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Abstract
We classify nef vector bundles on a projective space with first Chern class three over an
algebraically closed field of characteristic zero; we see, in particular, that these nef vector
bundles are globally generated if the second Chern class is less than eight, and that there exist
nef but non-globally generated vector bundles with second Chern class eight and nine on a
projective plane.
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1 Introduction

Let E be a nef vector bundle of rank r on a projective space Pn over an algebraically closed
field K of characteristic zero. Let c1 be the first Chern class of E . Then c1 is non-negative since
E is nef. In [15, Theorem 1], Peternell–Szurek–Wiśniewski classified such E’s in case c1 ≤ 2,
based on the study [18] of Szurek–Wiśniewski. If c1 ≤ 2 and n ≥ 2, then P(E) is a Fano
manifold, and their proof is based on analysis of contraction morphisms of extremal rays. In
[11, §6], a different proof of the classification in case c1 ≤ 2 is given, based on analysis of
some twist E(d) of E with the full strong exceptional sequence O,O(1), . . . ,O(n) of line
bundles.

In this paper we continue our approach to classify nef vector bundles in the next case
c1 = 3. Note here that if c1 = 3 then the anti-canonical bundle of P(E) is nef if n ≥ 2 and
ample if n ≥ 3. Moreover if c1 = 3 then 0 ≤ c2 ≤ c21 = 9, where c2 denotes the second
Chern class of E . The main result of this paper is as follows.
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Theorem 1 Let E be a nef vector bundle of rank r on a projective space Pn with c1 = 3. Then
c2 and E satisfy one of the following:

(1) c2 = 0 and E ∼= O(3) ⊕ O⊕r−1;
(2) c2 = 2 and E ∼= O(2) ⊕ O(1) ⊕ O⊕r−2;
(3) c2 = 3 and E ∼= O(1)⊕3 ⊕ O⊕r−3;
(4) c2 = 3, n = 2, and E ∼= TP2 ⊕ O⊕r−2;

(In the following, E fits in one of the following exact sequences.)

(5) c2 = 3 and 0 → O(−1) → O(2) ⊕ O⊕r → E → 0;
(6) c2 = 4 and 0 → O(−1) → O(1)⊕2 ⊕ O⊕r−1 → E → 0;
(7) c2 = 4, n = 3, and 0 → O(−2) → O(−1)⊕4 → O(1) ⊕ O⊕r+2 → E → 0;
(8) c2 = 4, n = 4, and

0 → O(−3) → O(−2)⊕5 → O(−1)⊕10 → O⊕r+6 → E → 0;
(9) c2 = 5 and 0 → O(−1)⊕2 → O(1) ⊕ O⊕r+1 → E → 0;
(10) c2 = 5, n = 3 or 4, and 0 → O(−2) → O(−1)⊕5 → O⊕r+4 → E → 0;
(11) c2 = 6 and 0 → O(−1)⊕3 → O⊕r+3 → E → 0;
(12) c2 = 6 and 0 → O(−2) → O(1) ⊕ O⊕r → E → 0;
(13) c2 = 7 and 0 → O(−2) ⊕ O(−1) → O⊕r+2 → E → 0;
(14) c2 = 8, n = 2, and 0 → O(−2)⊕2 → O⊕r+1 ⊕ O(−1) → E → 0;
(15) c2 = 9 and 0 → O(−3) → O⊕r+1 → E → 0;
(16) c2 = 9, n = 2, and 0 → O(−2)⊕3 → O⊕r ⊕ O(−1)⊕3 → E → 0;
(17) c2 = 9, n = 2, and

0 → O(−3)⊕r → O(−2)⊕3r+3 → O(−1)⊕3r+3 → E → 0;
(18) c2 = 9, n = 2, and 0 → O(−2)⊕4 → O(1) ⊕ O⊕r−3 ⊕ O(−1)⊕6 → E → 0;
(19) c2 = 9, n ≥ 3, c3 = 27, and h0(E(−1)) = 1;
(20) c2 = 9, n ≥ 4, c3 = 27, h0(E(−1)) = 0, and hn−3(E(2 − n)) = 1.

