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Abstract
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1 Introduction

In this paper Dunford—Pettis sets and limited sets are used to characterize the classes of weak
Dunford—Pettis and weak™ Dunford—Pettis operators. The classes of weak p-convergent and
weak™ p-convergent operators are also studied.

Our major results are Theorems 2, 6, 14, and 18. As consequences, we obtain equiva-
lent characterizations of Banach spaces with the Dunford—Pettis property, D P*-property,
Dunford—Pettis property of order p, and D P*-property of order p. We generalize some
results in [1,5,11,15,18].

2 Definitions and notation

Throughout this paper, X and Y will denote real Banach spaces. The unit ball of X will be
denoted by By and X™* will denote the continuous linear dual of X. An operator 7 : X — Y
will be a continuous and linear function. The space of all operators from X to Y will be
denoted by L(X, Y).

The operator T is completely continuous (or Dunford—Pettis) if T maps weakly convergent
sequences to norm convergent sequences.
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1150 I. Ghenciu

A Banach space X has the Dunford—Pettis property (D P P) if every weakly compact
operator 7 with domain X is completely continuous. Equivalently, X has the DP P if and
only if x(x,) — O for all weakly null sequences (x,) in X and (x,;) in X* [8, Theorem 1].
Schur spaces, C(K) spaces, and L1 () spaces have the D P P. The reader can check [7-9],
and [2] for a guide to the extensive classical literature dealing with the D P P, equivalent
formulations of the preceding definitions, and undefined notation and terminology.

A subset A of X is called a Dunford—Pettis (D P) subset (resp. limited subset) of X if
each weakly null (resp. w* -null) sequence (x,’) in X* tends to 0 uniformly on A [2] (resp.
[3,24)); i.e.

sup |x¥(x)| = 0.

XeA
If A is a limited subset of X, then T (A) is relatively compact for any operator 7 : X — c¢p
[3, p. 561, [24, p. 23]. The subset A of X is a D P subset of X if and only if 7' (A) is relatively
compact whenever T : X — Y is a weakly compact operator [2] if and only if T (A) is
relatively compact whenever 7 : X — Y is an operator with weakly precompact adjoint
[20].

A bounded subset S of X is said to be weakly precompact provided that every sequence
from S has a weakly Cauchy subsequence. Every D P subset of X is weakly precompact
[2]. Since any limited set is a D P set, any limited set is weakly precompact. An operator
T : X — Y iscalled weakly precompact (or almost weakly compact) if T (By) is weakly
precompact.

A Banach space X has the D P*-property (D P* P) if all weakly compact sets in X are
limited [4,5,21]. The space X has the D P* P if and only if x;(x,) — O for all weakly null
sequences (x,) in X and w*-null sequences (x;) in X* [16]. If X has the D P* P, then it has
the DP P. If X is a Schur space or if X has the D P P and the Grothendieck property (weak
and weak™ convergence of sequences in X* coincide), then X has the DP*P.

3 Weak Dunford-Pettis operators and weak* Dunford-Pettis operators

An operator T : X — Y is called weak Dunford—Pettis [1, p. 349] if (T (x,), y;i) — O,
whenever (x,) is a weakly null sequence in X and (y;}) is a weakly null sequence in Y*. An
operator 7 : X — Y is called weak™ Dunford—Pettis [11] if (T (x,), y)) — 0, whenever
(x,) is a weakly null sequence in X and (y;") is a w*-null sequence in Y*.

In this section we give some characterizations of weak Dunford—Pettis and weak™
Dunford—Pettis operators.
Observation 1 If 7 : X — Y is an operator, then 7' (By) is a DP (resp. limited) subset of
Y if and only if 7* : Y* — X* is completely continuous (resp. 7* is w*-norm sequentially
continuous).

To see this, note that 7 (By) is a DP (resp. limited) subset of Y if and only if

0 = limsup{|(y,, T(x))| : x € Bx} = limsup{[{T"(y,), x)| : x € By} = lim [IT*(y,)]

for each weakly null (resp. w*-null) sequence (y,;) in Y *; thatis, 7% : Y* — X*is completely
continuous (resp. 7* is w*-norm sequentially continuous).

Theorem 1 [1, Theorem 5.99, p. 351] Let T : X — Y be an operator. The following
statements are equivalent:

(1) T is a weak Dunford—Pettis operator.
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On some classes of Dunford-Pettis-like operators 1151

(2) T carries weakly compact subsets of X to Dunford—Pettis subsets of Y.
3) IfS: Y — Zisaweakly compact operator, then ST : X — Z is completely continuous,
for any Banach space Z.

We are now giving our first major result. It gives characterizations of weak Dunford—Pettis
operators and generalizes [1, Theorem 5.99, p. 351].

Theorem 2 Let X andY be Banach spaces, andlet T : X — Y be an operator. The following
statements are equivalent.

(1) T is a weak Dunford—Pettis operator.

(2) T carries weakly precompact subsets of X to Dunford—Pettis subsets of Y.

(3) For all Banach spaces Z, if S : Y — Z has a weakly precompact adjoint, then ST :
X — Z is completely continuous.

@) If S : Y — co has a weakly precompact adjoint, then ST : X — co is completely
continuous.

(5) If (xn) is a weakly null sequence in X and (y}') is a weakly Cauchy sequence in Y*, then
(i, T(x)) = 0.

