

Quasi-complete intersections in P**² and syzygies**

Ph. Ellia[1](http://orcid.org/0000-0003-4514-3307)

Received: 9 March 2019 / Accepted: 23 July 2019 / Published online: 1 August 2019 © Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Abstract

Let $C \subset \mathbb{P}^2$ be a reduced, singular curve of degree *d* and equation $f = 0$. Let Σ denote the jacobian subscheme of *C*. We have $0 \to E \to 3.0 \to \mathcal{I}_{\Sigma}(d-1) \to 0$ (the surjection is given by the partials of *f*). We study the relationships between the Betti numbers of the module $H^0_*(E)$ and the integers, *d*, τ , where $\tau = \deg(\Sigma)$. We observe that our results apply to any quasi-complete intersection of type (*s*,*s*,*s*).

Keywords Quasi complete intersections · Vector bundle · Syzygies · Global Tjurina number · Plane curves

Mathematics Subject Classification Primary 14H50; Secondary 14M06 , 14M07 , 13D02

1 Introduction

Let $C \subset \mathbb{P}^2$ be a reduced, singular curve, of degree *d*, of equation $f = 0$. The partials of *f* determine a morphism: $3.\mathcal{O} \stackrel{\partial f}{\rightarrow} \mathcal{O}(d-1)$, whose image is $\mathcal{I}_{\Sigma}(d-1)$, where according to our assumptions, $\Sigma \subset \mathbb{P}^2$, is a closed subscheme of codimension two. The subscheme Σ , whose support is the singular locus of *C*, is called the *jacobian subscheme* of *C*. We denote by τ its degree, it is the *global Tjurina number* of the plane curve *C*.

We have:

$$
0 \to E \to 3. \mathcal{O} \to \mathcal{I}_{\Sigma}(d-1) \to 0 \tag{1}
$$

where *E* is a rank two vector bundle with Chern classes $c_1 = 1 - d$, $c_2 = (d - 1)^2 - \tau$ (see for instance [\[11](#page-9-0)] and references therein). The bundle *E* is the sheaf of logarithmic vector fields along *C*, also denoted *Der*(− log*C*) [\[5](#page-9-1)[,14](#page-9-2)[,15\]](#page-9-3). A particular case of this situation is when *C* is an *arrangement of lines* [\[8](#page-9-4)[,13](#page-9-5)[,17\]](#page-9-6). This is a very active field of research with a huge literature.

In [\[9\]](#page-9-7), using techniques of the theory of singularities, du Plessis and Wall gave sharp bounds on τ in function of *d* and d_1 , the least twist of *E* having a section. Observe that

 \boxtimes Ph. Ellia phe@unife.it

¹ Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli 30, 44121 Ferrara, Italy

 $H^0_*(E)$ is the module of syzygies between the partials. This result has been extended (see [\[11\]](#page-9-0)) to the case of quasi-complete intersections (q.c.i.), using vector bundles techniques.

In this note, inspired by $[6]$, instead of considering only d_1 , the minimal degree of a generator of $H^0(E)$, we consider the full minimal resolution of this module. So we will assume that $H_*^0(E)$ is minimally generated by *m* elements of degree $d_1 \leq d_2 \leq \cdots \leq d_m$. The *m*-uple (d_1, \ldots, d_m) is the *exponent* of *C*. We have $m \geq 2$, with equality if and only if *E* splits. In this case one say that *C* is a *free divisor* [\[1](#page-8-0)[,14\]](#page-9-2) or, equivalently, that Σ is an almost complete intersection. The case $m = 3$ is handled in [\[6\]](#page-9-8). Here we deal with the general case $m > 3$.

Starting from the minimal free resolution of $H_*^0(E)$ we show how to get a free (non necessarily minimal) resolution of \mathcal{I}_{Σ} . With this we show (Corollary [6\)](#page-4-0) that if Σ is a complete intersection, then $m \leq 4$. Then (Theorem [8\)](#page-4-1) we prove that $2d - 4 \geq d_i$, $\forall i$ and that the inequality is sharp if and only if Σ is a point ($\tau = 1$). Finally we prove: $d_m = d - 1$ or $2d - m \geq d_m$.

Then (Theorem [13\)](#page-5-0), shows that $d_3 \leq d-1$ and characterizes the q.c.i. realizing the lower bound, $(d-1)(d-1-d_1) = \tau$, in du Plessis–Wall theorem: this happens if and only if Σ is a complete intersection $(d - 1, d - 1 - d_1)$. We also describe what happens in the next degree.

Finally, in the setting of q.c.i., we answer to a conjecture raised in [\[7\]](#page-9-9) (Proposition [15\)](#page-7-0) and describe the sub-maximal case (see Proposition [17\)](#page-8-1).

The exact sequence [\(1\)](#page-0-0) presents Σ as a quasi-complete intersections (q.c.i.) of type (*d* − 1, *d* −1, *d* −1). In our proofs we will *never* use the fact that the three curves giving the q.c.i. are the partials of a polynomial *f* (!). *So setting s* = $d - 1$, all our results are true for q.c.i. *of type* (*s*,*s*,*s*). Actually, after appropriate changes in notations (see [\[11](#page-9-0)]) they should hold for all q.c.i. (i.e. of any type (*a*, *b*, *c*)). Observe that to determine the minimal free resolution (m.f.r.) of $H_*^0(E)$ amounts to determine the m.f.r. of the (non saturated if $m > 2$) q.c.i. ideal $J = (F_1, F_2, F_3)$. For a purely algebraic approach to q.c.i. see for example [\[16\]](#page-9-10).