Note that every case except the cases (18), (19), and (20) in Theorem 1 is effective:
examples of E in case (7) areO(1)⊕O⊕r−4 ⊕ΩP3(2) andO(1)⊕O⊕r−3 ⊕N (1) whereN
is a null correlation bundle on P

3 (see Remark 8.1); in case (8), E is given by a locally free
resolution in terms ofO(−3)-twist of the full strong exceptional sequenceO,O(1), . . . ,O(4)
in accordance with [11], but E is in fact isomorphic to ΩP4(2) ⊕ O⊕r−4 (see Remark 8.2);
in case (10), if n = 4, E is nothing but an extension of the Tango bundle [19] (see also [14,
Chap. I §4.3]) on P

4 by a trivial bundle O⊕r−3, so that Ω2
P4

(3) is a typical example (see

Remark 8.3), and if n = 3, the restriction of such bundle to a hyperplane P3 is an example;
the case (14) comes from Proposition 2 below (see [12] for details); an example in case (16)
is given in Example 1; the exact sequence in case (17) in fact derives from Example 3. On
the other hand, it is uncertain whether nef vector bundles exist or not in case (18), (19), or
(20). Note that neither in case (19) nor in case(20) exist nef vector bundles if they does not
exist in case (18), since the restriction to a plane of a nef vector bundle in case (19) or (20)
lies in the case (18).

Anghel–Manolache [1] and Sierra–Ugaglia [17] classified globally generated vector bun-
dles on a projective spacewith first Chern class three. Since global generation implies nefness,
Theorem 1 is a generalization of their results. We also note that Langer [9] classified smooth
Fano 4-folds with adjunction theoretic scroll structure and b2 = 2; his classification includes
that of nef and big rank 2 bundles with c1 = 3 on P

2 and P
3.
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Nef vector bundles on a projective space with first Chern… 427

As in the proof in case c1 ≤ 2 in [11], the main feature of our proof of Theorem 1 is an
application of the spectral sequence deduced in [13, Theorem 1] from Bondal’s theorem [4,
Theorem 6.2]. Besides this spectral sequence, some of the key ingredients of our proof
are the Riemann–Roch formula, the Kawamata–Viehweg vanishing theorem [7,22], and the
non-negativity of Chern classes of nef vector bundles (see, e.g., [10, Theorem 8.2.1]).

Whereas global generation implies nefness, the converse is not true in general; indeed, the
(scheme-theoretic) support of the cokernel of the evaluation map H0(E) ⊗ O → E in cases
(14), (16), and (17) in Theorem 1 is, respectively, a point w, a cubic curve E , and the whole
P
2. (If there exists an example in case (18), its corresponding support is also the whole P2.

Hence examples in cases (18), (19), or (20) shall be also nef but non-globally generated if
they exist.) In fact, the evaluation map in case (14) fits in the exact sequence in the following
proposition.

Proposition 2 Given an integer r ≥ 2 and a point w in a projective plane P2, there exists a
vector bundle E fitting in an exact sequence

0 → O(−3) → O⊕r+1 → E → k(w) → 0

where k(w) denotes the residue field of the point w. Moreover a vector bundle E fitting in
the sequence above is nef but non-globally generated with c1 = 3 and c2 = 8.

In [12, Theorem 1.1], we classified nef vector bundles on a projective space with c1 = 3
and c2 = 8 (based on the previous version of this manuscript): we showed that such bundles
exist only on a projective plane and every such bundle derives from the exact sequence given
in Proposition 2 and fits in the exact sequence (14) in Theorem 1. Note that the parts of the
previous version of the manuscript on which the argument in [12] are relied are kept the same
in this major revised manuscript.