Proof (1) = (2) Let A be a weakly precompact subset of X. Suppose by contradiction that
T (A) is not a Dunford—Pettis subset of Y. Suppose that (y;) is a weakly null sequence in
Y*, (x,) is a sequence in A, and € > 0 such that |(y;;, T (x,))| > € for all n. Without loss of
generality assume that (x,) is weakly Cauchy.

Let ny = 1 and choose ny > nj so that I(y;‘l‘z, T (xn,))| < €/2. We can do this since (y;)
is w*-null. Continue inductively. Choose ny > nj_; so that |(y;‘k, T (xn,_))| < €/2. Since
T is a weak Dunford—Pettis operator, (y; " T (xp, — Xn,_,)) — 0. However,

02 T Cony = X D = 10 T = 10, T D > €/2,

a contradiction.

(2) = (3) Let S : Y — Z be an operator such that $* : Z* — Y* is weakly precompact.
Suppose (x,) is a weakly null sequence in X. Since {T (x,) : n € N} is a Dunford—Pettis set
in Y and S* is weakly precompact, {ST (x,) : n € N} is relatively compact [20, Corollary
4]. Then ||ST (x,)]] — 0, and thus ST : X — Z is completely continuous.

(3) = (4) and (5) = (1) are obvious.

(4) = (1) Suppose (x,) is weakly null in X and (y;) is weakly null in Y*. Define
§:Y — ¢ by S(y) = (y(y)). Then §* : €1 — Y*, §*(b) = >_b;y}. Note that §*
maps By, into the closed and absolutely convex hull of {y/ : i € N}, which is relatively
weakly compact [9, p. 51]. Then S* is weakly compact. Hence ST : X — c¢¢ is completely
continuous. Therefore (T (x,), yi) < IIST (x,)|l = sup; [{y7, T (x,))| — 0, and T is weak
Dunford—Pettis.

(1) = (5) Suppose that (x,) is a weakly null sequence in X, (y;) is a weakly
Cauchy sequence in Y*, and (y:, T'(x,)) # 0. Without loss of generality suppose that
[y, T (x4))| > € foreach n € N, for some € > 0.

Letn; = landchooseny > njsothat|{yy,, T (xs,))| < €/2. Wecando this since (T (x))
is weakly null. Continue inductively. Choose nj4+1 > ny so that |(y,’l‘k, T (X )| < €/2.
Since T' is weak Dunford-Pettis, (yy, ., — vy, T (xn,,)) — 0. Since

IO = Ve TGy D= 10 s TG D= 1o T Gong D) > €/2,

we have a contradiction. O

@ Springer



1152 I. Ghenciu

Corollary 3 Let X and Y be Banach spaces, andlet T : X — Y be an operator. The following
statements are equivalent.

(i) T is a weak Dunford—Pettis operator.
(i) For all Banach spaces Z, if S : Z — X is a weakly precompact operator, then TS :
Z — Y has a completely continuous adjoint.
(i) If S : &1 — X is a weakly precompact operator, then TS : £1 — Y has a completely
continuous adjoint.
(iv) If (x,) is a weakly Cauchy sequence in X and (y}) is a weakly null sequence in Y*, then
(v T (xn)) — O.

Proof (i) = (ii) Let S : Z — X be a weakly precompact operator. Then 7 S(Bz) is a
Dunford—Pettis set. Thus 7S : Z — Y has a completely continuous adjoint.

(iii) = (iv) Suppose (x,) is a weakly Cauchy sequence in X and (y;) is a weakly null
sequence in Y*. Define S : ¢; — X by

S(b) = buxn,

where b = (b,,) € £;. Since S(By,) is contained in the closed and absolutely convex hull of
{x, : n € N}, which is weakly precompact [24, p. 27], S is weakly precompact.

By assumption, (7 S)* = S*T* is completely continuous. Note that S*(x*) = ((x*, x;));,
x* e X*, and S*T*(yy) = ((T*(y)), x;))i. Hence

s T o)) = (T (), xa) < NS*TH ()1l = sup (T*(yy), xi)| — 0.
(i1) = (iii) and (iv) = (i) are obvious. ]

The following two corollaries provide equivalent characterizations of spaces with the
Dunford—Pettis property.

Corollary 4 Let X be a Banach space. Then the following statements are equivalent:

(i) X has the DPP.
(i) The identity operator i : X — X is a weak Dunford—Pettis operator; that is, every
weakly precompact subset of X is a Dunford—Pettis set.
(iii) [8] Every operator S : X — Z with weakly precompact adjoint is completely continu-
ous, for any Banach space Z.
(iv) [8] Every operator S : X — co with weakly precompact adjoint is completely continu-
ous.
(V) [811f (x,) is a weakly null sequence in X and (x)}) is a weakly Cauchy sequence in X*,
then x;{ (x,) — 0.

Proof Apply Theorem 2 to the identity operator i : X — X. O

We note that X has the D P P if and only if weakly precompact sets and D P sets coincide
(since every D P set is weakly precompact [2]).

