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Abstract
In this paper, we propose a new modification of the Gradient Projection Algorithm and the
Forward–Backward Algorithm. Using our proposed algorithms, we establish two strong con-
vergence theorems for solving convexminimization problem,monotone variational inclusion
problem and fixed point problem for demicontractive mappings in a real Hilbert space. Fur-
thermore, we apply our results to solve split feasibility and optimal control problems. We
also give two numerical examples of our algorithm in real Euclidean space of dimension 4
and in an infinite dimensional Hilbert space, to show the efficiency and advantage of our
results.

Keywords Minimization problem · Monotone inclusion problem · Fixed point problem ·
Inverse strongly monotone · Maximal monotone operators

Mathematics Subject Classification 47H06 · 47H09 · 47J05 · 47J25

1 Introduction

In this paper, we assume that H is a real Hilbert space with inner product 〈., .〉 and norm ‖.‖.
Let C be a nonempty, closed and convex subset of H . A point x ∈ C is said to be a fixed

point of the mapping T : C → C , if T x = x . We denote by F(T ) the fixed points set of T .

Definition 1.1 A mapping T : C → C is said to be
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(i) contractive, if there exists k ∈ (0, 1) such that

||T x − T y|| ≤ k||x − y|| ∀x, y ∈ C,

if k = 1, then T is said to be nonexpansive,
(ii) quasi-nonexpansive, if

‖T x − T p‖ ≤ ‖x − p‖ ∀x ∈ C, p ∈ F(T ),

(iii) demicontractive, (or ψ-demicontractive) if there exists 0 < ψ < 1 such that

‖T x − T p‖2 ≤ ‖x − p‖2 + ψ‖x − T x‖2 ∀x ∈ C, p ∈ F(T ),

(iv) monotone, if

〈x − y, T x − T y〉 ≥ 0 ∀ x, y ∈ C,

(v) β-strongly monotone, if there exists β > 0 such that

〈x − y, T x − T y〉 ≥ β‖x − y‖2 ∀ x, y ∈ C,

(vi) ν-inverse strongly monotone (for short ν-ism), if there exists ν > 0 such that

〈x − y, T x − T y〉 ≥ ν‖T x − T y‖2 ∀ x, y ∈ C .

Definition 1.2 A mapping T : H → H is said to be firmly nonexpansive if and only if
2T − I is nonexpansive or equivalently

〈x − y, T x − T y〉 ≥ ‖T x − T y‖2 ∀x, y ∈ H .

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T = 1

2
(I + S),

where S : H → H is nonexpansive. In this connection, see [1, Proposition 11.2].
It can easily be seen that if T is nonexpansive, then I − T is monotone where I is an

identity operator. Inverse strong monotone (also referred to as co-coercive) operators have
beenwidely used to solve practical problem invariousfields, for instance, in traffic assignment
problems (see, for example [2,3] and the references therein).

Remark 1.3 The class of demicontractive mappings is of central importance in optimization
since it contains many common types of operators arising in optimization (see [4–7] and the
references therein). More precisely, the class of demicontractive mappings contains the class
of quasi-nonexpansive mappings (which contains the class of nonexpansive mappings with
nonempty fixed point sets) and is more desirable for fixed point methods in image recovery
(see [5,7–9]). More so, the class of demicontractive mappings contains the class of firmly
nonexpansive mappings which in turn contains the class of metric resolvent and projections,
known as important tools for solving optimization problems (see [6,10,11] and the references
therein).

Let x ∈ H , there exists a unique point PCx ∈ C such that

‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C,

where PC is called the metric projection of H onto C . We know that PC is a nonexpansive
mapping from H onto C . It is also known that PC satisfies

〈x − y, PCx − PC y〉 ≥ ‖PCx − PC y‖2 ∀x, y ∈ H . (1.1)
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Furthermore, PCx is characterized by the properties PCx ∈ C and

〈x − PCx, PCx − y〉 ≥ 0 ∀y ∈ C . (1.2)

In a real Hilbert space, metric projections are examples of firmly nonexpansive mappings.
For more information on metric projections, see [1] and the references therein.

Definition 1.4 Amapping T : H → H is said to be an averaged mapping, if it can be written
as the average of the identity mapping I and a nonexpansive mapping; that is

T = (1 − α)I + αS, (1.3)

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when (1.3) holds, we
say that T is α-averaged. Thus, firmly nonexpansive mappings (in particular, projections) are
1
2 -averaged mappings. The term “averaged mapping” was coined by Baillon–Bruck–Reich
[12].

Consider the following constrained convex minimization problem:

min
x∈Cg(x), (1.4)

where C is a closed convex subset of H and g : C → R is a real-valued convex function. We
say that theminimization problem (1.4) is consistent, if it has a solution. In the sequel,we shall
denote the set of solutions of problem (1.4) by ϒ . If g is Fréchet differentiable functional,
then the Gradient-Projection Algorithm (GPA) generates a sequence {xn} according to the
recursive formula

xn+1 = ProjC (I − λ∇g)(xn), n ≥ 0; (1.5)

or more generally
xn+1 = ProjC (I − λn∇g)(xn), n ≥ 0; (1.6)

where in both (1.5) and (1.6), the initial guess x1 is taken from C arbitrarily, and the param-
eters, λ and λn , are positive real numbers. The convergence of algorithms (1.5) and (1.6)
depends on the behaviour of the gradient ∇g. As a matter of fact, it is known that if ∇g is
α-strongly monotone and L-Lipschizian, that is,

