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Abstract
Let C ⊂ P

2 be a reduced, singular curve of degree d and equation f = 0. Let � denote
the jacobian subscheme of C . We have 0 → E → 3.O → I�(d − 1) → 0 (the surjection
is given by the partials of f ). We study the relationships between the Betti numbers of the
module H0∗ (E) and the integers, d, τ , where τ = deg(�). We observe that our results apply
to any quasi-complete intersection of type (s, s, s).
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1 Introduction

Let C ⊂ P
2 be a reduced, singular curve, of degree d , of equation f = 0. The partials of

f determine a morphism: 3.O ∂ f→ O(d − 1), whose image is I�(d − 1), where according
to our assumptions, � ⊂ P

2, is a closed subscheme of codimension two. The subscheme �,
whose support is the singular locus of C , is called the jacobian subscheme of C . We denote
by τ its degree, it is the global Tjurina number of the plane curve C .

We have:
0 → E → 3.O → I�(d − 1) → 0 (1)

where E is a rank two vector bundle with Chern classes c1 = 1− d, c2 = (d − 1)2 − τ (see
for instance [11] and references therein). The bundle E is the sheaf of logarithmic vector
fields along C , also denoted Der(− logC) [5,14,15]. A particular case of this situation is
when C is an arrangement of lines [8,13,17]. This is a very active field of research with a
huge literature.

In [9], using techniques of the theory of singularities, du Plessis and Wall gave sharp
bounds on τ in function of d and d1, the least twist of E having a section. Observe that
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H0∗ (E) is the module of syzygies between the partials. This result has been extended (see
[11]) to the case of quasi-complete intersections (q.c.i.), using vector bundles techniques.

In this note, inspired by [6], instead of considering only d1, the minimal degree of a
generator of H0∗ (E), we consider the full minimal resolution of this module. So we will
assume that H0∗ (E) is minimally generated by m elements of degree d1 ≤ d2 ≤ · · · ≤ dm .
Them-uple (d1, . . . , dm) is the exponent ofC . We havem ≥ 2, with equality if and only if E
splits. In this case one say that C is a free divisor [1,14] or, equivalently, that � is an almost
complete intersection. The case m = 3 is handled in [6]. Here we deal with the general case
m ≥ 3.

Starting from the minimal free resolution of H0∗ (E) we show how to get a free (non
necessarilyminimal) resolution of I� .With this we show (Corollary 6) that if� is a complete
intersection, then m ≤ 4. Then (Theorem 8) we prove that 2d − 4 ≥ di ,∀i and that the
inequality is sharp if and only if � is a point (τ = 1). Finally we prove: dm = d − 1 or
2d − m ≥ dm .

Then (Theorem 13), shows that d3 ≤ d −1 and characterizes the q.c.i. realizing the lower
bound, (d − 1)(d − 1 − d1) = τ , in du Plessis–Wall theorem: this happens if and only if �

is a complete intersection (d − 1, d − 1 − d1). We also describe what happens in the next
degree.

Finally, in the setting of q.c.i., we answer to a conjecture raised in [7] (Proposition 15)
and describe the sub-maximal case (see Proposition 17).

The exact sequence (1) presents � as a quasi-complete intersections (q.c.i.) of type (d −
1, d −1, d −1). In our proofs we will never use the fact that the three curves giving the q.c.i.
are the partials of a polynomial f (!). So setting s = d − 1 , all our results are true for q.c.i.
of type (s, s, s). Actually, after appropriate changes in notations (see [11]) they should hold
for all q.c.i. (i.e. of any type (a, b, c)). Observe that to determine the minimal free resolution
(m.f.r.) of H0∗ (E) amounts to determine the m.f.r. of the (non saturated if m > 2) q.c.i. ideal
J = (F1, F2, F3). For a purely algebraic approach to q.c.i. see for example [16].

As the first version of this paper was finished I received the preprint [7] containing some
overlaps. This obliged me to revisit my text. This version contains some improvements (so
thank you to the authors of [7] !), but overlaps are still present. However, since the methods
are different, it could be useful to see how geometric techniques apply in this context.

I thank Alexandru Dimca for useful discussions, in particular about (i) of Theorem 13.