Corollary 5 Let X be a Banach space. Then the following statements are equivalent:

(i) X has the DPP.
(i) [8] For all Banach spaces Z, every weakly precompact operator S : Z — X has a
completely continuous adjoint.
(iii) Every weakly precompact operator S : £1 — X has a completely continuous adjoint.
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On some classes of Dunford-Pettis-like operators 1153

@iv) [811f (xp) is a weakly Cauchy sequence in X and (x)) is a weakly null sequence in X*,
then x;f (x,) — 0.

Proof Apply Corollary 3 to the identity operatori : X — X. O

Anoperator T : X — Y iscalledlimited if T (By)islimitedin Y. Theoperator7 : X — Y
is limited if and only if 7* : Y* — X* is w*-norm sequentially continuous (by Observation
D).

We are now giving our second major result. It gives a characterization of weak* Dunford—
Pettis operators and generalizes [11, Theorem 3.2].

Theorem 6 Let X and Y be Banach spaces andlet T : X — Y be an operator. The following
statements are equivalent.

(1) T is a weak™ Dunford—Pettis operator.

(2) T carries weakly precompact subsets of X to limited subsets of Y.

3) If S : Z — X is a weakly precompact operator, then TS : Z — Y is limited, for any
Banach space Z.

4) If S : £1 — X is a weakly precompact operator, then T S : £1 — Y is limited.

(5) If (xn) is a weakly null sequence in X and (y;;) is a w*-Cauchy sequence in Y*, then
(i, T(x)) = 0.

Proof (1) = (2) is similar to the proof of (1) = (2) in Theorem 2.

(2) = (3) Suppose S : Z — X is weakly precompact. Then 7 S(By) is limited, and thus
TS is limited.

(3) = (4) and (5) = (1) are obvious.

(4) = (1) Let (x,) be a weakly null sequence in X and (y) be a w*-null sequence in
Y*. Define S : £; — X by

S(b) = baxa,

where b = (b,) € £;. Since S(By,) is contained in the closed and absolutely convex hull
of {x, : n € N}, which is relatively weakly compact [9, p. 51], S is weakly compact. By
assumption, 7'S is limited. Suppose (e;) denotes the unit vector basis of £;. Then

(¥n> T xn)) = (v, TS(ey)) — 0.
(1) = (5) is similar to the proof of (1) = (5) in Theorem 2. ]

Corollary 7 Let X and Y be Banach spaces and let T : X — Y be an operator. The following
statements are equivalent.

(i) T is a weak™ Dunford—Pettis operator.
(i) If (x,) is a weakly Cauchy sequence in X and (yy) is a w*-null sequence in Y™, then
(VE, T (xa)) = 0.
(iii) If S : Y — Z is an operator such that S*(Bz+) is w*-sequentially compact, then
ST : X — Z is completely continuous.
@{v) If S : Y — co is an operator, then ST : X — cq is completely continuous.

Proof (i) = (ii) Suppose that (x,) is a weakly Cauchy sequence in X and (y;) is a w*-null
sequence in Y*. Since (7 (x,,)) is limited in Y, (y;", T (x,)) — 0.

(i) = (iii) Let S : Y — Z be an operator such that S*(Bz+) is w*-sequentially compact,
but ST : X — Z is not completely continuous. Let (x,) be weakly null in X so that
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1154 I. Ghenciu

IST (x,)|| > €, for some € > 0. Choose (z}) in Bz= so that (z}:, ST (x,)) > €. Without
loss of generality (S*(z})) is w*-convergent. Hence (S*(z}), T'(x,)) = (z}, ST (x»)) — 0,
a contradiction.

(iii) = (v) Let S : Y — co be an operator. Note that By, and thus S*(By,) is w*-
sequentially compact (since cy is separable). Then ST : X — c¢q is completely continuous.

(iv) = (i) Suppose (x,) is a weakly null sequence in X and (y,;) is a w*-null sequence in
Y*. Define S : ¥ — co by S(y) = (y/(»)). Since ST : X — o is completely continuous,
(ps Txn)) < IST (x| — 0. o

The following corollary provides a characterization of spaces with the D P* P and gener-
alizes [11, Corollary 3.3].

Corollary 8 Let X be a Banach space. Then the following statements are equivalent:

(i) X has the DP*P.

(ii) [16] The identity operatori : X — X is a weak® Dunford—Pettis operator ; that is,
every weakly precompact subset of X is a limited set.

(iii) [16] Every weakly precompact operator S : Z — X is limited, for any Banach space
Z.

(iv) Every weakly precompact operator S : £1 — X is limited.

(v) [16] If (x,) is a weakly null sequence in X and (x)}) is a w*-Cauchy sequence in X*,
then x;{ (x,) — 0.

Proof Apply Theorem 6 to the identity operator i : X — X. O

We note that X has the D P*P if and only if weakly precompact sets and limited sets
coincide (since every limited set is weakly precompact [3]).

Corollary 9 Let X be a Banach space. Then the following statements are equivalent:

(i) X has the DP*P.
(ii) [16] If (x,) is a weakly Cauchy sequence in X and (x;}) is a w*-null sequence in Y*,
then x; (x,) — 0.
(iii) [16]If S : X — Z is an operator such that S*(Bz+) is w*-sequentially compact, then
S is completely continuous.
(iv) [5] Every operator S : X — cq is completely continuous.