〈∇g(x) − ∇g(y), x − y〉 ≥ α‖x − y‖2 ∀x, y ∈ C (1.7)

and
‖∇g(x) − ∇g(y)‖ ≤ L‖x − y‖ ∀x, y ∈ C, (1.8)

then for 0 < γ < 2α
L2 , the operator

T := PC (I − λ∇ f ) (1.9)

is a contraction. Hence, the sequence {xn} defined by the algorithm (1.5) converges in norm
to the unique solution of the minimization problem (1.4). More generally, if the sequence
{λn} is chosen to satisfy the property

0 < lim inf λn ≤ lim sup λn <
2α

L2 , (1.10)

then the sequence {xn} defined by the algorithm (1.6) converges in norm to the unique
minimizer of (1.4). However, if the gradient ∇g fails to be strongly monotone, then the
operator T defined by (1.9) would fail to be contractive. Consequently, the sequence {xn}
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generated by algorithm (1.6) may fail to converge strongly (see [13]). If ∇g is Lipschizian,
then algorithm (1.5) and (1.6) can still converge in theweak topologyunder certain conditions.

Xu [13] gave an alternative operator-oriented approach to algorithm (1.6); namely an aver-
age mapping approach. He gave his averaged mapping approach to the gradient-projection
algorithm (1.6) and the relaxed gradient-projection algorithm. Moreover, he constructed a
counter example which shows that algorithm (1.5) does not converge in norm in an infinite-
dimensional space, and he also presented two modification of gradient-projection algorithm
which are shown to have strong convergence. Furthermore, he regularized the minimization
problem (1.4) to devise an iterative scheme that generates a sequence converging in norm to
the minimum-norm solution of (1.4) in the consistent case.

Recently, Cai and Shehu [14] introduced the following iterative algorithm for finding a
fixed point of a strictly pseudocontractive mapping which is also a solution of a constrained
convexminimization problem for a convex and continuously Fréchet differentiable functional
g in a real Hilbert space and prove the strong convergence of the sequence generated by their
scheme in a real Hilbert space.

Theorem 1.5 [14] Let C be a nonempty, closed and convex subset of real Hilbert space H .

Suppose that the minimization problem (1.4) is consistent and let ϒ denote its solution set.
Assume that the gradient ∇g is L-Lipschitzian with constant L > 0. Let T be a k-strictly
pseudo-contractive mapping on C into itself such that F(T )∩	 �= ∅. Let {tn} be a sequence
in (0, 1), {αn} in (0, (1 − k)(1 − tn)) ⊂ (0, 1), and {λn} a sequence in (0, 2

L ) satisfying the
following conditions:

(i) lim
n→∞tn = 0;

(ii)
∑∞

n=1 tn = ∞;
(iii) 0 < lim inf

n→∞ αn ≤ lim sup
n→∞

αn < 1 − k;
(iv) 0 < lim inf

n→∞ λn ≤ lim sup
n→∞

λn < 2
L .

Then the sequences {un} and {xn} generated for fixed u ∈ C by u1, x1 ∈ C
{
xn = PC (un − λn∇ f (un)),

un+1 = (1 − αn)xn + αnT xn − tn(xn − u), n ≥ 1,
(1.11)

converges strongly to x∗ ∈ F(T ) ∩ 	, where x∗ = PF(T )∩ϒu.

Remark 1.6 Having searched the literature, we observe that, to prove strong convergence
results for the GPA problem and other related optimization problems, the CQ (modified
Haugazeau) algorithms are often used. In some other cases (where algorithms other than the
CQ algorithms are used), some compactness conditions are assumed on the operators under
consideration, or the proof maybe divided into two cases which may result to a very long
proof.

Motivated by the above works and Remark 1.6, we propose a new modification of the GPA
and the FBA by adopting the idea of algorithm (1.11). Using our proposed algorithms, we
establish two strong convergence theorems for solving convex minimization problem, mono-
tone variational inclusion problem and fixed point problem for demicontractive mappings in
a real Hilbert space. Furthermore, we apply our results to solve split feasibility and optimal
control problems. We also give two numerical examples of our algorithm in real Euclidean
space of dimension 4 and in an infinite dimensional Hilbert space, to show the efficiency and
advantage of our results.
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2 Preliminaries

Lemma 2.1 [15,16] Let H be a real Hilbert space. Then the following hold:

(i) ||x + y||2 ≤ ||y||2 + 2〈x, x + y〉 for all x, y ∈ H .

(ii) ||αx + (1 − α)y||2 = α||x ||2 + (1 − α)||y||2 − α(1 − α)||x − y||2 for all x, y ∈ H
and α ∈ (0, 1).

(iii) ||x + y||2 = ||x ||2 + 2〈x, y〉 + ||y||2.
Lemma 2.2 ([17]) Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let T : C → C be a nonexpansive mapping. Then I − T is demiclosed at 0, (i.e., if
xn⇀x ∈ C and xn − T xn → 0, then x = T x).

Lemma 2.3 [13,18] Let C be a nonempty subset of H. Then, the following statements hold:

i If T : C → H is α-averaged, then for any z ∈ Fix(T ) and for all x ∈ C,

‖T x − z‖2 ≤ ‖x − z‖2 − 1 − α

α
‖T x − x‖2.

ii If T1 : H → H and T2 : H → H are α1 and α2-averaged respectively. Then T1T2 is
(α1 + α2 − α1α2)-averaged.

Lemma 2.4 [19] Let {an} be a sequence of non-negative number such that

an+1 ≤ (1 − αn)an + αnrn,

where {rn} is a sequence of real numbers bounded from above and {αn} ⊂ [0, 1] satisfies∑
αn = ∞. Then

lim sup
n→∞

an ≤ lim sup
n→∞

rn .