2 Setting, notations

Following [6] we have:

Definition 1 We will say that C is a m-syzygy curve if H0∗ (E) is minimally generated by m
elements of degree d1 ≤ d2 ≤ · · · ≤ dm . The m-uple (d1, . . . , dm) is the exponent of C .

Remark 2 We have m ≥ 2. Moreover m = 2 if and only if E is the direct sum of two line
bundles.

In the sequel we will always assume m ≥ 3.
For any i , E(di ) has a section vanishing in codimension two.

Besides the exact sequence (1) we will also consider the following ones:

0 →
m−2⊕

j=1

O(−b j ) →
m⊕

i=1

O(−di ) → E → 0 (2)
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Quasi-complete intersections in P2 and syzygies 815

The minimal presentation of H0∗ (E) yields
⊕m

i=1 O(−di ) → E → 0, the kernel; K , is
locally free of rank m − 2 with H1∗ (K ) = 0, hence K is a direct sum of line bundles.

0 → O → E(d1) → IZ (2d1 + 1 − d) → 0 (3)

Here Z ⊂ P
2 is a locally complete intersection (l.c.i.), zero-dimensional subscheme of

degree
deg(Z) = c2(E(d1)) = d1(1 − d) + (d − 1)2 − τ + d21 (4)

3 Resolutions

Starting from (2) we can get the minimal free resolution of H1∗ (E) and H0∗ (IZ ), more
precisely:

Lemma 3 Let E be a rank two vector bundle on P2 and let Z = (s)0, s ∈ H0(E(d1)), where
d1 = min{k | h0(E(k)) 	= 0}.

(i) The following are equivalent:

(a) H0∗ (E) is minimally generated by m elements
(b) H1∗ (E) is minimally generated by m − 2 elements
(c) H0(IZ ) is minimally generated by m − 1 elements.

Assume the minimal free resolution of H0∗ (E) is given by (2) and that c1(E) = 1 − d,
then:

(ii) The minimal free resolution of H1∗ (E) is

0 →
m−2⊕

j=1

S(−b j ) →
m⊕

i=1

S(−di ) →
m⊕

i=1

S(di+1−d) →
m−2⊕

j=1

S(b j+1−d) → H1∗ (E) → 0

(5)
(iii) The minimal free resolution of H0∗ (IZ ) is:

0 →
m−2⊕

j=1

O(−b j + d − 1 − d1) →
m⊕

i=2

O(−di + d − 1 − d1) → IZ → 0 (6)

Proof Let E be a rank two vector bundle onP2 and assume that H0∗ (E) isminimally generated
by m elements. We have G1 → E → 0, with G1 = ⊕m

1 O(−di ). As explained before the
kernel, G2, is a direct sum of line bundles: G2 = ⊕O(−b j ). By dualizing the exact sequence:
0 → G2 → G1 → E → 0, we get: 0 → E∗ → G∗

1 → G∗
2 → 0. Taking into account that

E∗ 
 E(−c1) (c1 = c1(E)) because E has rank two, we get: 0 → E → G∗
1 (c1) →

G∗
2 (c1) → 0. Taking cohomology this yields: 0 → H0∗ (E) → G∗

1(c1) → G∗
2(c1) →

H1∗ (E) → 0. This is the beginning of a minimal free resolution of H1∗ (E). We conclude with
(2). This proves (ii) and also (a) ⇒ (b) in (i). By uniqueness of the minimal free resolution
this also proves (b) ⇒ (a) in (i).

123



816 Ph. Ellia

We have:

0 0
↓ ↓
O = O
↓ ↓

0 → ⊕m−2
j=1 O(−b j + d1) → ⊕m

i=2 O(−di + d1) ⊕ O → E(d1) → 0
|| ↓ ↓

0 → ⊕m−2
j=1 O(−b j + d1) → ⊕m

i=2 O(−di + d1) → IZ (−d + 1 + 2d1) → 0
↓ ↓
0 0

which proves (iii) and also (a) ⇔ (c) in (i) (observe that we have 0 → S
f→ H0∗ (E(d1)) →

H0∗ (IZ (2d1−d+1)) → 0, where, by assumption, the image of f yields a minimal generator
of H0∗ (E(d1)). ��

4 Resolution of H0∗(I6)

Starting from the resolution of H0∗ (E) it is also possible to get a resolution of H0∗ (I�) but
this resolution is not necessarily minimal:

Proposition 4 We have the following free resolution

0 →
m⊕

i=1

O(di − 2d + 2) →
m−2⊕

j=1

O(b j − 2d + 2) ⊕ 3.O(1 − d) → I� → 0 (7)

This resolution is minimal up to cancellation of O(1 − d) terms with some O(di − 2d + 2)
(in this case di = d − 1).

