell_{p^*} \in W_p$ [6]. Hence S is weakly p-compact, and thus $(TS)^*$ is completely continuous.

(iii) \Rightarrow (i) Let (x_n) be weakly *p*-summable in *X* and let (y_n^*) be weakly null in *Y*^{*}. Define $S : \ell_{p^*} \to X$ by $S(b) = \sum b_i x_i$ [10, Proposition 2.2, p. 36]. Since $TS(B_{\ell_{p^*}})$ is a *DP* set in *Y*, $\langle y_n^*, TS(e_n) \rangle = \langle y_n^*, T(x_n) \rangle \to 0$.

(i) \Rightarrow (iv) Let (x_n) be weakly *p*-Cauchy in *X* and let (y_n^*) be weakly null in *Y*^{*}. Since $(T(x_n))$ is a *DP* set in *Y*, $\langle y_n^*, T(x_n) \rangle \rightarrow 0$.

 $(iv) \Rightarrow (i)$ is obvious.

As a consequence of the previous two results we obtain the following characterizations of Banach spaces with the DPP_p .

Corollary 16 [19, Theorem 1] Let 1 . The following statements are equivalent about a Banach space X.

- (1) X has the DPP_p .
- (2) The identity operator $i : X \to X$ is weak p-convergent; that is, every weakly p-precompact subset of X is a Dunford–Pettis set.
- (3) Every operator $S : X \to Z$ with weakly precompact adjoint is p-convergent, for any Banach space Z.
- (4) Every operator $S: X \to c_0$ with weakly precompact adjoint is p-convergent.
- (5) If (x_n) is a weakly p-summable sequence in X and (x_n^*) is a weakly Cauchy sequence in X^* , then $x_n^*(x_n) \to 0$.

Proof Apply Theorem 14 to the identity operator $i : X \to X$.

Corollary 17 [19, Theorem 1] Let 1 . The following statements are equivalent about a Banach space X.

- (i) X has the DPP_p .
- (ii) For all Banach spaces Z, every weakly p-precompact operator S : Z → X has a completely continuous adjoint.
- (iii) Every operator $S : \ell_{p^*} \to X$ has a completely continuous adjoint.
- (iv) If (x_n) is a weakly p-Cauchy sequence in X and (x_n^*) is a weakly null sequence in X^* , then $x_n^*(x_n) \to 0$.

Proof Apply Corollary 15 to the identity map $i : X \to X$.

The following result generalizes [15, Theorem 2.11].

Theorem 18 Let X and Y be Banach spaces and $T : X \to Y$ be an operator. Let 1 . The following statements are equivalent.

- (1) T is weak^{*} p-convergent.
- (2) T carries weakly p-precompact subsets of X to limited subsets of Y.
- (3) If $S : Z \to X$ is a weakly *p*-precompact operator, then $TS : Z \to Y$ is limited, for any Banach space Z.
- (4) If $S : \ell_{p^*} \to X$ is an operator, then $TS : \ell_{p^*} \to Y$ is limited.
- (5) If (x_n) is a weakly p-summable sequence in X and (y_n^*) is a w*-Cauchy sequence in Y*, then $\langle y_n^*, T(x_n) \rangle \to 0$.

Proof (1) \Rightarrow (2) is similar to the proof of (1) \Rightarrow (2) in Theorem 14.

(2) \Rightarrow (3) Let $S : Z \to X$ be a weakly *p*-precompact operator. Then $TS(B_Z)$ is limited, and thus $TS : Z \to Y$ is limited.

(3) \Rightarrow (4) Let $S : \ell_{p^*} \rightarrow X$ be an operator. Since $1 , <math>\ell_{p^*} \in W_p$ [6]. Hence S is weakly p-compact, and thus TS limited.

(4) \Rightarrow (1) Suppose (x_n) is weakly *p*-summable in *X* and (y_n^*) is *w**-null in *Y**. Define $S : \ell_{p^*} \to X$ by $S(b) = \sum b_i x_i$ [10, Proposition 2.2, p. 36]. Since $TS(B_{\ell_{p^*}})$ is a limited set in *Y*, $\langle y_n^*, TS(e_n) \rangle = \langle y_n^*, T(x_n) \rangle \to 0$.

 $(1) \Rightarrow (5)$ is similar to the proof of $(1) \Rightarrow (5)$ in Theorem 14.

Corollary 19 Let X and Y be Banach spaces and $T : X \to Y$ be an operator. Let 1 . The following statements are equivalent.