3 Main Results

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real Hilbert space H and
f be a contraction mapping on C with coefficient k ∈ (0, 1). Let T : C → C be a ψ-
demicontractive mapping with ψ ∈ [0, 1). Suppose that the minimization problem (1.4) is
consistent and ϒ denotes its solution set such that � := F(T ) ∩ ϒ �= ∅. Assume that the
gradient ∇g is L-Lipschitzian with constant L > 0. Let the sequence {xn} be generated for
fixed x1 ∈ C by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1 = (1 − βn)yn + βnzn;
zn = (1 − tn)yn + tnTκ yn;
yn = PC (I − λn∇g)wn;
wn = (1 − αn)xn + αn f (xn), n ≥ 1;

(3.1)

where Tκ = κ I + (1− κ)T , κ ∈ [ψ, 1) such that T is demiclosed at 0, {αn}, {tn} and {βn}
are sequences in (0, 1) and {λn} is a sequence in (0, 2

L ) satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2

L ;
(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iv) 0 < lim infn→∞ tn ≤ lim supn→∞ tn < 1.
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Then {xn} converges strongly to z ∈ �, where z = P� f (z).

Proof It is well known that z ∈ C solves the minimization problem (1.4) if and only if z
solves the fixed point equation:

z = PC (I − λ∇g)z,

where λ > 0 is any fixed positive number. We may assume that (due to condition (ii))

0 < a ≤ λn ≤ b <
2

L
, n ≥ 1,

where a and b are constant. Furthermore it is well known that the gradient ∇g is 1
L -ism,

(I −λn∇g) is nonexpansive and that PC (I −λ∇g) is 2+λL
4 -averaged for 0 < λ < 2

L . Hence,

we find that for each n, PC (I − λn∇g) is 2+λn L
4 -averaged. Therefore we can write

PC (I − λn∇g) = 2 − λL

4
+ 2 + λn L

4
Sn = (1 − μn)I + μn Sn, (3.2)

where Sn is nonexpansive for each n ≥ 1, μn = 2+λn L
4 ∈ [a1, b1] ⊂ (0, 1), a1 = 2+aL

4 and
b1 = 2+bL

4 < 1. Let yn = PC (I − λn∇g)wn . Then by (3.2), we obtain

yn = PC (I − λn∇g)wn = (1 − μn)wn + μn Snwn . (3.3)

Firstly, we show that if T is ψ- demicontractive, Tκ is quasi-nonexpansive. Let x ∈ C, y ∈
F(T ) and 0 < ψ < κ ≤ 1, then we have

‖Tκ x − y‖2 ≤ κ‖x − y‖2 + (1 − κ)‖T x − y‖2 − κ(1 − κ)‖x − T x‖2
≤ κ‖x − y‖2 + (1 − κ)

[‖x − y‖2 + ψ‖x − T x‖2] − κ(1 − κ)‖x − T x‖2
= ‖x − y‖2 + (1 − κ)(ψ − κ)‖x − T x‖2
≤ ‖x − y‖2.

Hence, Tκ is quasi-nonexpansive. Furthermore, we know that F(Tκ ) = F(T ).

Next, we show that {xn} is bounded. Let z ∈ �, from (3.3), we obtain

‖zn − z‖2 = ‖(1 − μn)wn + μn Snwn − z‖2
= (1 − μn)‖wn − z‖2 + μn‖Snwn − z‖2 − μn(1 − μn)‖wn − Snwn‖2
≤ ‖wn − z‖2 − μn(1 − μn)‖wn − Snwn‖2. (3.4)

Since Tκ is quasi-nonexpansive, we obtain from (3.1) that

‖yn − z‖2 = ‖(1 − tn)yn + tnTκ yn − z‖2
≤ (1 − tn)‖yn − z‖2 + tn‖Tκ yn − z‖2 − tn(1 − tn)‖yn − Tκ yn‖2
≤ (1 − tn)‖yn − z‖2 + tn‖yn − z‖2 − tn(1 − tn)‖yn − Tκ yn‖2
≤ ‖yn − z‖2. (3.5)

Now, we obtain from (3.1) and Lemma 2.1 (ii) that

‖xn+1 − z‖2 = ‖(1 − βn)yn + βnzn − z‖2
= (1 − βn)‖yn − z‖2 + ‖zn − z‖2 − βn(1 − βn)‖yn − zn‖2. (3.6)

But from (3.1), we have

zn − yn = 1

βn
(xn+1 − yn). (3.7)
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Similarly, we have from (3.3) that

Snwn − wn = 1

μn
(yn − wn). (3.8)

Therefore, from (3.6), (3.7) and (3.8), we obtain

‖xn+1 − z‖2 ≤ ‖yn − z‖2 − 1

βn
(1 − βn)‖xn+1 − yn‖2

≤ ‖wn − z‖2 − 1

μn
(1 − μn)‖yn − wn‖2 − 1

βn
(1 − βn)‖xn+1 − yn‖2.

(3.9)

Using (3.1) and (3.9), we get

‖xn+1 − z‖ ≤ ‖wn − z‖
= ‖αn( f (xn) − f (z)) + αn( f (zn) − z) + (1 − αn)(xn − z)‖
≤ αnk‖xn − z‖ + αn‖ f (z) − z‖ + (1 − αn)(xn − z)‖
= (1 − αn(1 − k))‖xn − z‖ + αn‖ f (z) − z‖
≤ max

{

‖xn − z‖, ‖ f (z) − z‖
1 − k

}

...