Proof Since I�(d − 1) is generated by global sections we can link � to a zero-dimensional
subscheme T by a complete intersection of type (d − 1, d − 1). From the exact sequence
(1), by mapping cone, we get that T is a section of E(d − 1). So we have an exact sequence:
0 → O(1 − d) → E → IT → 0. From (2) we get a surjection:

⊕m
1 O(−di ) → IT → 0.

Using (2) we can build a commutative diagram and by the snake lemma we get:

0 →
m−2⊕

1

O(−b j ) ⊕ O(1 − d) →
m⊕

1

O(−di ) → IT → 0

This resolution is minimal unless the section of E(d − 1) yielding T is a minimal generator
of H0∗ (E). From the above resolution, by mapping cone, we get the desired resolution of
I� . Again this resolution is minimal unless one curve (resp. both curves) of the complete
intersection (d − 1, d − 1) linking T to � is a minimal generator (resp. both curves are
minimal generators) of IT .

On the other hand, by minimality of the resolution (2) no term O(b j − 2d + 2) can
cancel. ��
Remark 5 Cancellations can occur. LetC = X∪L , where X is a smooth curve of degree d−1,
d ≥ 3, and where L is a line intersecting X transversally. Clearly � is a set of d − 1 points
on the line L . The minimal free resolution of I� is: 0 → O(−d) → O(−1) ⊕O(1− d) →
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Quasi-complete intersections in P2 and syzygies 817

I� → 0. Comparing with (4) we see that m = 3 and that two termsO(1− d) did cancel. So
we have d1 = d − 2, d2 = d3 = d − 1.

See Remark 9 for another example.

Corollary 6 If m ≥ 5, � can’t be a complete intersection.

Proof Indeed � is a complete intersection if and only if the minimal free resolution of I�

starts with two generators. According to Proposition 4 we have certainly m − 2 minimal
generators of degrees 2d − 2 − b j in the minimal free resolution of I� . ��

Before to go on we recall a basic fact about zero-dimensional subscheme of P2:

Lemma 7 Let X ⊂ P
2 be a zero-dimensional subscheme with minimal free resolution:

0 →
t⊕

1

O(−b j )
M→

t+1⊕

1

O(−ai ) → IX → 0 (8)

Then ai ≥ t,∀i .
In particular if h0(IX (n)) 	= 0, then H0∗ (IX ) can be generated by n + 1 elements.

Proof This should be well known (see for example [10], Corollary 3.9), but for the conve-
nience of the reader we give a proof. We work by induction on t . The case t = 1 is clear.
Assume the statement for t − 1. Let a1 ≤ · · · ≤ at+1. Since IX (at+1) is generated by global
sections we can always perform a liaison of type (a1, at+1). By mapping-cone the linked
scheme, T , has the following resolution:

0 →
t⊕

2

O(ai − a1 − at+1) →
t⊕

1

O(b j − a1 − at+1) → IT → 0

This resolution is minimal and by the inductive assumption we get: a1 + at+1 − b j ≥ t − 1,
hence a1 ≥ b j − at+1 + t − 1. We have b j − at+1 ≥ 0,∀ j (they are the degrees of the
elements of the last row of the matrix M). If b j − at+1 = 0,∀ j , then, by minimality, the
last row of M is zero. By the Hilbert–Buch Theorem (see [10], Theorem 3.2) the maximal
minors of M yield a minimal set of generators of the ideal I (X) := H0∗ (IX ). If M has a row
of zeroes, we get only one non-zero generator, this is impossible. It follows that a1 ≥ t . ��
Theorem 8 (i) With notations as in Sect. 2, if d ≥ 3, then 2d − 4 ≥ di ,∀i .
(ii) Moreover, if d > 3, we have equality (i.e. dm = 2d − 4) if and only if τ = 1.
(iii) We have dm = d − 1 (hence di ≤ d − 1,∀i ) or di ≤ 2d − m,∀i .
Proof (i) This is clear if di = d − 1, so we may assume that the term O(di − 2d + 2) really
appears in (7) even after possible cancellations. This implies 2d − 2 − di ≥ 2.