- (i) T is weak* p-convergent.
- (ii) If (x_n) is a weakly p-Cauchy sequence in X and (y_n^*) is a w^* -null sequence in Y^* , then $\langle y_n^*, T(x_n) \rangle \to 0$.
- (iii) If $S : Y \to Z$ is an operator such that $S^*(B_{Z^*})$ is w^* -sequentially compact, then $ST : X \to Z$ is p-convergent.
- (iv) If $S: Y \to c_0$ is an operator, then $ST: X \to c_0$ is p-convergent.

Proof (i) \Rightarrow (ii) Suppose that (x_n) is a weakly *p*-Cauchy sequence in *X* and (y_n^*) is a *w**-null sequence in *Y**. Since $(T(x_n))$ is limited in *Y*, $\langle y_n^*, T(x_n) \rangle \rightarrow 0$.

(ii) \Rightarrow (iii) Let $S: Y \to Z$ be an operator such that $S^*(B_{Z^*})$ is w^* -sequentially compact, but $ST: X \to Z$ is not *p*-convergent. Let (x_n) be weakly *p*-summable in *X* so that $||ST(x_n)|| > \epsilon$, for some $\epsilon > 0$. Choose (z_n^*) in B_{Z^*} so that $\langle z_n^*, ST(x_n) \rangle > \epsilon$. Without loss of generality, $(S^*(z_n^*))$ is w^* -convergent. Then $\langle S^*(z_n^*), T(x_n) \rangle = \langle z_n^*, ST(x_n) \rangle \to 0$, a contradiction.

(iii) \Rightarrow (iv) Let $S : Y \rightarrow c_0$ be an operator. Note that B_{ℓ_1} , and thus $S^*(B_{\ell_1})$ is w^* -sequentially compact. Then $ST : X \rightarrow c_0$ is *p*-convergent.

(iv) \Rightarrow (i) Let (x_n) be a weakly *p*-summable sequence in *X* and let (y_n^*) be a w^* -null sequence in *Y*^{*}. Define *S* : *Y* \rightarrow c_0 by $S(y) = (y_i^*(y))$. Since *ST* is *p*-convergent, $\langle y_n^*, T(x_n) \rangle \leq \|ST(x_n)\| \rightarrow 0$.

The following two corollaries provide equivalent characterizations of spaces with the DP^*P_p .

Corollary 20 Let 1 . The following statements are equivalent about a Banach space*X*.

- (i) X has the DP^*P_p .
- (ii) [15] The identity operator $i : X \to X$ is weak^{*} p-convergent; that is, every weakly p-precompact subset of X is a limited set.
- (iii) [18] Every weakly p-precompact operator $S : Z \to X$ is limited, for any Banach space Z.
- (iv) [15] Every operator $S : \ell_{p^*} \to X$ is limited.
- (v) [18] If (x_n) is a weakly p-summable sequence in X and (x_n^*) is a w^{*}-Cauchy sequence in X^{*}, then $x_n^*(x_n) \to 0$.

Proof Apply Theorem 18 to the identity operator $i : X \to X$.

Corollary 21 Let 1 . The following statements are equivalent about a Banach space*X*.

- (i) X has the DP^*P_p .
- (ii) [18] If (x_n) is a weakly p-Cauchy sequence in X and (x_n^*) is a w^{*}-null sequence in X^{*}, then $x_n^*(x_n) \to 0$.

- (iii) [18] If $S : X \to Z$ is an operator such that $S^*(B_{Z^*})$ is w^* -sequentially compact, then *S* is *p*-convergent.
- (iv) [15] Every operator $S: X \to c_0$ is p-convergent.

Proof Apply Corollary 19 to the identity operator $i : X \to X$.

We note that an operator $T : X \to Y$ is *p*-convergent if and only if *T* takes weakly *p*-precompact subsets of *X* into norm compact subsets of *Y*.

Corollary 22 Let 1 .

- (i) Suppose $S : X \to Y$ is weakly p-precompact and $T : Y \to Z$ is an operator with weakly precompact adjoint. If Y has the DPP_p, then TS is compact.
- (ii) Suppose $S : X \to Y$ is weakly p-precompact and $T : Y \to Z$ is an operator such that $T^*(B_{Z^*})$ is w^* -sequentially compact. If Y has the DP^*P_p , then TS is compact.
- **Proof** (i) Suppose $S: X \to Y$ is weakly *p*-precompact and $T: Y \to Z$ is an operator such that T^* is weakly precompact. Since Y has the DPP_p , T is *p*-convergent by Corollary 16. Then $TS(B_X)$ is relatively compact, and thus TS is compact.
- (ii) The proof is similar to that of (i).