≤ max

{

‖x1 − z‖, ‖ f (z) − z‖
1 − k

}

,

which shows that {xn} is bounded and consequently, {wn}, {yn} and {zn}.
Furthermore, we have from (3.7) that

‖zn − yn‖2 =
∥
∥
∥
∥
1

βn
(xn+1 − yn)

∥
∥
∥
∥

2

= 1

β2
n
‖xn+1 − yn‖2

= αn

βn

(‖xn+1 − yn‖2
αnβn

)

. (3.10)

Also, from (3.8), we obtain

‖wn − Snwn‖2 = αn

μn

(‖yn − wn‖2
αnμn

)

. (3.11)

Using Lemma 2.1 and (3.1) (noting that αn ∈ (0, 1)), we have

‖wn − z‖2 = ‖αn( f (xn) − z) + (1 − αn)(xn − z)‖2
≤ α2

n‖ f (xn) − z‖2 + 2αn(1 − αn)〈 f (xn) − z, xn − z〉 + (1 − αn)
2‖xn − z‖2

≤ (1 − αn)
2‖xn − z‖2 + α2

n‖ f (xn) − z‖2 + 2kαn(1 − αn)‖xn − z‖2
+ 2αn(1 − αn)〈 f (z) − z, xn − z〉

≤ (1 − 2αn(1 − k))||xn − z||2 + α2
n ||xn − z||2

+ 2αn(1 − αn)〈 f (z) − z, xn − z)〉 + α2
n || f (xn) − z||2. (3.12)
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Putting (3.12) in (3.9), we obtain

‖xn+1 − z‖2 ≤ (1 − 2αn(1 − k))||xn − z||2 + α2
n ||xn − z||2

+ 2αn(1 − αn)〈 f (z) − z, xn − z)〉 + α2
n || f (xn) − z||2

− 1

μn
(1 − μn)‖yn − wn‖2 − 1

βn
(1 − βn)‖xn+1 − yn‖2

= (1 − 2αn(1 − k))||xn − z||2

− 2αn(1 − k)

(

− αn

2(1 − k)

[||xn − z||2 + || f (xn) − z||2]

+ (1 − αn)

(1 − k)
〈 f (z) − z, z − xn〉 + 1

2αnμn(1 − k)
(1 − μn)‖yn − wn‖2

+ 1

2αnβn(1 − k)
(1 − βn)‖xn+1 − yn‖2

)

. (3.13)

Let

	n := − αn

2(1 − k)

[||xn − z||2 + || f (xn) − z||2] + (1 − αn)

(1 − k)
〈 f (z) − z, z − xn〉

+ 1

2αnμn(1 − k)
(1 − μn)‖yn − wn‖2 + 1

2αnβn(1 − k)
(1 − βn)‖xn+1 − yn‖2.

(3.14)

Then, (3.13) becomes

‖xn+1 − z‖2 ≤ (1 − 2αn(1 − k))‖xn − z‖2 − 2αn(1 − k)	n . (3.15)

Since {xn} is bounded an so it is bounded below. Hence, 	n is bounded below. Furthermore,
using Lemma 2.4 and condition (i) of Theorem 3.1 in (3.15), we obtain

lim sup
n→∞

‖xn − z‖2 ≤ lim sup
n→∞

(−	n)

= − lim inf
n→∞ 	n . (3.16)

Therefore, lim infn→∞ 	n is a finite. We have from (3.14) that

lim inf
n→∞ 	n = lim inf

n→∞

(

(1 − k)−1〈 f (z) − z, z − xn〉 + (1 − k)−1

2αnβn
(1 − βn)‖xn+1 − yn‖2

+ (1 − k)−1

2αnμn
(1 − μn)‖yn − wn‖2

)

.

Since {xn} is bounded, there exists a subsequence {xnk } of {xn} such that xnk⇀q ∈ H and

lim inf
n→∞ 	n = lim

k→∞

(

(1 − k)−1〈 f (z) − z, z − xnk 〉 + (1 − k)−1

2αnkβnk
(1 − βnk )‖xnk+1 − ynk‖2

+ (1 − k)−1

2αnkμnk
(1 − μnk )‖ynk − wnk‖2

)

. (3.17)

Since {xn} is bounded and lim inf
n→∞ 	n is finite, we have that

{
1

αnk βnk
(1 − βnk )‖xnk+1 − ynk‖2

}

and
{

1
αnk μnk

(1 − μnk )‖ynk − wnk‖2
}
are bounded. Also, by assumption (iii), we have that

there exists b ∈ (0, 1) such that βn ≤ b < 1 and this implies that 1
αnk βnk

(1 − βnk ) ≥
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1
αnk βnk

(1 − b) > 0 and so we have that
{

1
αnk βnk

‖xnk+1 − ynk‖2
}
is bounded. Similarly, we

obtain that 1
αnk μnk

(1 − μnk ) ≥ 1
αnk μnk

(1 − b1) > 0 and
{

1
αnk μnk

‖ynk − wnk‖2
}
is bounded.

Observe from assumptions (i) and (iii) that there exists a ∈ (0, 1) such that

0 <
αnk

βnk
≤ αnk

a
→ 0, k → ∞.

This implies that
αnk
βnk

→ 0, k → ∞.Therefore,we obtain from (3.10) and
αnk
βnk

→ 0, k → ∞
that

lim
k→∞ ‖znk − ynk‖ = 0. (3.18)

From (3.1) and (3.18), we obtain

‖Tκ ynk − ynk‖ = 1

tn
‖ynk − znk‖ → 0, k → ∞. (3.19)

Following the same argument as in above, we obtain that

αnk

μnk
≤ αnk

a1
→ 0, k → ∞

and that

lim
k→∞ ‖Snkwnk − wnk‖ = 0. (3.20)

From (3.7) and (3.18), we have that

‖xnk+1 − ynk‖ = βnk‖znk − ynk‖ → 0, k → ∞.