(ii) We have min{2d − di − 2} = 2d − dm − 2. Assume 2d − dm − 2 = 2. For d > 3, the
term O(dm − 2d + 2) 
 O(−2) really appears in the minimal free resolution of I� . This
implies that there are two generators of degree one, hence � is a point.

Conversely if � is a point, let T be linked to � by a complete intersection (d − 1, d − 1).
Then using the minimal free resolution of I� , by mapping-cone, we have: 0 → 2.O(−2d +
3) → 2.O(1 − d) ⊕ O(−2d + 4) → IT → 0. But using instead the resolution (1) we
see that T is a section of E(d − 1), so we have 0 → O(1 − d) → E → IT → 0. Using
the above resolution of IT , we get after some diagram-chasing: 0 → 2.O(−2d + 3) →
3.O(1 − d) ⊕ O(−2d + 4) → E → 0. This resolution is clearly minimal. It follows that
m = 4 and dm = 2d − 4.
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(iii) Assume dm 	= d − 1, then, according to Proposition 4, the term O(dm − 2d + 2)
appears in the minimal free resolution of I� . Let 2d − 4 − u = dm . We have u ≥ 0 by
(i). Since there is a relation of degree u + 2, there are at least two minimal generators of
degree ≤ u + 1 in the minimal free resolution of I� . So h0(I�(u + 1)) 	= 0 and I� can be
generated by u + 2 elements (Lemma 7). This implies (see 7) that m − 3 ≤ u + 1, hence
dm ≤ 2d − m. ��
Remark 9 (i) Point (i) was known by different methods (see [4,7]).
(ii) The proof of (iii) above shows the following: if d 	= 4 and if dm = 2d − 5, then τ ≤ 4

or h0(I�(1)) = 0 but � contains a subscheme of length τ − 1 lying on a line.
(iii) If� = {p}, then for any d ≥ 3 we can present� as a q.c.i. of type (d −1, d −1, d −1)

and, clearly, the term 3.O(1 − d) will cancel in (7).

Example 10 We can have m = 4 and � a complete intersection, so the bound of Corollary 6
is sharp.

From the point of view of the jacobian ideal to get a curve C with τ = 1 we may argue as
follows. Let P denote the blowing-up of P2 at a point. We have P = F1 := P(OP1 ⊕OP1(1))
(see for ex. [2]). Denote by h, f the classes of OF1(1) and of a fiber in Pic(F1). We have
h2 = 1 = h f , f 2 = 0. The exceptional divisor is E = h − f . For any a ≥ 1, the linear
system |ah + 2 f | contains a smooth irreducible curve, C ′, such that C ′.E = 2. The image
of C ′ in P

2 is a curve, C , of degree a + 2 with τ(C) = 1 (for a = 1 C is a nodal cubic).
Other examples with m = 4 and � complete intersection can be obtained by taking

C = A ∪ B where A, B are smooth curves, of degrees a, b, intersecting transversally. We
have d = a+b, τ = ab and� is a complete intersection (a, b). Assume a ≥ 2 then, arguing
as above, we get d1 = d − 2, d2 = d3 = d4 = d − 1, b1 = d + a − 2, b2 = d + b − 2 and
the corresponding resolution of H0∗ (E) is minimal.

Another consequence of Lemma 7:

Corollary 11 With notations as in Sect. 2 (in particular m ≥ 3, see Remark 2) we have:

(i) d1 + di ≥ d + m − 3,∀i ≥ 2
(ii) Z is a complete intersection if and only ifm = 3. In that case Z is a complete intersection

of type (d1 + d2 − d + 1, d1 + d3 − d + 1).

Proof (i) This follows from (6) and Lemma 7.
(ii) Follows from (iii) of Lemma 3.

��
Remark 12 Part (i) is proved also in [7] and (ii) is Prop. 3.1. of [6]. The proofs are different.

Ifm = 3 and d1+d2 = d , following [6] one says thatC is a plus one generated curve. We
see that C is a plus one generated curve if and only if Z (of degree d3 − d2 + 1) is contained
in a line. We recover the fact that C is nearly free (i.e. Z is a point) if, moreover, d3 = d2.