As the first version of this paper was finished I received the preprint [\[7](#page-9-9)] containing some overlaps. This obliged me to revisit my text. This version contains some improvements (so thank you to the authors of [\[7](#page-9-9)] !), but overlaps are still present. However, since the methods are different, it could be useful to see how geometric techniques apply in this context.

I thank Alexandru Dimca for useful discussions, in particular about (i) of Theorem [13.](#page-5-0)

2 Setting, notations

Following [\[6\]](#page-9-8) we have:

Definition 1 We will say that *C* is a *m*-syzygy curve if $H_*^0(E)$ is minimally generated by *m* elements of degree $d_1 \leq d_2 \leq \cdots \leq d_m$. The *m*-uple (d_1, \ldots, d_m) is the exponent of *C*.

Remark 2 We have $m \ge 2$. Moreover $m = 2$ if and only if *E* is the direct sum of two line bundles.

In the sequel we will always assume $m \geq 3$.

For any i , $E(d_i)$ has a section vanishing in codimension two.

Besides the exact sequence [\(1\)](#page-0-0) we will also consider the following ones:

$$
0 \to \bigoplus_{j=1}^{m-2} \mathcal{O}(-b_j) \to \bigoplus_{i=1}^{m} \mathcal{O}(-d_i) \to E \to 0
$$
 (2)

 \mathcal{L} Springer

The minimal presentation of $H_*^0(E)$ yields $\bigoplus_{i=1}^m \mathcal{O}(-d_i) \to E \to 0$, the kernel; *K*, is locally free of rank $m - 2$ with $H^1_*(K) = 0$, hence *K* is a direct sum of line bundles.

$$
0 \to \mathcal{O} \to E(d_1) \to \mathcal{I}_Z(2d_1 + 1 - d) \to 0 \tag{3}
$$

Here $Z \subset \mathbb{P}^2$ is a locally complete intersection (l.c.i.), zero-dimensional subscheme of degree

$$
deg(Z) = c_2(E(d_1)) = d_1(1-d) + (d-1)^2 - \tau + d_1^2
$$
\n(4)

3 Resolutions

Starting from [\(2\)](#page-1-0) we can get the minimal free resolution of $H^1_*(E)$ and $H^0_*(\mathcal{I}_Z)$, more precisely:

Lemma 3 *Let E be a rank two vector bundle on* \mathbb{P}^2 *and let* $Z = (s)_0$, $s \in H^0(E(d_1))$ *, where* $d_1 = min\{k \mid h^0(E(k)) \neq 0\}.$

- (i) *The following are equivalent:*
	-
	- (a) $H_*^0(E)$ *is minimally generated by m elements*
(b) $H_*^1(E)$ *is minimally generated by m − 2 elements*
	- (c) $H^0(\mathcal{I}_Z)$ *is minimally generated by m* − 1 *elements.*

Assume the minimal free resolution of $H_*^0(E)$ *is given by* [\(2\)](#page-1-0) *and that* $c_1(E) = 1 - d$, *then:*

(ii) *The minimal free resolution of* $H^1_*(E)$ *is*

$$
0 \to \bigoplus_{j=1}^{m-2} S(-b_j) \to \bigoplus_{i=1}^{m} S(-d_i) \to \bigoplus_{i=1}^{m} S(d_i+1-d) \to \bigoplus_{j=1}^{m-2} S(b_j+1-d) \to H^1_*(E) \to 0
$$
\n(5)

(iii) *The minimal free resolution of* $H^0_*(\mathcal{I}_Z)$ *is:*

$$
0 \to \bigoplus_{j=1}^{m-2} \mathcal{O}(-b_j + d - 1 - d_1) \to \bigoplus_{i=2}^{m} \mathcal{O}(-d_i + d - 1 - d_1) \to \mathcal{I}_Z \to 0 \quad (6)
$$

Proof Let *E* be a rank two vector bundle on \mathbb{P}^2 and assume that $H^0_*(E)$ is minimally generated by *m* elements. We have $G_1 \rightarrow E \rightarrow 0$, with $G_1 = \bigoplus_{i=1}^{m} \mathcal{O}(-d_i)$. As explained before the kernel, \mathcal{G}_2 , is a direct sum of line bundles: $\mathcal{G}_2 = \bigoplus \mathcal{O}(-b_j)$. By dualizing the exact sequence: $0 \to \mathcal{G}_2 \to \mathcal{G}_1 \to E \to 0$, we get: $0 \to E^* \to \mathcal{G}_1^* \to \mathcal{G}_2^* \to 0$. Taking into account that $E^* \simeq E(-c_1)$ ($c_1 = c_1(E)$) because *E* has rank two, we get: $0 \to E \to \mathcal{G}_1^*(c_1) \to E$ $G_2^*(c_1) \rightarrow 0$. Taking cohomology this yields: $0 \rightarrow H_*^0(E) \rightarrow G_1^*(c_1) \rightarrow G_2^*(c_1) \rightarrow$ $H^1_*(E) \to 0$. This is the beginning of a minimal free resolution of $H^1_*(E)$. We conclude with [\(2\)](#page-1-0). This proves (ii) and also (a) \Rightarrow (b) in (i). By uniqueness of the minimal free resolution this also proves (b) \Rightarrow (a) in (i).