Furthermore, from (3.1) and assumption (i), we obtain

‖wnk − xnk‖ = αnk‖ f (xnk ) − xnk‖ → 0, k → ∞. (3.21)

Also, from (3.4) and (3.20), we obtain

‖ynk − wnk‖ = ‖PC (I − λ∇g)wnk − wnk‖ = μnk‖Snkwnk − wnk‖ → 0, k → ∞.

(3.22)

So, we get that

‖ynk − xnk‖ ≤ ‖ynk − wnk‖ + ‖wnk − xnk‖ → 0, k → ∞.

Hence,

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − ynk‖ + ‖ynk − xnk‖ → 0, k → ∞.

Observe thatwnk⇀x∗ ∈ C, k → ∞ sincewnk −xnk → 0, k → ∞ and xnk⇀x∗ ∈ C, k →
∞. We may assume that λnk⇀λ; then we have 0 < λ < 2

L . Set S := PC (I − λ∇g), then S
is nonexpansive and we get from (3.18) that

‖PC (I − λ∇g)wnk − wnk‖ ≤ ‖PC (I − λ∇g)wnk − PC (I − λnk∇g)wnk‖
+‖PC (I − λnk∇g)wnk − wnk‖

≤ ‖(I − λ∇g)wnk − (I − λnk∇g)wnk‖
+‖PC (I − λnk∇g)wnk − wnk‖

= |λnk − λ|‖∇g(wnk )‖ + ‖PC (I − λnk∇g)wnk − wnk‖ → 0.
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It then follows from Lemma 2.2 that x∗ ∈ F(S). But F(S) = ϒ . Therefore we have that
x∗ ∈ ϒ .

Moreover, since {xnk } converges weakly to x∗ ∈ C, and that ynk − xnk → 0, k → ∞,

then there exists a subsequence {ynk } of {yn} that converges weakly to x∗ ∈ C . Hence by
(3.19) and the demicloseness of Tκ at the origin, we obtain that x∗ ∈ F(Tκ ) = F(T ). Hence
x∗ ∈ �. Now, we obtain from (3.17) and the property of P� that

lim inf
n→∞ 	n = lim

k→∞

(

(1 − k)−1〈 f (z) − z, z − xnk 〉 + (1 − k)−1

2αnkβnk
(1 − βnk )‖xnk+1 − ynk‖2

+ (1 − k)−1

2αnkμnk
(1 − μnk )‖ynk − wnk‖2

)

≥ (1 − k)−1 lim
k→∞〈 f (z) − z, z − xnk 〉

= (1 − k)−1〈 f (z) − z, z − x∗〉 ≥ 0. (3.23)

Thus from (3.16), we have that

lim sup
n→∞

‖xn − z‖2 ≤ − lim inf
n→∞ 	n ≤ 0.

Therefore, limn→∞ ‖xn − z‖ = 0 and this implies that {xn} converges strongly to z. ��

If T is a strictly pseudocontractive mapping, then we obtain the following result.

Corollary 3.2 Let C be a nonempty, closed and convex subset of a real Hilbert space H and
f be a contraction mapping on C with coefficient k ∈ (0, 1). Let T : C → C be a ψ-strictly
pseudocontractive mapping with ψ ∈ [0, 1). Suppose that the minimization problem (1.4) is
consistent and ϒ denote its solution set such that � := F(T ) ∩ ϒ �= ∅. Assume that the
gradient ∇g is L-Lipschitzian with constant L > 0. Let the sequence {xn} be generated for
fixed x1 ∈ C by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1 = (1 − βn)yn + βnzn;
zn = (1 − tn)yn + tnTκ yn;
yn = PC (I − λn∇g)wn;
wn = (1 − αn)xn + αn f (xn), n ≥ 1;

(3.24)

where Tκ = κ I + (1 − κ)T , κ ∈ [ψ, 1), {αn}, {tn} and {βn} are sequences in (0, 1) and
{λn} is a sequence in (0, 2

L ) satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2

L ;
(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iv) 0 < lim infn→∞ tn ≤ lim supn→∞ tn < 1.

Then {xn} converges strongly to z ∈ �, where z = P� f (z).

By setting f (x) = u ∀x ∈ C in Theorem 3.1, we obtain the following result.

Corollary 3.3 Let C be a nonempty, closed and convex subset of a real Hilbert space H and
T : C → C be aψ- demicontractivemappingwithψ ∈ [0, 1). Suppose that theminimization
problem (1.4) is consistent and ϒ denote its solution set such that � := F(T ) ∩ ϒ �= ∅.
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Assume that the gradient ∇g is L-Lipschitzian with constant L > 0. Let the sequence {xn}
be generated for fixed x1, u ∈ C by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1 = (1 − βn)yn + βnzn;
zn = (1 − tn)yn + tnTκ yn;
yn = PC (I − λn∇g)wn;
wn = (1 − αn)xn + αn f (xn), n ≥ 1;

(3.25)

where Tκ = κ I + (1− κ)T , κ ∈ [ψ, 1) such that T is demiclosed at 0, {αn}, {tn} and {βn}
are sequences in (0, 1) and {λn} is a sequence in (0, 2

L ) satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2

L ;
(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iv) 0 < lim infn→∞ tn ≤ lim supn→∞ tn < 1.

Then {xn} converges strongly to z ∈ �, where z = P�u.

We next investigate the problem of finding a zero of the sum of two monotone operators,
which is formulated as the following monotone variational inclusion problem: Find x ∈ H
such that

0 ∈ (A + B)x, (3.26)

where A : H → H and B : H → 2H are two monotone operators in Hilbert space H .