5 Around the extremal cases in du Plessis–Wall’s theorem

We recall the bound given by du Plessis–Wall ([9], see [11] for a different proof, valid also
for q.c.i.): (d − 1)(d − 1 − d1) ≤ τ ≤ (d − 1)(d − 1 − d1) + d21 .

Theorem 13 With notations as in Sect. 2 (in particular m ≥ 3).
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(i) We have d1 ≤ d2 ≤ d3 ≤ d − 1.
(ii) We have d + 1 ≥ m.
(iii) We have (d − 1)(d − 1 − d1) = τ if and only if � is a complete intersection of type

(d − 1, d − 1 − d1). In this case m = 3 and d2 = d3 = d − 1.
(iv) Assume τ = (d − 1)(d − 1− d1) + 1. If τ > 1, then m = 4 and {di } = {d1, d − 1, d −

1, d − 3 + d1} or d1 = 1,m = 2 and E splits like O(−1) ⊕ O(d − 2).

Proof (i) Let us denote by g1, g2, g3 the generators of degrees d1, d2, d3 of H0∗ (E). We will
coonsider the gi ’s as relations among the partials.

Consider the Koszul relations: Kz = ( fy,− fx , 0), Ky = ( fz, 0,− fx ), Kx =
(0, fz,− fy). We have:

fz Kz − fy Ky + fx Kx = 0 (9)

The relations Kx , Ky, Kz correspond to sections sx , sy, sz of E(d − 1). It follows that d1 ≤
d − 1. We also clearly have d2 ≤ d − 1. Indeed otherwise Kx , Ky, Kz are multiple of
g1 = (u1, v1, w1), which is impossible (P(u1, v1, w1) = ( fy,− fx , 0) implies w1 = 0 and
going on this way we get g1 = 0). If d3 ≥ d , these sections are combinations of g1, g2 only.
Now (9) yields a relation involving only g1 and g2. We claim that this relation is non trivial.

Indeed let sx = ag1 + bg2, sy = a′g1 + b′g2, sz = a′′g1 + b′′g2. Then (9) becomes:
g1(a fx − a′ fy + a′′ fz) + g2(b fx − b′ fy + b′′ fz) = 0. Assume a fx − a′ fy + a′′ fz = 0 and
b fx − b′ fy + b′′ fz = 0. Then α = (a,−a′, a′′) determines a section of E(d − 1 − d1) and
β = (b,−b′, b′′) a section of E(d − 1 − d2). Since d − 1 − d2 ≤ d1 − 1 (Corollary 11),
we get β = 0, hence b = b′ = b′′ = 0. Since d − 1 − d1 ≤ d2 − 1 (Corollary 11), we see
that α is a multiple of g1: (a,−a′, a′′) = P(u1, v1, w1). It follows that a = Pu1. Moreover
sx = (0, fz,− fy) = ag1 = (Pu21, Pu1v1, Pu1w1) and it follows that Pu1 = 0 = a, hence
sx = 0, which is impossible.

So we have a non trivial relation Ag1 = Bg2. We may assume (A, B) = 1 (otherwise just
divide by the common factors). It follows that B divides every components u1, v1, w1 of g1
and we get a relation (u′

1, v
′
1, w

′
1) of degree < d1, against the minimality of d1. We conclude

that d3 ≤ d − 1.
(ii) From (i) we have 2d − 2 ≥ d1 + d3. We conclude with Corollary 11.
(iii) Assume τ = (d − 1)(d − 1 − d1). Since I�(d − 1) is generated by global sections