We have:

$$
\begin{array}{ccccccc}\n & & & & & & 0 & & & 0 & \\
 & & & & & & \downarrow & & & \downarrow & & \\
0 & \rightarrow \bigoplus_{j=1}^{m-2} \mathcal{O}(-b_j + d_1) \rightarrow \bigoplus_{i=2}^m \mathcal{O}(-d_i + d_1) \oplus \mathcal{O} \rightarrow & & E(d_1) & \rightarrow 0 & \\
 & & & & & \downarrow & & \downarrow & & \\
0 & \rightarrow \bigoplus_{j=1}^{m-2} \mathcal{O}(-b_j + d_1) \rightarrow & \bigoplus_{i=2}^m \mathcal{O}(-d_i + d_1) & \rightarrow \mathcal{I}_Z(-d+1 + 2d_1) \rightarrow 0 & \\
 & & & & \downarrow & & \downarrow & & \\
0 & & & & 0 & & 0 & & \\
\end{array}
$$

which proves (iii) and also (a) \Leftrightarrow (c) in (i) (observe that we have $0 \rightarrow S \stackrel{f}{\rightarrow} H_*^0(E(d_1)) \rightarrow$ $H^0_*(I_Z(2d_1-d+1))$ → 0, where, by assumption, the image of *f* yields a minimal generator of $H^0_*(E(d_1))$. \downarrow^0 (*E*(*d*₁)). □

4 Resolution of $H^0_*(\mathcal{I}_{\Sigma})$

Starting from the resolution of $H^0_*(E)$ it is also possible to get a resolution of $H^0_*(\mathcal{I}_\Sigma)$ but this resolution is not necessarily minimal:

Proposition 4 *We have the following free resolution*

$$
0 \to \bigoplus_{i=1}^{m} \mathcal{O}(d_i - 2d + 2) \to \bigoplus_{j=1}^{m-2} \mathcal{O}(b_j - 2d + 2) \oplus 3 \ldots \ldots \to \mathcal{I}_{\Sigma} \to 0 \tag{7}
$$

This resolution is minimal up to cancellation of $O(1-d)$ *terms with some* $O(d_i - 2d + 2)$ *(in this case d_i =* d *− 1).*

Proof Since $\mathcal{I}_{\Sigma}(d-1)$ is generated by global sections we can link Σ to a zero-dimensional subscheme *T* by a complete intersection of type $(d - 1, d - 1)$. From the exact sequence [\(1\)](#page-0-0), by mapping cone, we get that *T* is a section of $E(d-1)$. So we have an exact sequence: $0 \to \mathcal{O}(1-d) \to E \to \mathcal{I}_T \to 0$. From [\(2\)](#page-1-0) we get a surjection: $\bigoplus_1^m \mathcal{O}(-d_i) \to \mathcal{I}_T \to 0$. Using [\(2\)](#page-1-0) we can build a commutative diagram and by the snake lemma we get:

$$
0 \to \bigoplus_{1}^{m-2} \mathcal{O}(-b_j) \oplus \mathcal{O}(1-d) \to \bigoplus_{1}^{m} \mathcal{O}(-d_i) \to \mathcal{I}_T \to 0
$$

This resolution is minimal unless the section of $E(d-1)$ yielding *T* is a minimal generator of $H_*^0(E)$. From the above resolution, by mapping cone, we get the desired resolution of \mathcal{I}_{Σ} . Again this resolution is minimal unless one curve (resp. both curves) of the complete intersection $(d - 1, d - 1)$ linking *T* to Σ is a minimal generator (resp. both curves are minimal generators) of \mathcal{I}_T .

On the other hand, by minimality of the resolution [\(2\)](#page-1-0) no term $\mathcal{O}(b_j - 2d + 2)$ can cancel. cancel. \square

Remark 5 Cancellations can occur. Let $C = X \cup L$, where *X* is a smooth curve of degree $d-1$, $d \geq 3$, and where *L* is a line intersecting *X* transversally. Clearly Σ is a set of $d - 1$ points on the line *L*. The minimal free resolution of \mathcal{I}_{Σ} is: $0 \to \mathcal{O}(-d) \to \mathcal{O}(-1) \oplus \mathcal{O}(1-d) \to$

 $\mathcal{I}_{\Sigma} \to 0$. Comparing with [\(4\)](#page-3-0) we see that *m* = 3 and that two terms $\mathcal{O}(1 - d)$ did cancel. So we have $d_1 = d - 2$, $d_2 = d_3 = d - 1$.

See Remark [9](#page-5-1) for another example.

Corollary 6 If $m \geq 5$, Σ can't be a complete intersection.

Proof Indeed Σ is a complete intersection if and only if the minimal free resolution of \mathcal{I}_{Σ} starts with two generators. According to Proposition [4](#page-3-0) we have certainly *m* − 2 minimal generators of degrees $2d - 2 - b_i$ in the minimal free resolution of \mathcal{I}_Σ . generators of degrees $2d - 2 - b_j$ in the minimal free resolution of \mathcal{I}_{Σ} . .

Before to go on we recall a basic fact about zero-dimensional subscheme of \mathbb{P}^2 :

Lemma 7 *Let* $X \subset \mathbb{P}^2$ *be a zero-dimensional subscheme with minimal free resolution:*

$$
0 \to \bigoplus_{1}^{t} \mathcal{O}(-b_j) \stackrel{M}{\to} \bigoplus_{1}^{t+1} \mathcal{O}(-a_i) \to \mathcal{I}_X \to 0
$$
 (8)

Then $a_i \geq t$, $\forall i$.

In particular if $h^0(\mathcal{I}_X(n)) \neq 0$, then $H^0_*(\mathcal{I}_X)$ can be generated by $n + 1$ elements.