Lemma 3.4 Let H be a real Hilbert space, then the following well-known identity holds:

||x + y||2 = ||x ||2 + ||y||2 + 2〈x, y〉 ∀x, y ∈ H .

Lemma 3.5 LetC be anonempty subset of H, ν ∈ R
+, T : C → H be ν-ismandγ ∈ (0, 2ν).

Then I − γ T is γ /2ν-averaged.

Proof Set N = I − 2νT . Since T is ν-ism, we obtain from Lemma (3.4) that

‖Nx − Ny‖2 = ‖(I − 2νT )x − (I − 2νT )y‖2
= ‖(x − y) − 2ν(T x − T y)‖2
= ‖x − y‖2 + 4ν2‖T x − T y‖2 − 4ν〈x − y, T x − T y〉
≤ ‖x − y‖2 + 4ν2‖T x − T y‖2 − 4ν2‖T x − T y‖
= ‖x − y‖2. ��

Hence, N is nonexpansive. Thus, we obtain that

I − γ T = (1 − γ /2ν)I + (γ /2ν)I − γ T = (1 − γ /2ν)I + (γ /2ν)N .

Since γ ∈ (0, 2ν), then γ /2ν ∈ (0, 1), thus we have that I − γ T is γ /2ν-averaged.
We shall assume that problem (3.26) is consistent, namely its solution set, denoted by �

is nonempty. We now introduce an iterative algorithm that converges strongly to a solution
of (3.26). More accurately, our algorithm starts with an arbitrary initial guess x0 ∈ H , and
generates xn+1 according to the recursion process

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1 = (1 − βn)yn + βnzn;
zn = (1 − tn)yn + tnTκ yn;
yn = Jγn B(I − γn A)wn;
wn = (1 − αn)xn + αn f (xn), n ≥ 1,

(3.27)
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where Tκ = κ I + (1 − κ)T , κ ∈ [ψ, 1) such that T is demiclosed at 0. Noting that
� = F(Jγn B(I − γn A)) i.e x ∈ �, if and only if

0 ∈ (A + B)x = Ax + Bx ⇔ x − γ Ax ∈ x + γ Bx

⇔ x ∈ (I + γ B)−1(I − γ A)x

⇔ x = Jγ B(I − γ A)x .

Let z ∈ �, from Lemma 3.5, we obtain that I − γn A is γn A/2ν-averaged for every n ∈
N. Since Jγn B is nonexpansive, then it is 1

2 -averaged. It follows from Lemma 2.3 (ii) that

Jγn B(I − γn A) is (2ν + γn)/4ν - averaged. Let μn = 2ν+γn
4ν , in view of γn ∈ (0, 2ν), we

have that μn ∈ (0, 1). So Jγn B(I − γn A) is μn-averaged. Hence it follows from Definition
1.2 that

Jγn B(I − γn A) = (1 − μn)I + μnTn, (3.28)

where Tn is nonexpansive for every n ≥ 1. By (3.28), we obtain that

F(Jγn B(I − γn A)) = F(Tn).

Hence we obtain the following strong convergence theorem for finding a zero of the sum of
two monotone operators.

Theorem 3.6 Let A : H → H be a ν-inverse strongly monotone mapping and B : H → 2H

be a maximal monotone mapping. Let f be a contraction with constant k ∈ (0, 1) and T be
a ψ-demicontractive mapping with ψ ∈ [0, 1). Let F(T ) ∩ � �= ∅, {γn}, {αn}, {tn} and {βn}
be sequences in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 2ν;
(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iv) 0 < lim infn→∞ tn ≤ lim supn→∞ tn < 1.

Then, the sequence {xn} generated by (3.27) converges strongly to F(T ) ∩ �.

Proof By replacing Jγn B(I − γn A) with PC (I − λn∇g) in Algorithm 3.1, and following
similar proof as in the proof of Theorem 3.1, we get that {xn} generated by (3.27) converges
strongly to z ∈ F(T ) ∩ �, where z = PF(T )∩� f (z). ��
Remark 3.7 We now point out some differences between the presentation of our method of
proof of Theorem 3.1 and that of Theorem 2.4 of [14] viz:

(i) The major key in proving Theorem 3.1 is to show that lim supn→∞(−	n) ≤ 0 as given
in (3.23) and using Lemma 2.4 in (3.15).

(ii) In our convergence analysis, we did not make use of Lemma 2.3 of [14], which was used
in the convergence analysis of proof of Theorem 2.4 in [14]; rather we used Lemma 2.4
of this paper.

(iii) If we replace “ f (xn)” by “u” (for arbitrary u ∈ C) in Algorithm 3.1 (which is of
viscosity-type), then Algorithm 3.1 becomes of Halpern-type (see Corollary 3.3), and
the conclusionofTheorem3.1will still hold.However,weuse a viscosity-type algorithm
instead of an Halpern-type due to the fact that viscosity-type algorithms have higher
rate of convergence than Halpern-type. Moreover, it was established in [20,21] that
Halpern-type convergence theorems imply viscosity convergence theorems for weak
contractions.
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(iv) Observe from the characterization of metric projection that,

z = P� f (z) ⇐⇒ 〈 f (z) − z, z − y〉 ≥ 0 ∀y ∈ C . (3.29)

Therefore, one advantage of adopting Algorithm (3.1) for our convergence analysis, is
that it also converges strongly to a solution of the variational inequality (3.29) (see for
example [22]).