we can link � to a subscheme � by a complete intersection F ∩ G of type (d − 1, d − 1).
Clearly deg(�) = (d−1)2−τ = d1(d−1). Bymapping conewe have (after simplifications):
0 → O → E(d−1) → I�(d−1) → 0. Twisting by 1−d+d1 we get: 0 → O(1−d+d1) →
E(d1) → I�(d1) → 0. Since τ > 0, d1 < d − 1, hence h0(I�(d1)) 	= 0. It follows that
� is contained in a complete intersection (d1, d − 1). Indeed the base locus of the linear
system of curves of degree d − 1 containing � has dimension zero (consider F ∩ G) and
d1 < d − 1. For degree reasons � is a complete intersection (d1, d − 1) and we have
0 → O(1 − d − d1) → O(−d1) ⊕ O(1 − d) → I� → 0. By mapping cone again:
0 → O(1 − d) ⊕ O(d1 − 2d + 2) → O(d1 + 1 − d) ⊕ 2.O(1 − d) → I� → 0. We claim
that we can cancel the repeated term O(1 − d). Indeed, since dim(F ∩ G) = 0, we may
assume that F or G is not a multiple of S, the curve of degree d1 containing �, hence F or G
is a minimal generator of H0∗ (I�). It follows that � is a complete intersection. We conclude
with Proposition 4.

Conversely if � is a complete intersection (d − 1, d − 1− d1), from Proposition 4 we get
m = 3 and d2 = d3 = d − 1.

(iv)We argue as above. The assumption τ > 1 makes sure that h0(I�(d1)) 	= 0. This time
we find that � is linked to one point by a complete intersection (d −1, d1). By mapping cone
we get: 0 → 2.O(−d − d1 + 2) → O(−d − d1 + 3) ⊕O(−d1) ⊕O(−d + 1) → I� → 0.
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This resolution is minimal except if d1 = 1 in which case we have: 0 → O(1 − d) →
O(2−d)⊕O(−1) → I� → 0.Aswehave seen above� = (s)0 where s ∈ H0(E(d−1)). If s
is aminimal generator of H0∗ (E), then H0∗ (IZ ) hasm−1minimal generators, otherwise it has
m minimal generators. So if d1 > 1, 3 ≤ m ≤ 4. Bymapping conewe go back to�. If d1 > 1
we get: 0 → O(−d+d1−1)⊕O(−2d+2+d1) → 2.O(−d+d1)⊕O(1−d) → I� → 0.
From Proposition 4 we conclude that m = 4 and {di } = {d1, d − 1, d − 1, d − 3 + d1}. If
d1 = 1, by mapping cone we get 0 → O(−2d + 3) ⊕ O(−d) → 3.O(1 − d) → I� → 0.
This resolution is minimal. Hence m = 2 and E splits like O(−d + 2) ⊕ O(−1). ��
Remark 14 See [6] for a different proof of part (i). Point (ii) is proved in [7].

Since theminimal free resolution of sets of points of lowdegree are known (see for example
[12] for a list), the analysis above can be extended to the cases τ = (d − 1)(d − 1− d1)+ x ,
for small x .

It is easy to show that if τ reaches the upper-bound in the first part of du Plessis–Wall’s
Theorem, then E splits (because c2(E(d1)) = 0 and h0(E(d1)) 	= 0) i.e. � is an almost
complete intersection (or C is a free curve). However there is a second part in du Plessis–
Wall’s theorem: under the assumption 2d1+1 > d (which amounts to say that E is stable), we
have a better upper-bound: τ ≤ τ+ := (d−1)(d−1−d1)+d21 − 1

2 (2d1+1−d)(2d1+2−d).
Notice that this holds true also for q.c.i. [11].

In [7] Thm. 3.1, the authors prove that this bound is reached if and only if we have:

0 → (m − 2).O(−d1 − 1) → m.O(−d1) → E → 0 (10)

with m = 2d1 − d + 3.
This can be proved as follows. From the exact sequence (3) we have h0(IZ (2d1−d)) = 0

(observe that Z 	= ∅ because 2r + 1 > d). It follows that deg(Z) ≥ h0(O(2d1 − d)). The
assumption τ = τ+ implies [use (4)] that we have equality: deg(Z) = h0(O(2d1 − d)).
This implies h1(IZ (2d1−d)) = 0. It follows (Castelnuovo–Mumford’s lemma or numerical
character) that the minimal free resolution of IZ is: 0 → s.O(−s −1) → (s+1).O(−s) →
IZ → 0, with s = 2d1 − d + 1. We conclude with Lemma 3.

Conversely if we have (10), by Lemma 3 we get that IZ has a linear resolution and
deg(Z) = h0(O(2d1 − d)). This implies τ = τ+.