Proof Apply Corollary 7 to the identity operatori : X — X. O

Corollary 10 (i) If Y* does not contain a copy of €1, then every weak Dunford—Pettis oper-
ator T : X — Y is completely continuous.
(ii) If By+ is w*-sequentially compact (in particular if Y is separable), then every weak™
Dunford—Pettis operator T : X — Y is completely continuous.
(iii) If X or Y has the DP P, then every operator T : X — Y is weak Dunford—Pettis.
(iv) If X or Y has the D P* P, then every operator T : X — Y is weak™ Dunford—Pettis.

Proof (i) Leti : Y — Y be the identity operator on Y. Suppose that 7 : X — Y is a
weak Dunford—Pettis operator. Since Y* does not contain a copy of £1, i* is weakly
precompact (by Rosenthal’s £; theorem). Then T = iT is completely continuous by
Theorem 2.

(i) Let i : Y — Y be the identity operator on Y. Suppose 7 : X — Y is a weak*
Dunford—Pettis operator. Since i*(By+) is w*-sequentially compact, T = iT is com-
pletely continuous by Corollary 7.
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On some classes of Dunford-Pettis-like operators 1155

(iii) LetT : X — Y be an operator. If Y has the D P P, then the identity operatori : ¥ — Y
is weak Dunford—Pettis. Hence T = iT is weak Dunford—Pettis. If X has the DP P,
then the identity operator i : X — X is weak Dunford—Pettis. Hence T = T'i is weak
Dunford—Pettis.

(iv) The proof is similar to that of (iii).

O

Clearly each completely continuous operator T : X — Y is weak® Dunford—Pettis and
each weak™ Dunford—Pettis operator is weak Dunford—Pettis. By Corollary 10, we obtain the
following result.

Corollary 11 If Y* does not contain a copy of £1, then the families of completely continuous
operators, weak™ Dunford—Pettis operators, and weak Dunford—Pettis operators T : X — Y
coincide.

Examples (a) Note that £, has the DP*P (since it has the DP P and the Grothendieck
property [5]). Then the identity operator i : £, — £ is weak™ Dunford—Pettis and is not
completely continuous.

(b) A space X has the DP* P if and only if every operator T : X — co is completetely
continuous [5]. Since the identity operator i : ¢ — co is not completetely continuous, cg
does not have the DP*P. Thusi : ¢y) — c¢q is weak Dunford—Pettis (since co has the D P P)
and not weak™ Dunford—Pettis.

Corollary 12 (i) Suppose that Y has the DPP. If T : X — Y is an operator such that T*
is not completely continuous, then T fixes a copy of £1.
(ii) Suppose that Y has the DP*P. If T : X — Y is a non-limited operator, then T fixes a

copy of £1.

Proof (i) Suppose that T* is not completely continuous. Let (y,;) be weakly null in Y* so

that |7*(y;)|l # 0. Suppose (x,) is a sequence in By such that [(y;, T (x,))| > € for
some € > 0. We claim that (x,) has no weakly Cauchy subsequence. If the claim is false,
suppose without loss of generality that (x,) is weakly Cauchy. Since Y has the DP P,
T is weak Dunford—Pettis. Then (y;, T'(x,)) — 0 by Corollary 3. This contradiction
shows that (x,) has no weakly Cauchy subsequence. By Rosenthal’s ¢ theorem, (x,)
has a subsequence equivalent to the £ basis. Suppose without loss of generality that (x,,)
is equivalent to (e};), where (e};) denotes the basis of £;.
Now, since |(y;\, T (x,))| > € and Y has the DP P, (T (x,)) has no weakly Cauchy
subsequence (by Corollary 5). By Rosenthal’s £; theorem, (7T (x,)) has a subsequence
equivalent to (er). Suppose without loss of generality that (7' (x,)) is equivalent to (e};).
Hence T fixes a copy of ¢;.

(ii) The proof is similar to that of (i).

]

Corollary 12 (ii) generalizes [5, Theorem 2.3] (which states that if X and Y have the the
DP*Pand T : X — Y is a non-limited operator, then T fixes a copy of £1).

A Banach space X has the Dunford—Pettis relatively compact property (DPrcP) if every
DP subset of X is relatively compact [13]. Schur spaces have the D Prc P. The space X does
not contain a copy of £; if and only if X* has the D PrcP [12,13]. We note that if X* does
not contain a copy of £;, then X**, thus X, has the DPrcP [12,13].

The space X has the Gelfand—Phillips (GP) property (or X is a Gelfand—Phillips space)
if every limited subset of X is relatively compact. Schur spaces and separable spaces have
the Gelfand—Phillips property [3].
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1156 I. Ghenciu

An operator T : X — Y is called Dunford—Pettis completely continuous (DPcc) if T
carries weakly null and DP sequences to norm null ones [22]. An operator T : X — Y is
called limited completely continuous (lcc) if T maps weakly null limited sequences to norm
null sequences [23].

The sets of all limited completely continuous, Dunford—Pettis completely continuous
operators, weak Dunford Pettis, and weak™ Dunford Pettis operators from X to ¥ will be
respectively denoted by LCC(X,Y), DPCC(X,Y), WDP(X,Y),and W*DP(X,Y).

In the following result, we characterize Banach spaces X on which every weak (resp.
weak™) Dunford—Pettis operator is a DPcc (resp. lcc) operator.