(v) As stated inRemark1.6, in establishing strong convergence results for theGPAproblems
and other related optimization problems, the CQ algorithms (modified Haugazeau or an
Halpern-CQ modifications) are often used. However, these algorithms require at each
step of the iteration process, the computation of two subsetsCn and Qn , the computation
of their intersectionCn ∩Qn and the computation of the projection of the initial starting
point onto this intersection; thus, leading to an increase in the computational cost of the
iteration. Therefore, algorithms that does not involve the constructions of Cn and Qn

(as in our case) are more interesting and of practical computational importance since
they are easy to compute than those that involve these computations.

Based on the above remark, Corollaries 3.2 and 3.3, our results improve and extend the results
of Cai and Shehu [14], and many other important results in this direction.

4 Applications

In this section, we give applications of Theorem 3.1 to solve split feasibility and optimal
control problems.

4.1 Split feasibility problem

The Split Feasibility Problem (SFP) was introduced by Censor and Elfving [23] and has
gained much attention of several authors due to its applications to image reconstruction,
signal processing, and intensity-modulated radiation therapy.

The SFP is finding a point x such that

x ∈ C and Bx ∈ Q, (4.1)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,
respectively and B : H1 → H2 is a bounded linear operator.

Clearly x∗ is a solution to the SFP (4.1) if and only if x∗ ∈ C and Bx∗ − PQBx∗ = 0.
Several iterativemethods have been developed for solving the SFP and its related optimization
problems (see for example, [24–34]).

The proximity function g is defined by

g(x) = 1

2
‖Bx − PQBx‖2 (4.2)

and we consider the constrained convex minimization problem

min
x∈Cg(x) = min

x∈C
1

2
‖Bx − PQBx‖2. (4.3)

Then x∗ solves the SFP (4.1) if and only if x∗ solves the minimization problem (4.3). In
[35], the following CQ algorithm was introduced to solve the SFP,

xn+1 = PC (I − λB∗(I − PQ)B)xn, n ≥ 0 (4.4)
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where 0 < λ < 2
‖B‖2 and B∗ is the adjoint of B. It was proved that the sequence generated

by (4.4) converges weakly to a solution of the SFP.
We now state the following Theorem as an application of Theorem 3.1 to solve the SFP

(4.1) and fixed point problem for ψ-demicontractive mapping.

Theorem 4.1 Let C and Q be nonempty, closed and convex subset of real Hilbert spaces H1

and H2 respectively, and B : H1 → H2 be bounded linear operator. Let f be a contraction
with constant k ∈ (0, 1) and T be a ψ-demicontractive mapping with ψ ∈ [0, 1). Let
g(x) = 1

2‖Bx − PQBx‖2 and let ϒ denotes the solution set of problem (4.1) such that
ϒ ∩ F(T ) �= ∅. Let the sequence {xn} be generated for fixed x1 ∈ C by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1 = (1 − βn)yn + βnzn;
zn = (1 − tn)yn + tnTκ yn;
yn = PC (I − λn B∗(I − PQ)B)wn;
wn = (1 − αn)xn + αn f (xn), n ≥ 1;

(4.5)

where Tκ = κ I+(1−κ)T , κ ∈ [ψ, 1) such that T is demiclosed at 0, {αn}, {tn} and {βn} are
sequences in (0, 1) and {λn} is a sequence in (0, 2

‖B‖2 ) satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2

B ;
(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iv) 0 < lim infn→∞ tn ≤ lim supn→∞ tn < 1.

Then {xn} converges strongly to z ∈ F(T ) ∩ ϒ , where z = PF(T )∩ϒ f (z).

Proof By the definition of proximity function, we have that ∇g = B∗(I − PQ)B and ∇g is
||B||2-Lipschitz continuous. Hence, by setting ∇g = B∗(I − PQ)B in Algorithm (3.1), we
obtain the desired result. ��

4.2 Optimal control problem

Let L2([0, α],Rm) be the Hilbert space of square integrable and measurable vector functions
u defined from [0, α] into R

m , which is endowed with inner product

〈u, v〉 =
∫ α

0
〈u(t), v(t)〉dt

and norm

||u|| = √〈u, u〉.
Now, consider the following optimal control problem:

u∗(t) = argmin{g(u) : u ∈ V }, (4.6)

where V is the set of admissible controls in the form of an m-dimensional box and consists
of piecewise continuous functions:

V = {u(t) ∈ L2([0, α],Rm) : ui (t) ∈ [u−
i , u+

i ], i = 1, 2 . . . ,m} (see [37]).

Assuming that such a control exists. The terminal objective has the form:

g(u) = 
(x(α)),
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where
 is a convex and differentiable function (see [36]). If the trajectory x(t) ∈ L2([0, α])
satisfies constrains in the of a system of linear differential equation:

ẋ(t) = D(t)x(t) + B(t)u(t), x(0) = x0, t ∈ [0, α],
where D(t) ∈ R

m×n, B(t) ∈ R
n×m are given continuousmatrices for every t ∈ [0, α]. Then,

by the Pontryaginmaximum principle (see [36]), there exists a function p∗ ∈ L2([0, α]) such
that (x∗, p∗, u∗) solves for a.e. t ∈ [0, α], the following system:

{
ẋ∗(t) = D(t)x∗(t) + B(t)u∗(t)
x∗(0) = x0,

(4.7)

{
ṗ∗(t) = −D(t)T p∗(t)
p∗(α) = ∇h(x(α)),

(4.8)

0 ∈ B(t)T p∗(t) + NV (u∗(t)), (4.9)

where NV (u) is the normal cone to V at u defined by

NV (u) :=
{

{w ∈ H : 〈w, v − u〉 ≤ 0, ∀v ∈ V }, if u ∈ V

∅, if u /∈ V .