Proof This should be well known (see for example [\[10\]](#page-9-11), Corollary 3.9), but for the convenience of the reader we give a proof. We work by induction on t . The case $t = 1$ is clear. Assume the statement for $t - 1$. Let $a_1 \leq \cdots \leq a_{t+1}$. Since $\mathcal{I}_X(a_{t+1})$ is generated by global sections we can always perform a liaison of type (a_1, a_{t+1}) . By mapping-cone the linked scheme, *T*, has the following resolution:

$$
0 \to \bigoplus_{2}^{t} \mathcal{O}(a_{i}-a_{1}-a_{t+1}) \to \bigoplus_{1}^{t} \mathcal{O}(b_{j}-a_{1}-a_{t+1}) \to \mathcal{I}_{T} \to 0
$$

This resolution is minimal and by the inductive assumption we get: $a_1 + a_{t+1} - b_i \ge t - 1$, hence $a_1 \ge b_j - a_{t+1} + t - 1$. We have $b_j - a_{t+1} \ge 0$, $\forall j$ (they are the degrees of the elements of the last row of the matrix *M*). If $b_j - a_{t+1} = 0$, $\forall j$, then, by minimality, the last row of *M* is zero. By the Hilbert–Buch Theorem (see [\[10\]](#page-9-11), Theorem 3.2) the maximal minors of *M* yield a minimal set of generators of the ideal $I(X) := H^0(\mathcal{I}_X)$. If *M* has a row of zeroes, we get only one non-zero generator, this is impossible. It follows that $a_1 \geq t$. \Box

Theorem 8 (i) *With notations as in Sect.* [2](#page-1-1)*, if d* \geq 3*, then* 2*d* − 4 \geq *d_i*, $\forall i$. (ii) *Moreover, if d* > 3*, we have equality (i.e.* $d_m = 2d - 4$ *) if and only if* $\tau = 1$ *.* (iii) *We have* $d_m = d - 1$ *(hence* $d_i \leq d - 1$ *,* $\forall i$ *) or* $d_i \leq 2d - m$ *,* $\forall i$ *.*

Proof (i) This is clear if $d_i = d - 1$, so we may assume that the term $\mathcal{O}(d_i - 2d + 2)$ really appears in [\(7\)](#page-3-1) even after possible cancellations. This implies $2d - 2 - d_i \ge 2$.

(ii) We have $min\{2d - d_i - 2\} = 2d - d_m - 2$. Assume $2d - d_m - 2 = 2$. For $d > 3$, the term $O(d_m - 2d + 2) \simeq O(-2)$ really appears in the minimal free resolution of \mathcal{I}_{Σ} . This implies that there are two generators of degree one, hence Σ is a point.

Conversely if Σ is a point, let *T* be linked to Σ by a complete intersection (*d* − 1, *d* − 1). Then using the minimal free resolution of \mathcal{I}_{Σ} , by mapping-cone, we have: $0 \rightarrow 2.0(-2d +$ 3) \rightarrow 2.*O*(1 − *d*) \oplus *O*(−2*d* + 4) \rightarrow *I_T* \rightarrow 0. But using instead the resolution [\(1\)](#page-0-0) we see that *T* is a section of $E(d - 1)$, so we have $0 \rightarrow \mathcal{O}(1 - d) \rightarrow E \rightarrow \mathcal{I}_T \rightarrow 0$. Using the above resolution of \mathcal{I}_T , we get after some diagram-chasing: $0 \rightarrow 2 \mathcal{O}(-2d + 3) \rightarrow$ $3.0(1-d) \oplus 0(-2d+4) \rightarrow E \rightarrow 0$. This resolution is clearly minimal. It follows that $m = 4$ and $d_m = 2d - 4$.

(iii) Assume $d_m \neq d-1$, then, according to Proposition [4,](#page-3-0) the term $O(d_m - 2d + 2)$ appears in the minimal free resolution of \mathcal{I}_{Σ} . Let $2d - 4 - u = d_m$. We have $u \ge 0$ by (i). Since there is a relation of degree $u + 2$, there are at least two minimal generators of degree $\leq u + 1$ in the minimal free resolution of \mathcal{I}_{Σ} . So $h^0(\mathcal{I}_{\Sigma}(u + 1)) \neq 0$ and \mathcal{I}_{Σ} can be generated by *u* + 2 elements (Lemma [7\)](#page-3-1). This implies (see 7) that $m - 3 \le u + 1$, hence $d_m \le 2d - m$. $d_m \leq 2d - m$.

Remark 9 (i) Point (i) was known by different methods (see [\[4](#page-9-12)[,7\]](#page-9-9)).

- (ii) The proof of (iii) above shows the following: if $d \neq 4$ and if $d_m = 2d 5$, then $\tau \leq 4$ or $h^0(\mathcal{I}_{\Sigma}(1)) = 0$ but Σ contains a subscheme of length $\tau - 1$ lying on a line.
- (iii) If $\Sigma = \{p\}$, then for any $d \ge 3$ we can present Σ as a q.c.i. of type $(d-1, d-1, d-1)$ and, clearly, the term $3.0(1 - d)$ will cancel in [\(7\)](#page-3-1).

Example 10 We can have $m = 4$ and Σ a complete intersection, so the bound of Corollary [6](#page-4-0) is sharp.

From the point of view of the jacobian ideal to get a curve *C* with $\tau = 1$ we may argue as follows. Let P denote the blowing-up of \mathbb{P}^2 at a point. We have $\mathbb{P} = \mathbb{F}_1 := \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$ (see for ex. [\[2\]](#page-8-2)). Denote by *h*, *f* the classes of $\mathcal{O}_{\mathbb{F}_1}(1)$ and of a fiber in $Pic(\mathbb{F}_1)$. We have $h^2 = 1 = hf$, $f^2 = 0$. The exceptional divisor is $E = h - f$. For any $a \ge 1$, the linear system $|ah + 2f|$ contains a smooth irreducible curve, *C'*, such that C' . $E = 2$. The image of *C'* in \mathbb{P}^2 is a curve, *C*, of degree $a + 2$ with $\tau(C) = 1$ (for $a = 1$ *C* is a nodal cubic).