Corollary 23 *Let* 1*.*

- (i) If Y^* does not contain a copy of ℓ_1 , then every weak *p*-convergent operator $T : X \to Y$ is *p*-convergent.
- (ii) If B_{Y^*} is w^* -sequentially compact (in particular if Y is separable), then every weak* p-convergent operator $T : X \to Y$ is p-convergent.
- (iii) If X or Y has the DPP_p, then every operator $T: X \to Y$ is weak p-convergent.
- (iv) If X or Y has the DP^*P_p , then every operator $T: X \to Y$ is weak^{*} p-convergent.
- **Proof** (i) Let $i: Y \to Y$ be the identity operator on Y. Suppose $T: X \to Y$ is a weak p-convergent operator. By Rosenthal's ℓ_1 theorem, i^* is weakly precompact. Then T = iT is p-convergent by Theorem 14.
- (ii) The proof is similar to that of (ii).
- (iii) Let $T : X \to Y$ be an operator. If Y has the DPP_p , then the identity operator $i : Y \to Y$ is weak p-convergent. Hence T = iT is weak p-convergent. If X has the DPP_p , then the identity operator $i : X \to X$ is weak p-convergent. Hence T = Ti is weak p-convergent.
- (iv) The proof is similar to that of (iii).

Clearly each *p*-convergent operator $T : X \to Y$ is weak^{*} *p*-convergent and each weak^{*} *p*-convergent operator is weak *p*-convergent. By Corollay 23, we obtain the following result. It generalizes [15, Proposition 2.5].

Corollary 24 If Y^* does not contain a copy of ℓ_1 , then the families of p-convergent operators, weak* p-convergent operators, and weak p-convergent operators $T : X \to Y$ coincide.

Let $1 \le p < \infty$. A Banach space X has the *p*-Gelfand–Phillips (*p*-GP) property (or is a *p*-Gelfand–Phillips space) if every limited weakly *p*-summable sequence in X is norm null [15].

If X has the GP property, then X has the p-GP property for any $1 \le p < \infty$. The space ℓ_{∞} does not have the p-GP property for any $1 \le p < \infty$ [15].

Let $1 \le p < \infty$. A space X has the *p*-Dunford Pettis relatively compact property (*p*-DPrcP) if every DP weakly *p*-summable sequence (x_n) in X is norm null [17].

If *X* has the *DPrcP* property, then *X* has the *p*-*DPrcP* property for any $1 \le p < \infty$.

Corollary 25 Let $1 \le p < \infty$. If X has the p-GP (resp. the p-DPrcP) property, then the following are equivalent.

- (i) X has the DP^*P_p (resp. the DPP_p).
- (ii) $X \in C_p$.

Proof $(i) \Rightarrow (ii)$ We only prove the result when X has the the p-GP and the DP^*P_p . The other case is similar.

Let (x_n) be weakly *p*-summable in *X*. Then (x_n) is limited by Corollary 20. Therefore $||x_n|| \to 0$, and thus $X \in C_p$.

Let $1 \le p < \infty$. An operator $T : X \to Y$ is called *limited p-convergent* if it carries limited weakly *p*-summable sequences in *X* to norm null ones in *Y* [15]. An operator $T : X \to Y$ is called *DP p-convergent* if it takes DP weakly *p*-summable sequences to norm null sequences [17].

The sets of all limited *p*-convergent, DP *p*-convergent, weak *p*-convergent, and weak* *p*-convergent operators from X to Y will be respectively denoted by $LC_p(X, Y)$, $DPC_p(X, Y)$, $WC_p(X, Y)$, and $W^*C_p(X, Y)$.

Corollary 26 Let $1 \le p < \infty$. Let X be a Banach space. The following statements hold.

- (i) X has the p-DPrcP if and only if $WC_p(X, \ell_{\infty}) = DPC_p(X, \ell_{\infty})$.
- (ii) X has the p-GP property if and only if $W^*C_p(X, \ell_\infty) = LC_p(X, \ell_\infty)$.

Proof (i) A Banach space X has the p-DPrcP if and only if $DPC_p(X, \ell_{\infty}) = L(X, \ell_{\infty})$ [17]. Since ℓ_{∞} has the DPP_p , $L(X, \ell_{\infty}) = WC_p(X, \ell_{\infty})$.