Letting Gu(t) := B(t)T p(t), we have that Gu is the gradient of the objective function g (see
[37,38]). More so, (4.9) can be rewritten as

〈Gu∗, v − u∗〉 ≥ 0 ∀v ∈ V . (4.10)

But we know that u∗ solves (4.10) if and only if u∗ = PV (I − λG)u∗, for any λ > 0.
Therefore, by setting ∇g = G in Theorem 3.1, we can apply Theorem 3.1 to solve (4.9).

5 Numerical examples

In this section, we present two numerical examples of our algorithm in real Euclidean space of
dimension 4 and in an infinite dimensionalHilbert space, to show its efficiency and advantage.

Throughout this section,we shall takeαn = 1
3n+1 , βn = n+1

3n , tn = 2n+3
5n+1 andλn = n

25n+3 .

Example 5.1 Here, we present a numerical example in R
4 to illustrate the performance of

our algorithm. Let H1 = H2 = R
4 and ∇g(x) = B∗(I − PQ)Bx , where Bx = (3x1 +

x2 + x3 − x4,−2x1 − x2 − 3x3 + 2x4,−4x1 − x2 + 5x3 − 2x4, x1 − x2 + x3 − x4), Q =
{x ∈ R

4 : 〈w, x〉 = b}, w = (−1, 2, 4, 7)T , b = 2, PQ(x) = max
{
0, b−〈w,x〉

||w||2
}

w + x .

Since B is a bounded linear operator and PQ is a metric projection onto Q, then ∇g is
L-Lipschitz continuous with L = ||B||2 = 50. Let C = {x ∈ R

4 : 〈y, x〉 ≥ a}, y =
(2,−5,−7, 1)T , a = 3, PC (x) = a−〈y,x〉

||y||2 y + x . Define T (x) = −3
2 x and f (x) = 1

3 x , then

T is a ψ-demicontractive mapping with ψ = 1
5 and f is a contraction. Thus, we can take

κ = 1
2 , so that Tκ = −1

4 x . Hence, Algorithm (4.5) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1 = (1 − n+1
3n )yn + n+1

3n zn;
zn = (1 − 2n+3

5n+1 )yn − (2n+3)
4(5n+1) yn;

yn = PC (I − λn B∗(I − PQ)B)wn;
wn = (1 − 1

3n+1 )xn + 1
3(3n+1) xn, n ≥ 1.

(5.1)

123



690 C. C. Okeke et al.

0 5 10 15 20
Number of iterations (n)

0

0.5

1

1.5

2

2.5

3
E

rr
or

s

Our Algorithm
Algorithm (1.11) of Cai and Shehu

0 5 10 15 20

Number of iterations (n)

0

1

2

3

4

5

6

7

E
rr

or
s

Our Algorithm
Algorithm (1.11) of Cai and Shehu

0 5 10 15 20
Number of iterations (n)

0

2

4

6

8

10

12

14

E
rr

or
s

Our Algorithm
Algorithm (1.11) of Cai and Shehu

Fig. 1 Errors versus iteration numbers for Example 1: Case 1 (top left); Case 2 (top right); Case 3 (bottom)

We consider the following cases for Example 5.1.
Case I Take x1 = (−1, 2, 1, 0.5)T

Case II Take x1 = (−8, 2, 7, 1)T

Case III Take x1 = (1, 7,−5, 3)T

Example 5.2 We now give an example in an infinite dimensional Hilbert space to further
show the efficiency and advantage of our results. Let H1 = H2 = L2([0, 2π]) be endowed
with inner product

〈x, y〉 =
∫ 2π

0
x(t)y(t)dt ∀ x, y ∈ L2([0, 2π])

and norm

||x || :=
(∫ 2π

0
|x(t)|2dt

) 1
2

∀ x, y ∈ L2([0, 2π]).

Let C = {x ∈ L2([0, 2π ]) : 〈y, x〉 ≤ a}, where y = e2t and a = 3. Then,
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Fig. 2 Errors versus iteration numbers for Example 2: Case 1 (top left); Case 2 (top right); Case 3 (bottom)

PC (x) =
⎧
⎨

⎩

a−〈y,x〉
||y||2L2

y + x, if 〈y, x〉 > a,

x, if 〈y, x〉 ≤ a.

Again, let Q = {x ∈ L2([0, 2π ]) : ||x − d||L2 ≤ r}, where d = sin(t) and r = 16. Then,

PQ(x) =
⎧
⎨

⎩

d + r x−d
||x−d||L2 , if ||x − d||L2 > r ,

x, if ||x − d||L2 ≤ r .

Now, let B, f , T : L2([0, 2π ]) → L2([0, 2π ]) be defined by Bx(t) = x(t), f x(t) = x(t)
3

and T x(t) = −5
2 x(t). Then, B is a bounded linear operator with adjoint B∗x(t) = x(t) and

||B|| = 1, f is a contraction and T is ψ-demicontractive with ψ = 21
49 .

We now consider the following cases for Example 5.2 (Figs. 1, 2).
Case 1 Take x1(t) = t3.
Case 2 Take x1(t) = sin t .
Case 3 Take x1(t) = cos t .
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Remark 5.3 Using Examples 5.1 and 5.2, we compare our algorithm with Algorithm (1.11)
of Cai and Shehu [14], by considering in each example, 4 different initial points. As seen
from the graphs below, our viscosity-type algorithm converges faster than the Halpern-type
algorithm studied by Cai and Shehu [14]. This shows that our algorithm works well and have
competitive advantages over the algorithm of Cai and Shehu [14].
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