Other examples with $m = 4$ and Σ complete intersection can be obtained by taking $C = A \cup B$ where *A*, *B* are smooth curves, of degrees *a*, *b*, intersecting transversally. We have $d = a + b$, $\tau = ab$ and Σ is a complete intersection (a, b) . Assume $a \ge 2$ then, arguing as above, we get $d_1 = d - 2$, $d_2 = d_3 = d_4 = d - 1$, $b_1 = d + a - 2$, $b_2 = d + b - 2$ and the corresponding resolution of $H_*^0(E)$ is minimal.

Another consequence of Lemma [7:](#page-4-2)

Corollary 11 *With notations as in Sect.* [2](#page-1-2) *(in particular* $m \geq 3$ *, see Remark 2) we have:*

- (i) $d_1 + d_i \ge d + m 3, \forall i \ge 2$
- (ii) Z is a complete intersection if and only if $m = 3$. In that case Z is a complete intersection $of type$ $(d_1 + d_2 - d + 1, d_1 + d_3 - d + 1).$

Proof (i) This follows from [\(6\)](#page-2-0) and Lemma [7.](#page-4-2) (ii) Follows from (iii) of Lemma [3.](#page-2-1)

Remark 12 Part (i) is proved also in [\[7](#page-9-9)] and (ii) is Prop. 3.1. of [\[6](#page-9-8)]. The proofs are different.

If $m = 3$ and $d_1 + d_2 = d$, following [\[6\]](#page-9-8) one says that *C* is a *plus one generated curve*. We see that *C* is a plus one generated curve if and only if *Z* (of degree $d_3 - d_2 + 1$) is contained in a line. We recover the fact that *C* is *nearly free* (i.e. *Z* is a point) if, moreover, $d_3 = d_2$.

5 Around the extremal cases in du Plessis–Wall's theorem

We recall the bound given by du Plessis–Wall ([\[9\]](#page-9-7), see [\[11](#page-9-0)] for a different proof, valid also for q.c.i.): $(d-1)(d-1-d_1) \le \tau \le (d-1)(d-1-d_1) + d_1^2$.

Theorem 13 *With notations as in Sect.* [2](#page-1-1) *(in particular m* \geq *3).*

 \Box

- (i) *We have* $d_1 \leq d_2 \leq d_3 \leq d 1$ *.*
- (ii) *We have* $d + 1 > m$ *.*
- (iii) *We have* $(d-1)(d-1-d_1) = \tau$ *if and only if* Σ *is a complete intersection of type* $(d-1, d-1-d_1)$ *. In this case m* = 3 *and* $d_2 = d_3 = d-1$ *.*
- (iv) *Assume* $\tau = (d-1)(d-1-d_1) + 1$ *. If* $\tau > 1$ *, then m* = 4 *and* $\{d_i\} = \{d_1, d-1, d-1\}$ 1, $d - 3 + d_1$ *or* $d_1 = 1$, $m = 2$ *and E splits like* $\mathcal{O}(-1) \oplus \mathcal{O}(d - 2)$ *.*

Proof (i) Let us denote by g_1 , g_2 , g_3 the generators of degrees d_1 , d_2 , d_3 of $H_*^0(E)$. We will coonsider the *gi*'s as relations among the partials.

Consider the Koszul relations: $K_z = (f_y, -f_x, 0), K_y = (f_z, 0, -f_x), K_x =$ $(0, f_z, -f_y)$. We have:

$$
f_z K_z - f_y K_y + f_x K_x = 0 \tag{9}
$$

The relations K_x , K_y , K_z correspond to sections s_x , s_y , s_z of $E(d-1)$. It follows that $d_1 \leq$ *d* − 1. We also clearly have $d_2 \leq d - 1$. Indeed otherwise K_x, K_y, K_z are multiple of $g_1 = (u_1, v_1, w_1)$, which is impossible $(P(u_1, v_1, w_1) = (f_v, -f_x, 0)$ implies $w_1 = 0$ and going on this way we get $g_1 = 0$). If $d_3 \ge d$, these sections are combinations of g_1 , g_2 only. Now [\(9\)](#page-6-0) yields a relation involving only *g*¹ and *g*2. We claim that this relation is non trivial.

Indeed let $s_x = ag_1 + bg_2$, $s_y = a'g_1 + b'g_2$, $s_z = a''g_1 + b''g_2$. Then [\(9\)](#page-6-0) becomes: $g_1(af_x - a' f_y + a'' f_z) + g_2(b f_x - b' f_y + b'' f_z) = 0$. Assume $af_x - a' f_y + a'' f_z = 0$ and $bf_x - b' f_y + b'' f_z = 0$. Then $\alpha = (a, -a', a'')$ determines a section of $E(d - 1 - d_1)$ and $\beta = (b, -b', b'')$ a section of $E(d - 1 - d_2)$. Since $d - 1 - d_2 \le d_1 - 1$ (Corollary [11\)](#page-5-2), we get $\beta = 0$, hence $b = b' = b'' = 0$. Since $d - 1 - d_1 \le d_2 - 1$ (Corollary [11\)](#page-5-2), we see that α is a multiple of $g_1: (a, -a', a'') = P(u_1, v_1, w_1)$. It follows that $a = Pu_1$. Moreover $s_x = (0, f_z, -f_y) = ag_1 = (Pu_1^2, Pu_1v_1, Pu_1w_1)$ and it follows that $Pu_1 = 0 = a$, hence $s_x = 0$, which is impossible.