Corollary 13 (i) A Banach space X has the DPrcP if and only if DPCC(X, lx) =
WDP (X, o).
(ii) A Banach space X has the GP property if and only if LCC (X, £xo) = W*DP (X, o).

Proof (i) A Banach space X has the DPrcP if and only if DPCC(X, £so) = L(X, o)
[22]. Since €5 hasthe DPP, L(X, £s) = WDP(X, £x).

(ii)) A Banach space X has the G P property if and only if LCC(X, o) = L(X, {xo) [23].
Since £oo has the DP*P, L(X,lx) = W*DP(X, £xo). O

If X hasthe D Prc P, then X has the G P property (since any limited setis a DP set). Thus, if
X hasthe DPrcP,then L(X,¢x) = LCC(X,4x) = DPCC(X,4%s0) = WDP(X,lx) =
W*DP (X, lx).
Example We note that the identity operator i : £, — £ is Weak™ Dunford—Pettis and not
lcc (since £, does not have the G P property). Further, i : £o, — £~ is weak Dunford—Pettis
(since £~ has the D P P) and not DPcc (since £+, does not have the D PrcP).

4 Weak p-convergent operators and weak* p-convergent operators

For 1 < p < oo, p* denotes the conjugate of p. If p = 1, we take c¢ instead of £,+. The
unit vector basis of £, will be denoted by (e;,).

Let 1 < p < o0. A sequence (x,) in X is called weakly p-summable if (x*(x,)) € £, for
each x* € X* [10, p. 32]. Let E? (X) denote the set of all weakly p-summable sequences in
X. The space K’If(X ) is a Banach space with the norm

o] 1/p
[l Cen) I, = sup (Z I(x*,xn)l”> :x* € By»

n=1

We recall the following isometries: L(£,+, X) =~ Zg (X) for1 < p < 00; L(cg, X) =~
Kg(X) for p = 1; that are obtained via the isometry " — (7 (e,,)) [10, Proposition 2.2, p.
36].

A series Y x, in X is said to be weakly unconditionally convergent (wuc) if for every
x* € X*, the series Y [x*(xp)| is convergent. An operator T : X — Y is unconditionally
converging if it maps weakly unconditionally convergent series to unconditionally convergent
ones.

Let 1 < p < oo. An operator T : X — Y is called p-convergent if T maps weakly
p-summable sequences into norm null sequences. The set of all p-convergent operators from
X to Y is denoted by C(, (X, Y) [6].
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On some classes of Dunford-Pettis-like operators 1157

The 1-convergent operators are precisely the unconditionally converging operators and
the oco-convergent operators are precisely the completely continuous operators. If p < g,
then Cy(X,Y) € Cp(X,Y).

A sequence (x,) in X is called weakly p-convergent to x € X if the sequence (x, —
x) is weakly p-summable [6]. Weakly co-convergent sequences are precisely the weakly
convergent sequences.

Let 1 < p < oo. A bounded subset K of X is relatively weakly p-compact if every
sequence in K has a weakly p-convergent subsequence. An operator 7 : X — Y is weakly
p-compact if T (By) is relatively weakly p-compact [6].

The set of weakly p-compact operators T : X — Y is denoted by W, (X, Y).If p < ¢,
then W, (X,Y) € W, (X, Y). ABanachspace X € C), (resp. X € W))ifid(X) € Cp(X, X)
(resp. id(X) € W,(X, X)) [6], where id(X) is the identity map on X.

A sequence (x,) in X is called weakly p-Cauchy if (x,, — X, ) is weakly p-summable
for any increasing sequences (ny) and (my) of positive integers.

Every weakly p-convergent sequence is weakly p-Cauchy, and the weakly oco-Cauchy
sequences are precisely the weakly Cauchy sequences.

Let 1 < p < co. A subset S of X is called weakly p-precompact if every sequence from
S has a weakly p-Cauchy subsequence [18]. An operator T : X — Y is called weakly
p-precompact if T (By) is weakly p-precompact.

Let 1 < p < co. A Banach space X has the Dunford—Pettis property of order p (D P P))
(1 < p < o0) if every weakly compact operator T : X — Y is p-convergent, for any
Banach space Y [6]. Equivalently, X has the DP P, if and only if x;;(x,) — O whenever
(x,) is weakly p-summable in X and (x) is weakly null in X* [6, Proposition 3.2].

If X has the DP P,, then it has the DP P, if ¢ < p. Also, the D P Py, is precisely the
DPP, and every Banach space has the DP P;. C(K) spaces and L; have the DP P, and
thus the DP P, forall p.If 1 < r < oo, then ¢, has the DP P, for p < r*. If1 <r < oo,
then L, (u) has the DP P, for p < min(2, r*). Tsirelson’s space T has the DP P, for all
p < oo. Since T is reflexive, it does not have the D P P. Tsirelson’s dual space T* does not
have the DP P, if p > 1 [6].

Let I < p < oo. A Banach space X has the D P*-property of order p (DP*P)) if all
weakly p-compact sets in X are limited [14]. Equivalently, X has the D P* P, if and only if
X (x,) — 0 whenever (x,) is weakly p-summable in X and (x) is weakly null in X* [14].

If X has the D P* P, then it has the DP* P, if ¢ > p. Further, the D P* P, is precisely
the D P*P and every Banach space has the D P*P;. If X has the DP*P, then X has the
DP*P,, 1 < p < oo.If X has the DP*P),, then X has the DP P),.