Then the authors ask ([7] Conjecture 1.2) if for any integer d ≥ 3 and for any integer r ,
d/2 ≤ r ≤ d−1, there exists� with d1 = r and τ = τ+. I don’t know the answer in general
but, in the framework of q.c.i., the answer is yes:

Proposition 15 With notations as above, for every d ≥ 3 and for every integer r , d/2 ≤ r ≤
d − 1, there exists a q.c.i. subscheme � ⊂ P

2, of degree τ+, with d1 = r

Proof We recall that a general set of s(s + 1)/2 points has a linear resolution:

0 → s.O(−s − 1) → (s + 1).O(−s) → IZ → 0 (11)

Actually to have such a resolution is equivalent to have h0(IZ (s − 1)) = 0. Since the
Cayley–Bachararch condition CB(s − 3) (see for instance [3]) is obviously satisfied we
may associate a rank two vector bundle to IZ (s): 0 → O → E → IZ (s) → 0. We have
c1(E) = s and c2(E) = s(s + 1)/2 = deg(Z). Since h1(O) = 0 and IZ (s) and O are
globally generated, E also is globally generated. For a ≥ 0 let us consider a section of E(a):
0 → O → E(a) → I�(2a+ s) → 0. For k ≥ a+ s, I�(k) is globally generated and we can
link � to� by a complete intersection of type (k, k). By mapping cone we get, if k = 2a+ s:

0 → E(−3a − 2s) → 3.O(−2a − s) → I� → 0 (12)
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We have c2(E(a)) = as + s(s + 1)/2 + a2 = deg(�). It follows that τ := deg(�) =
3a2 +3as+ s(s−1)/2. Since d1 = a+ s (E := E(−a− s)), it is easy to check that τ = τ+.

Let d be an integer. Assume d odd, d = 2δ + 1. For 1 ≤ ρ ≤ δ, set a = δ − ρ, s = 2ρ,
d1 = a + s and d = 2a + s + 1. Then the construction above yields � of degree τ+, q.c.i.
of three curves of degree d − 1, with d1 = a + s. We have δ + 1 ≤ d1 ≤ 2δ.

If d = 2δ, for 0 ≤ ρ ≤ δ − 1, set a = δ − ρ − 1 and s = 2ρ + 1 (d1 = a + s). ��
Remark 16 It is not clear at all that there are examples with� a jacobian set. For some partial
results see [7], Section 4.

More generally to characterize the zero-dimensional subschemes that are jacobian sets
seems quite a challenge.

It is possible to give a little improvement, namely:

Proposition 17 Assume 2d1 + 1 > d and τ = τ+ − 1. Set s := 2d1 − d. Then we have two
possibilities:

(a) The minimal free resolution of IZ is:

0 → O(−s − 2) ⊕ (s − 2).O(−s − 1) → s.O(−s) → IZ → 0 (13)

In this case m = 2d1 − d + 1 and di = d1,∀i .

(b) The minimal free resolution of IZ is:

0 → O(−s − 2) ⊕ (s − 1).O(−s − 1) → O(−s − 1) ⊕ s.O(−s) → IZ → 0 (14)

In this case m = 2d1 − d + 2 and di = d1, 2 ≤ i < m, dm = d1 + 1.

Proof Arguing exactly as above this timewe have deg Z = h0(O(s−1))+1, h0(IZ (s−1)) =
0, hence h1(IZ (s − 1)) = 1. Let 0 → ⊕t O(−β j ) → ⊕t+1 O(−αi ) → IZ → 0 denote
the minimal free resolution of IZ . Since β+ > α+ (β+ = max{β j } and the same for α+)
and since β+ −3 = max{k | h1(IZ (k)) 	= 0}, we see that β+ = s+2 (with coefficient equal
to 1 because h1(IZ (s − 1)) = 1). It follows that H0∗ (IZ ) is generated in degrees ≤ s + 1.
Of course we have s minimal generators of degree s and in general nothing else (it is easy to
produce examples for any s). We conclude that in this case the resolution is like in (a).

What about generators of degree s + 1? If there at least two such generators, then the
matrix of the resolution has two rows of the form (L, 0, . . . , 0). By erasing another row,
we get a maximal minor which is zero, but this is impossible (the maximal minors are the
generators). So there is at most one generator of degree s + 1. In this case the resolution is
like in (b). Examples exist for any s: take s + 1 points on a line and the remaining ones in
general position. ��
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