So we have a non trivial relation $Ag_1 = Bg_2$. We may assume $(A, B) = 1$ (otherwise just divide by the common factors). It follows that *B* divides every components u_1 , v_1 , w_1 of g_1 and we get a relation (u'_1, v'_1, w'_1) of degree $\lt d_1$, against the minimality of d_1 . We conclude that $d_3 \leq d-1$.

(ii) From (i) we have $2d - 2 > d_1 + d_3$. We conclude with Corollary [11.](#page-5-2)

(iii) Assume $\tau = (d-1)(d-1-d_1)$. Since $\mathcal{I}_{\Sigma}(d-1)$ is generated by global sections we can link Σ to a subscheme Γ by a complete intersection $F \cap G$ of type $(d - 1, d - 1)$. Clearly deg(Γ) = $(d-1)^2 - \tau = d_1(d-1)$. By mapping cone we have (after simplifications): $0 \to \mathcal{O} \to E(d-1) \to \mathcal{I}_{\Gamma}(d-1) \to 0$. Twisting by $1-d+d_1$ we get: $0 \to \mathcal{O}(1-d+d_1) \to 0$ $E(d_1) \rightarrow \mathcal{I}_{\Gamma}(d_1) \rightarrow 0$. Since $\tau > 0$, $d_1 < d - 1$, hence $h^0(\mathcal{I}_{\Gamma}(d_1)) \neq 0$. It follows that Γ is contained in a complete intersection $(d_1, d - 1)$. Indeed the base locus of the linear system of curves of degree $d-1$ containing Γ has dimension zero (consider $F \cap G$) and $d_1 < d - 1$. For degree reasons Γ is a complete intersection $(d_1, d - 1)$ and we have 0 → $\mathcal{O}(1 - d - d_1)$ → $\mathcal{O}(-d_1) \oplus \mathcal{O}(1 - d)$ → \mathcal{I}_{Γ} → 0. By mapping cone again: $0 \rightarrow \mathcal{O}(1-d) \oplus \mathcal{O}(d_1 - 2d + 2) \rightarrow \mathcal{O}(d_1 + 1-d) \oplus 2.\mathcal{O}(1-d) \rightarrow \mathcal{I}_{\Sigma} \rightarrow 0$. We claim that we can cancel the repeated term $\mathcal{O}(1 - d)$. Indeed, since dim($F \cap G$) = 0, we may assume that *F* or *G* is not a multiple of *S*, the curve of degree d_1 containing Γ , hence *F* or *G* is a minimal generator of $H^0_*(\mathcal{I}_{\Gamma})$. It follows that Σ is a complete intersection. We conclude with Proposition [4.](#page-3-0)

Conversely if Σ is a complete intersection ($d-1$, $d-1-d_1$), from Proposition [4](#page-3-0) we get $m = 3$ and $d_2 = d_3 = d - 1$.

(iv) We argue as above. The assumption $\tau > 1$ makes sure that $h^0(\mathcal{I}_{\Gamma}(d_1)) \neq 0$. This time we find that Γ is linked to one point by a complete intersection $(d-1, d_1)$. By mapping cone we get: $0 \rightarrow 2 \cdot \mathcal{O}(-d - d_1 + 2) \rightarrow \mathcal{O}(-d - d_1 + 3) \oplus \mathcal{O}(-d_1) \oplus \mathcal{O}(-d + 1) \rightarrow \mathcal{I}_{\Gamma} \rightarrow 0.$ This resolution is minimal except if $d_1 = 1$ in which case we have: $0 \rightarrow \mathcal{O}(1 - d) \rightarrow$ $O(2-d) \oplus O(-1) \rightarrow \mathcal{I}_{\Gamma} \rightarrow 0$. As we have seen above $\Gamma = (s)_0$ where $s \in H^0(E(d-1))$. If s is a minimal generator of $H_*^0(E)$, then $H_*^0(\mathcal{I}_Z)$ has $m-1$ minimal generators, otherwise it has *m* minimal generators. So if $d_1 > 1$, $3 \le m \le 4$. By mapping cone we go back to Σ . If $d_1 > 1$ we get: 0 → *O*(−*d* +*d*¹ −1)⊕*O*(−2*d* +2+*d*1) → 2.*O*(−*d* +*d*1)⊕*O*(1−*d*) → *I*- → 0. From Proposition [4](#page-3-0) we conclude that $m = 4$ and $\{d_i\} = \{d_1, d - 1, d - 1, d - 3 + d_1\}$. If $d_1 = 1$, by mapping cone we get $0 \to \mathcal{O}(-2d + 3) \oplus \mathcal{O}(-d) \to 3.\mathcal{O}(1-d) \to \mathcal{I}_{\Sigma} \to 0.$ This resolution is minimal. Hence $m = 2$ and *E* splits like $O(-d + 2) \oplus O(-1)$. □

Remark 14 See [\[6](#page-9-8)] for a different proof of part (i). Point (ii) is proved in [\[7](#page-9-9)].

Since the minimal free resolution of sets of points of low degree are known (see for example [\[12\]](#page-9-13) for a list), the analysis above can be extended to the cases $\tau = (d-1)(d-1-d_1) + x$, for small *x*.

It is easy to show that if τ reaches the upper-bound in the first part of du Plessis–Wall's Theorem, then *E* splits (because $c_2(E(d_1)) = 0$ and $h^0(E(d_1)) \neq 0$) i.e. Σ is an almost complete intersection (or *C* is a *free* curve). However there is a second part in du Plessis– Wall's theorem: under the assumption $2d_1+1 > d$ (which amounts to say that *E* is stable), we have a better upper-bound: $\tau \le \tau_+ := (d-1)(d-1-d_1)+d_1^2 - \frac{1}{2}(2d_1+1-d)(2d_1+2-d)$. Notice that this holds true also for q.c.i. [\[11](#page-9-0)].