Let]l < p < oo.Anoperator T : X — Y iscalled weak p-convergent if (y;;, T (x,)) — 0
whenever (x,) is weakly p-summable in X and (y;;) is weakly null in Y* [15]. An operator
T : X — Y is called weak™ p-convergent if (y}, T (x,)) — 0 whenever (x,) is weakly
p-summable in X and (y;}) is w*-null in Y* [15].

In the following we study weak p-convergent and weak™ p-convergent operators. The
following result generalizes [18, Theorem 8].

Theorem 14 Let X and Y be Banach spaces, and let 1 < p < oo. The following statements
are equivalent about an operator T : X — Y.

(1) T is weak p-convergent.

(2) T takes weakly p-precompact subsets of X to D P subsets of Y.

(3) For any Banach space Z, if S : Y — Z has a weakly precompact adjoint, then ST :
X — Z is p-convergent.

@) If S : Y — co has a weakly precompact adjoint, then ST : X — cq is p-convergent.
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(5) If (x,) is a weakly p-summable sequence in X and (y;) is a weakly Cauchy sequence in
Y*, then (yy, T (x,)) — O.

Proof (1) = (2) Let A be a weakly p-precompact subset of X. Suppose by contradiction
that 7'(A) is not a Dunford—Pettis subset of Y. Let (y;/) be a weakly null sequence in Y'*, and
let (x,) be a sequence in A such that |(y;:, T'(x,))| > € for all n, for some € > 0. By passing
to a subsequence, we can assume that (x,) is weakly p-Cauchy.

Let n; = 1 and choose ny > n; so that |<y;,k2, T (xn,))| < €/2. We can do this since (y;)
is w*-null. Continue inductively. Choose ny > nk— so that [(y; , T (xy,_,))| < €/2. Since
T is weak p-convergent, (y;fk, T (xn, — Xn,_,)) — 0. However,

[ T Conge = X N = 10 TG = 10y T Qo )| > €72,

a contradiction.

(2) = (3) Suppose S : Y — Z is an operator with weakly precompact adjoint. Let (x,)
be a weakly p-summable sequence in X. By (2), (T'(x;,)) is a D P subset of Y. Therefore
(ST (xy)) is relatively compact [20, Corollary 4]. Hence || ST (x,)|| — 0, and thus ST is
p-convergent.

(3) = (4) and (5) = (1) are obvious.

(4) = (1) Let (x,) be a weakly p-summable sequence in X and (y;) be a weakly
null sequence in Y*. Define § : ¥ — co by S(y) = (y/(y)). Then §* : £; — Y*,
S§*(b) = Y b;iy}. Note that S* maps By, into the closed and absolutely convex hull of
{y : i € N}, whichisrelatively weakly compact[9, p.51]. Then §* is weakly compact. Hence
ST : X — ¢ is p-convergent. Therefore (T (x,), y;) < ST (xu)|l = sup; [(y], T (xx))| —
0, and T is weak p-convergent.

(1) = (5) Let (x,) be a weakly p-summable sequence in X and (y;) be a weakly
Cauchy sequence in Y*. Suppose (y;;, T (x,)) # 0. Without loss of generality suppose that
[{(yy, T (x,))| > € for each n € N, for some € > 0.

Letn; = 1andchooseny > nj sothat |(y;fl, T (xn,))| < €/2.Wecando this since (T (x,,))
is weakly null. Continue inductively. Choose ngy+1 > ny so that I(y,’fk, T (X )| < €/2.
Since T is a weak p-convergent operator, |(y;fk+] - y;‘k, T (X)) = 0. However,

10k = Vi TG = 10 T o D) = 10 T Con D) > €/2,

and we have a contradiction. O

Corollary 15 Let X and Y be Banach spaces, and let 1 < p < o0o. The following statements
are equivalent about an operator T : X — Y.

(i) T is weak p-convergent.
(ii) For every Banach space Z, if S : Z — X is a weakly p-precompact operator, then
TS : Z — Y has a completely continuous adjoint.
(iii) [18]If S : £px — X is an operator, then T'S : £« — Y has a completely continuous
adjoint.
@iv) If (xn) is a weakly p-Cauchy sequence in X and (y;) is a weakly null sequence in Y*,
then (yy, T (xp)) — O.

Proof (i) = (ii) Let S : Z — X be a weakly p-precompact operator. Then T S(Bz) is a
DP setin Y. Hence (T S)* is completely continuous.

(ii) = (iii) Let S : £« — X be an operator. Since 1 < p < 00, £+ € W), [6]. Hence §
is weakly p-compact, and thus (7' S)* is completely continuous.
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(iii) = (i) Let (x,) be weakly p-summable in X and let (y;") be weakly null in Y*. Define
Sy — Xby S(b) = > bix; [10, Proposition 2.2, p. 36]. Since TS(BZP*) isa DP setin
Y. (35 TS(en)) = (33 Tn)) — 0.

(i) = (iv) Let (x,,) be weakly p-Cauchy in X and let (y;5) be weakly null in Y*. Since
(T(xp))isaDPsetinY, (y;, T (x,)) — 0.

(iv) = (i) is obvious. ]

As a consequence of the previous two results we obtain the following characterizations
of Banach spaces with the DP P,,.