(ii) A Banach space X has the *p*-*GP* if and only if $LC_p(X, \ell_{\infty}) = L(X, \ell_{\infty})$ [17]. Since ℓ_{∞} has the DP^*P_p , $L(X, \ell_{\infty}) = W^*C_p(X, \ell_{\infty})$.

Since any limited set is a DP set, any limited weakly *p*-summable sequence is also DP weakly *p*-summable. Hence if *X* has the *p*-*DPrcP*, then *X* has the *p*-*GP* property. Thus, if *X* has the *p*-*DPrcP*, then $L(X, \ell_{\infty}) = LC_p(X, \ell_{\infty}) = DPC_p(X, \ell_{\infty}) = WC_p(X, \ell_{\infty}) = W^*C_p(X, \ell_{\infty})$.

References

- 1. Aliprantis, C.D., Burknishaw, O.: Positive Operators. Springer, Dordrecht (2006). (Reprint of the 1985 original copy)
- Andrews, K.: Dunford–Pettis sets in the space of Bochner integrable functions. Math. Ann. 241, 35–41 (1979)
- 3. Bourgain, J., Diestel, J.: Limited operators and strict cosingularity. Math. Nachr. 119, 55–58 (1984)
- Borwein, J., Fabian, M., Vanderweff, J.: Characterizations of Banach spaces via convex and other locally Lipschitz functions. Acta Math. Vietnam 22, 53–69 (1997)
- Carrión, H., Galindo, P., Lourenço, M.L.: A stronger Dunford–Pettis property. Studia Math. 3, 205–216 (2008). (Lourenço)

- Castillo, J., Sánchez, F.: Dunford–Pettis like properties of continuous vector function spaces. Revista Mat. Univ. Complut. Madr. 6, 43–59 (1993)
- Diestel, J.: Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, vol. 92. Springer, Berlin (1984)
- 8. Diestel, J.: A survey of results related to the Dunford-Pettis property. Contemp. Math. 2, 15-60 (1980)
- 9. Diestel, J., Uhl Jr., J.J.: Vector Measures, Mathematical Surveys, vol. 15. American Mathematical Society, Providence (1977)
- Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)
- El Kaddouri, A., H'michane, J., Bouras, K., Moussa, M.: On the class of weak* Dunford-Pettis operators. Rend. Circ. Mat. Palermo 62(2), 261–265 (2013)
- Emmanuele, G.: A dual characterization of Banach spaces not containing l¹. Bull. Pol. Acad. Sci. Math. 34, 155–160 (1986)
- Emmanuele, G.: Banach spaces in which Dunford–Pettis sets are relatively compact. Arch. Math. 58, 477–485 (1992)
- Fourie, J.H., Zeekoei, E.D.: DP*-properties of order p on Banach spaces. Quaest. Math. 37, 349–358 (2014)
- Fourie, J.H., Zeekoei, E.D.: On weak-star-p-convergent operators. Quaest. Math. (2017). https://doi.org/ 10.2989/16073606.2017.1301591
- Ghenciu, I., Lewis, P.: Completely continuous operators. Colloq. Math. 126(2), 231–256 (2012). https:// doi.org/10.4064/cm126-2-7
- Ghenciu, I.: Some classes of Banach spaces and complemented subspaces of operators. Adv. Oper. Theory (2018). https://doi.org/10.15352/aot.1802-1318. ISSN 2538-225X (electronic)
- 18. Ghenciu, I.: Dunford-Pettis like properties on tensor products. Quaest. Math. 41, 811-828 (2018)
- Ghenciu, I.: A note on Dunford–Pettis like properties and complemented spaces of operators. Comment. Math. Univ. Carolin. 59(2), 207–222 (2018)
- Ghenciu, I.: L-Sets and property (SR*) in spaces of compact operators. Monatsh. Math. 181(3), 609–628 (2016). https://doi.org/10.1007/s00605-016-0884-2
- Jaramillo, J.A., Prieto, A., Zaldueno, I.: Sequential convergence and Dunford–Pettis properties. An. Acad. Sci. Fenn. 25, 467–475 (2000)
- Jinxi, C., Yongming, W.: Characterizations of Banach spaces with relatively compact Dunford–Pettis sets. Adv. Math. (China) (2016). https://doi.org/10.11845/sxjz.2014095b
- Salimi, M., Moshtaghiun, M.: The Gelfand–Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. 5, 84–92 (2011)
- Schlumprecht, T.: Limited sets in Banach spaces. Ph.D. Dissertation, Ludwig-Maximilians-Universität, Munich (1987)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.