In [\[7\]](#page-9-9) Thm. 3.1, the authors prove that this bound is reached if and only if we have:

$$
0 \to (m-2)\mathcal{O}(-d_1 - 1) \to m\mathcal{O}(-d_1) \to E \to 0
$$
 (10)

with $m = 2d_1 - d + 3$.

This can be proved as follows. From the exact sequence [\(3\)](#page-2-2) we have $h^0(\mathcal{I}_Z(2d_1 - d)) = 0$ (observe that $Z \neq \emptyset$ because $2r + 1 > d$). It follows that deg($Z \geq h^0(\mathcal{O}(2d_1 - d))$. The assumption $\tau = \tau_+$ implies [use [\(4\)](#page-2-3)] that we have equality: deg(*Z*) = $h^0(\mathcal{O}(2d_1 - d))$. This implies $h^1(\mathcal{I}_Z(2d_1 - d)) = 0$. It follows (Castelnuovo–Mumford's lemma or numerical character) that the minimal free resolution of \mathcal{I}_z is: $0 \to s$. $\mathcal{O}(-s-1) \to (s+1)$. $\mathcal{O}(-s) \to$ $\mathcal{I}_Z \rightarrow 0$, with $s = 2d_1 - d + 1$. We conclude with Lemma [3.](#page-2-1)

Conversely if we have [\(10\)](#page-7-1), by Lemma 3 we get that \mathcal{I}_Z has a linear resolution and $deg(Z) = h^0(\mathcal{O}(2d_1 - d))$. This implies $\tau = \tau_+$.

Then the authors ask ([\[7](#page-9-9)] Conjecture 1.2) if for any integer $d \geq 3$ and for any integer *r*, $d/2 \le r \le d-1$, there exists Σ with $d_1 = r$ and $\tau = \tau_+$. I don't know the answer in general but, in the framework of q.c.i., the answer is yes:

Proposition 15 *With notations as above, for every d* \geq 3 *and for every integer r, d*/2 \leq *r* \leq $d-1$, there exists a q.c.i. subscheme $\Sigma \subset \mathbb{P}^2$, of degree τ_+ , with $d_1 = r$

Proof We recall that a general set of $s(s + 1)/2$ points has a linear resolution:

$$
0 \to s.\mathcal{O}(-s-1) \to (s+1).\mathcal{O}(-s) \to \mathcal{I}_Z \to 0 \tag{11}
$$

Actually to have such a resolution is equivalent to have $h^0(\mathcal{I}_Z(s-1)) = 0$. Since the Cayley–Bachararch condition CB($s - 3$) (see for instance [\[3\]](#page-8-3)) is obviously satisfied we may associate a rank two vector bundle to $\mathcal{I}_Z(s)$: $0 \to \mathcal{O} \to \mathcal{E} \to \mathcal{I}_Z(s) \to 0$. We have $c_1(\mathcal{E}) = s$ and $c_2(\mathcal{E}) = s(s+1)/2 = \deg(Z)$. Since $h^1(\mathcal{O}) = 0$ and $\mathcal{I}_Z(s)$ and \mathcal{O} are globally generated, $\mathcal E$ also is globally generated. For $a \ge 0$ let us consider a section of $\mathcal E(a)$: $0 \to \mathcal{O} \to \mathcal{E}(a) \to \mathcal{I}_{\Gamma}(2a+s) \to 0$. For $k \geq a+s$, $\mathcal{I}_{\Gamma}(k)$ is globally generated and we can link Γ to Σ by a complete intersection of type (*k*, *k*). By mapping cone we get, if $k = 2a + s$:

$$
0 \to \mathcal{E}(-3a - 2s) \to 3.\mathcal{O}(-2a - s) \to \mathcal{I}_{\Sigma} \to 0 \tag{12}
$$

 \mathcal{L} Springer

We have $c_2(\mathcal{E}(a)) = as + s(s + 1)/2 + a^2 = \deg(\Gamma)$. It follows that $\tau := \deg(\Sigma) =$ $3a^2 + 3as + s(s-1)/2$. Since $d_1 = a + s$ ($E := \mathcal{E}(-a-s)$), it is easy to check that $\tau = \tau_+$. Let *d* be an integer. Assume *d* odd, $d = 2\delta + 1$. For $1 \le \rho \le \delta$, set $a = \delta - \rho$, $s = 2\rho$,

 $d_1 = a + s$ and $d = 2a + s + 1$. Then the construction above yields Σ of degree τ_+ , q.c.i. of three curves of degree $d - 1$, with $d_1 = a + s$. We have $\delta + 1 \leq d_1 \leq 2\delta$.

If $d = 2\delta$, for $0 \le \rho \le \delta - 1$, set $a = \delta - \rho - 1$ and $s = 2\rho + 1$ $(d_1 = a + s)$.

Remark 16 It is not clear at all that there are examples with Σ a jacobian set. For some partial results see [\[7\]](#page-9-9), Section 4.

More generally to characterize the zero-dimensional subschemes that are jacobian sets seems quite a challenge.