Corollary 16 [19, Theorem 1] Let 1 < p < oo. The following statements are equivalent
about a Banach space X.

(1) X has the DP P),.

(2) The identity operator i : X — X is weak p-convergent; that is, every weakly p-
precompact subset of X is a Dunford—Pettis set.

(3) Every operator S : X — Z with weakly precompact adjoint is p-convergent, for any
Banach space Z.

(4) Every operator S : X — cqo with weakly precompact adjoint is p-convergent.

(5) If (x,) is a weakly p-summable sequence in X and (x}}) is a weakly Cauchy sequence in
X*, then x) (x,) — O.

Proof Apply Theorem 14 to the identity operatori : X — X. O

Corollary 17 [19, Theorem 1] Let 1 < p < oo. The following statements are equivalent
about a Banach space X.

(i) X has the DP P),.
(ii) For all Banach spaces Z, every weakly p-precompact operator S : Z — X has a
completely continuous adjoint.
(iii) Every operator S : £y« — X has a completely continuous adjoint.
@iv) If (xn) is a weakly p-Cauchy sequence in X and (x}) is a weakly null sequence in X*,
then x;f(x,) — 0.

Proof Apply Corollary 15 to the identity map i : X — X. O
The following result generalizes [15, Theorem 2.11].

Theorem 18 Letr X andY be Banach spacesand T : X — Y be an operator. Let 1 < p < oo.
The following statements are equivalent.

(1) T is weak™ p-convergent.

(2) T carries weakly p-precompact subsets of X to limited subsets of Y.

3) If S: Z — X is aweakly p-precompact operator, then TS : Z — Y is limited, for any
Banach space Z.

4) If S : £y — X is an operator, then T'S : £« — Y is limited.

(5) If (x,) is a weakly p-summable sequence in X and (y;}) is a w*-Cauchy sequence in Y*,
then (yy, T (x,)) — O.

Proof (1) = (2) is similar to the proof of (1) = (2) in Theorem 14.
(2) = (3) Let S : Z — X be a weakly p-precompact operator. Then 7 S(Byz) is limited,
and thus 7S : Z — Y is limited.
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(3) = (4) Let S : £, — X be an operator. Since 1 < p < 00, £,+ € W, [6]. Hence §
is weakly p-compact, and thus 7S limited.

(4) = (1) Suppose (x,,) is weakly p-summable in X and (y;) is w*-null in Y*. Define
Sy > Xby SO0) = > bix; [10, Proposition 2.2, p. 36]. Since TS(ng*) is a limited set
inY, (y;, TS(en)) = (yp, T (xn)) — O.

(1) = (5) is similar to the proof of (1) = (5) in Theorem 14. ]

Corollary 19 Let X andY be Banach spacesand T : X — Y be an operator. Let 1 < p < o0.
The following statements are equivalent.

(1) T is weak™® p-convergent.
(i) If (xp) is a weakly p-Cauchy sequence in X and (y;}) is a w*-null sequence in Y*, then
(Vi T () = 0.
(iii) If S : Y — Z is an operator such that S*(Bz+) is w*-sequentially compact, then
ST : X — Z is p-convergent.
@(iv) If S : Y — cq is an operator, then ST : X — cq is p-convergent.

Proof (i) = (ii) Suppose that (x,) is a weakly p-Cauchy sequence in X and (") is a w*-null
sequence in Y'*. Since (7 (x,)) is limited in Y, (y;;, T (x,)) — 0.

(ii) = (iii) Let S : Y — Z be an operator such that S*(Bz+) is w*-sequentially com-
pact, but ST : X — Z is not p-convergent. Let (x,) be weakly p-summable in X so that
IST (x,)|| > €, for some € > 0. Choose (z}) in Bz= so that (z}:, ST (x,)) > €. Without
loss of generality, (S*(z};)) is w*-convergent. Then (S*(z), T (x,)) = (2, ST (x,,)) — 0,2
contradiction.

(iii) = (iv) Let S : Y — co be an operator. Note that By, and thus S*(By,) is w*-
sequentially compact. Then ST : X — c¢g is p-convergent.

(iv) = (i) Let (x,) be a weakly p-summable sequence in X and let (y;;) be a w*-
null sequence in Y*. Define S : ¥ — cg by S(y) = (y/(»)). Since ST is p-convergent,
(ms Txn)) < IST (xp) || — 0. o

The following two corollaries provide equivalent characterizations of spaces with the
DP*P,.

Corollary 20 Ler 1 < p < oo. The following statements are equivalent about a Banach space
X.

(i) X has the DP* P),.

(ii) [15] The identity operatori : X — X is weak® p-convergent; that is, every weakly
p-precompact subset of X is a limited set.

(iii) [18] Every weakly p-precompact operator S : Z — X is limited, for any Banach space
Z.

(iv) [15] Every operator S : £,» — X is limited.

(v) [1811f (xp) is a weakly p-summable sequence in X and (x;}) is a w*-Cauchy sequence
in X*, then x;;(x,) — 0.

Proof Apply Theorem 18 to the identity operatori : X — X. O

Corollary 21 Let 1 < p < oo. The following statements are equivalent about a Banach space
X.