It is possible to give a little improvement, namely:

Proposition 17 *Assume* $2d_1 + 1 > d$ *and* $\tau = \tau_+ - 1$ *. Set s* := $2d_1 - d$ *. Then we have two possibilities:*

(a) *The minimal free resolution of* I_Z *is:*

$$
0 \to \mathcal{O}(-s-2) \oplus (s-2)\mathcal{O}(-s-1) \to s\mathcal{O}(-s) \to \mathcal{I}_Z \to 0
$$
 (13)

In this case m = $2d_1 - d + 1$ *and* $d_i = d_1$, $\forall i$.

(b) *The minimal free resolution of* I_Z *is:*

$$
0 \to \mathcal{O}(-s-2) \oplus (s-1)\mathcal{O}(-s-1) \to \mathcal{O}(-s-1) \oplus s\mathcal{O}(-s) \to \mathcal{I}_Z \to 0 \quad (14)
$$

In this case m = $2d_1 - d + 2$ *and* $d_i = d_1, 2 \le i \le m, d_m = d_1 + 1$.

Proof Arguing exactly as above this time we have deg $Z = h^0(\mathcal{O}(s-1)) + 1, h^0(\mathcal{I}_Z(s-1)) =$ 0, hence $h^1(\mathcal{I}_Z(s-1)) = 1$. Let $0 \to \bigoplus^{t} \mathcal{O}(-\beta_i) \to \bigoplus^{t+1} \mathcal{O}(-\alpha_i) \to \mathcal{I}_Z \to 0$ denote the minimal free resolution of I_Z . Since $\beta^+ > \alpha^+$ ($\beta^+ = \max{\{\beta_j\}}$ and the same for α^+) and since $\beta^+ - 3 = \max{k | h^1(\mathcal{I}_Z(k)) \neq 0}$, we see that $\beta^+ = s + 2$ (with coefficient equal to 1 because $h^1(\mathcal{I}_Z(s-1)) = 1$). It follows that $H^0_*(\mathcal{I}_Z)$ is generated in degrees $\leq s + 1$. Of course we have *s* minimal generators of degree *s* and in general nothing else (it is easy to produce examples for any *s*). We conclude that in this case the resolution is like in (a).

What about generators of degree $s + 1$? If there at least two such generators, then the matrix of the resolution has two rows of the form $(L, 0, \ldots, 0)$. By erasing another row, we get a maximal minor which is zero, but this is impossible (the maximal minors are the generators). So there is at most one generator of degree $s + 1$. In this case the resolution is like in (b). Examples exist for any *s*: take $s + 1$ points on a line and the remaining ones in general position. general position.

References

- 1. Bartolo, E.A., Gorrochategui, L., Luengo, I., Melle-Hernandez, A.: On some conjectures about free and nearly free divisors. In: Decker, W., Pfister, G., Schulze, M. (eds) Singularities and Computer Algebra, Festschrift for Gert-Martin Greuel on the Occasion of his 70th Birthday, pp. 1–19. Springer, Berlin (2017)
- 2. Beauville, A.: Surfaces Algébriques Complexes, Astérisque, vol. 54. Société Mathématique de France, Paris (1978)
- 3. Catanese, F.: Footnotes to a Theorem of I. Reider, Lecture Notes in Mathematics, vol. 1417, pp. 67–74. Springer, Berlin (1990)
- 4. Choudary, A.D.R., Dimca, A.: Koszul complexes and hypersurface singularities. Proc. Am. Math. Soc. **121**, 1009–1016 (1994)
- 5. Dimca, A., Sernesi, E.: Syzygies and logarithmic vector fields along plane curves. J. de l'École Polytechnique-Mathématiques **1**, 247–267 (2014)
- 6. Dimca, A., Sticlaru, G.: Plane curves with three syzygies, plus-one generated curves, and nearly cuspidal curves. [arXiv:1810.11766v7](http://arxiv.org/abs/1810.11766v7) [math.AG] (2019). 28 Jan
- 7. Dimca, A., Sticlaru, G.: Jacobian syzygies and plane curves with maximal global Tjurina number. [arXiv:1901.05915v3](http://arxiv.org/abs/1901.05915v3) [math.AG] (2019). 11 Feb
- 8. Dolgachev, I., Kapranov, M.: Arrangements of hyperplanes and vector bundles on P*n*. Duke Math. J. **71**, 633–664 (1993)
- 9. du Plessis, A.A., Wall, C.T.C.: Application of the theory of the discriminant to highly singular plane curves. Math. Proc. Camb. Philos. Soc. **126**, 259–266 (1999)
- 10. Eisenbud, D.: The Geometry of Syzygies, GTM 229. Springer, Berlin (2005)
- 11. Ellia, Ph.: Quasi complete intersections and global Tjurina number of plane curves. J. Pure Appl. Algebra (2019). <https://doi.org/10.1016/j.jpaa.2019.05.014>
- 12. Ellia, Ph.: On the cohomology of rank two vector bundles on \mathbb{P}^2 and a theorem of Chiantini and Valabrega. [arXiv:1901.00807v1](http://arxiv.org/abs/1901.00807v1) [math.AG] (2019). 3 Jan
- 13. Marchesi, S., Vallés, J.: Nearly free curves and arrangements: a vector bundle point of view. [arXiv:1712.0486v2](http://arxiv.org/abs/1712.0486v2) [math.AG] (2018). 11 Oct 2018
- 14. Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Univ. Tokyo **27**, 265–291 (1980)
- 15. Sernesi, E.: The local cohomology of the jacobian ring. Doc. Math. **19**, 541–563 (2014)
- 16. Simis, A., Toh˘aneanu, S.: Homology of homogeneous divisors. Isr. J. Math. **200**, 449–487 (2014)
- 17. Yoshinaga, M.: Freeness of hyperplane arrangement and related topics. Ann. Fac. Sci. Toulouse **23**, 483–512 (2014)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.