(i) X has the DP*P),.
(i) [18]1f (xp) is a weakly p-Cauchy sequence in X and (x}}) is a w*-null sequence in X*,
then x;; (x,) — 0.
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(iii) [18]11f S : X — Z is an operator such that S*(Bz+) is w*-sequentially compact, then
S is p-convergent.
(iv) [15] Every operator S : X — cq is p-convergent.

Proof Apply Corollary 19 to the identity operatori : X — X. O

We note that an operator 7 : X — Y is p-convergent if and only if T takes weakly
p-precompact subsets of X into norm compact subsets of Y.

Corollary 22 Let 1 < p < oo.

(i) Suppose S : X — Y is weakly p-precompact and T : Y — Z is an operator with
weakly precompact adjoint. If Y has the D P P, then T S is compact.

(1) Suppose S : X — Y is weakly p-precompact and T : Y — Z is an operator such that
T*(Bgz+) is w*-sequentially compact. If Y has the D P* P, then T S is compact.

Proof (i) Suppose S : X — Y is weakly p-precompactand 7 : Y — Z is an operator such
that 7* is weakly precompact. Since Y has the DP P, T is p-convergent by Corollary
16. Then T S(By) is relatively compact, and thus 7S is compact.

(ii) The proof is similar to that of (i).

Corollary 23 Let 1 < p < oo.

(1) IfY* does not contain a copy of £1, then every weak p-convergent operatorT : X — Y
is p-convergent.
(ii) If By* is w*-sequentially compact (in particular if Y is separable), then every weak*
p-convergent operator T : X — Y is p-convergent.
(i) If X or Y has the DP P, then every operator T : X — Y is weak p-convergent.
(iv) If X or Y has the D P* P, then every operator T : X — Y is weak™ p-convergent.

Proof (i) Leti : Y — Y be the identity operator on Y. Suppose T : X — Y is a weak p-
convergent operator. By Rosenthal’s £ theorem, i * is weakly precompact. Then T = iT
is p-convergent by Theorem 14.
(i) The proof is similar to that of (ii).
(iii) LetT : X — Y be an operator. If Y has the D P P, then the identity operatori : ¥ — Y
is weak p-convergent. Hence T = iT is weak p-convergent. If X has the DP P, then
the identity operator i : X — X is weak p-convergent. Hence T = Ti is weak p-
convergent.
(iv) The proof is similar to that of (iii).
O

Clearly each p-convergent operator T : X — Y is weak® p-convergent and each weak™
p-convergent operator is weak p-convergent. By Corollay 23, we obtain the following result.
It generalizes [15, Proposition 2.5].

Corollary 24 IfY* does not contain a copy of £1, then the families of p-convergent operators,
weak™ p-convergent operators, and weak p-convergent operators T : X — Y coincide.

Let 1 < p < oo. A Banach space X has the p-Gelfand—Phillips (p-G P) property (or is a
p-Gelfand—Phillips space) if every limited weakly p-summable sequence in X is norm null
[15].
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If X has the G P property, then X has the p-G P property for any 1 < p < oo. The space
£~ does not have the p-G P property for any 1 < p < oo [15].

Let 1 < p < oco. A space X has the p-Dunford Pettis relatively compact property (p-
D PrcP) if every DP weakly p-summable sequence (x,) in X is norm null [17].

If X has the D Prc P property, then X has the p-D Prc P property for any 1 < p < oo.

Corollary 25 Let 1 < p < oo. If X has the p-G P (resp. the p-D PrcP) property, then the
following are equivalent.

(i) X has the DP*P), (resp. the DP P,).
(i) X € C).

Proof (i) = (ii) We only prove the result when X has the the p-G P and the D P* P,,. The
other case is similar.

Let (x,) be weakly p-summable in X. Then (x,) is limited by Corollary 20. Therefore
lxx ]l — 0, and thus X € C,,. O

Letl < p < co.Anoperator T : X — Y iscalled limited p-convergent if it carries limited
weakly p-summable sequences in X to norm null ones in Y [15]. An operator 7 : X — Y is
called DP p-convergent if it takes DP weakly p-summable sequences to norm null sequences
[17].

The sets of all limited p-convergent, DP p-convergent, weak p-convergent, and weak™® p-
convergent operators from X to ¥ will be respectively denoted by LC(, (X, Y), DPC,(X, Y),
WC,(X,Y),and W*C,(X,Y).

Corollary 26 Ler 1 < p < oo. Let X be a Banach space. The following statements hold.

(i) X has the p-DPrcP if and only if WC (X, o) = DPC (X, Leo).
(ii) X has the p-G P property if and only if W*C (X, £oo) = LC, (X, £oo).

Proof (i) A Banach space X has the p-DPrcP if and only if DPC (X, £oo) = L(X, £oo)
[17]. Since £ has the DPP),, L(X, b)) = WC (X, £eo).
(ii) A Banach space X has the p-G P if and only if LC( (X, o) = L(X, £oo) [17]. Since
loo hasthe DP* P, L(X, £o) = W*Cp(X, £o).
m}

Since any limited set is a DP set, any limited weakly p-summable sequence is also DP
weakly p-summable. Hence if X has the p-D Prc P, then X has the p-G P property. Thus, if
X hasthe p-DPrcP,then L(X, {x) = LCp(X, Loo) = DPCH(X, L) = WCH(X, Loo) =
W*Cp(X, Loo).
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