This paper is organized as follows. In §2, we recall Bondal’s theorem [4, Theorem 6.2] and
its related results including the spectral sequence deduced in [13, Theorem 1]. The results in
§2 are fundamental throughout this paper. In §3, we begin our proof(s) of Theorem 1 (and
of Theorem 3 below); based on results in [11], we reduce the problem to the case where
H0(E(−2)) = 0. We also show in §3 that this reduction enables us to assume that 3 ≤ c2.
Several other formulas—such as the Riemann–Roch formulas—used repeatedly in this paper
are also presented in §3. In §4, we collect some lemmas needed later. In §5, we give a key
lemma, Lemma 5.1, which together with exact sequence (3.16) in §3.1 is crucial for the
whole proof. In §6, we show that nef vector bundles on a projective space with c1 = 3 and
c2 ≤ 7 are globally generated (Theorem 3). In §7, we give a proof of Theorem 1; we omit
the proof in case c2 ≤ 7, since we have Theorem 3 and globally generated vector bundles
with c1 = 3 are classified in [1] and [17]. Similarly the proof in case c2 = 8 is omitted
since it is already given in [12]; thus we only give a proof in case c2 = 9. Note that our
presentation of the classification in case c2 ≤ 7 is different from both of [1,17]; the situation
is the same as in [1,17]: the presentations of the classification in [1,17] are different because
their methods of proofs are different; similarly our presentation differs from those of [1,17]
because of our new proof. A reader whowonders where the presentation of Theorem 1 in case
c2 ≤ 7 comes from may find its proof in the previous version (arXiv 1604.05847 version 4)
of the manuscript. In §8 we give several remarks related to the cases (7), (8), and (10) and an
example of the case (16) in Theorem 1. We end §8 with a question about the cokernel of the
evaluation map H0(E)⊗O → E of a nef vector bundle in case (16) of Theorem 1. In §9, we
give a proof of Proposition 2. Finally note that, since globally generated vector bundles are
nef, some properties of globally generated vector bundles also hold more generally for nef
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428 M. Ohno

vector bundles, but some do not; in §10, we give two examples which illustrate that a typical
exact sequence for globally generated vector bundles—related to the degeneracy locus of
general global sections—does not necessarily exist for nef vector bundles.

1.1 Notation and conventions

Throughout this paper we work over an algebraically closed field K of characteristic zero.
Basically we follow the standard notation and terminology in algebraic geometry. For a
vector bundle E , P(E) denotes ProjS(E), where S(E) denotes the symmetric algebra of E .
The tautological line bundle OP(E)(1) is also denoted by H(E). We denote by E∨ the dual
of E . For a coherent sheaf F on a smooth projective variety X , we denote by ci (F) the i th
Chern class of F . In particular, ci stands for ci (E) of the nef vector bundle E we are dealing
with. We say that a vector bundle is (non-)globally generated if it is (not) generated by global
sections. For coherent sheaves F and G on X , hq(F) denotes dim Hq(F), and hom(F,G)

denotes dimHom(F,G). For any closed subscheme Z in Pn , denote by IZ the ideal sheaf of
Z in Pn . Finally we refer to [10] for the definition and basic properties of nef vector bundles.

2 Preliminaries

In our proof of Theorem 1, we shall apply repeatedly a spectral sequence deduced in [13,
Theorem 1]. So we shall recall this sequence in this section. Note that this sequence is a
corollary of Bondal’s theorem [4, Theorem 6.2] as can be seen below.

Let X be a smooth projective variety over K , Db(X) the bounded derived category of the
abelian category of coherent sheaves on X . Assume that there exists a full strong exceptional
sequence G0, . . . ,Gm in Db(X), and let G be the direct sum ⊕m

j=0G j in Db(X).
Recall that if X = P

n then O,O(1), . . . ,O(n) is a full strong exceptional sequence in
Db(Pn) by Beilinson’s theorem [3, Theorem].

Let A be the endomorphism ring EndDb(X)(G) of G, and let e j be the composite of the
projection G → G j and the inclusion G j → G. Then e j ∈ A. Define a right A-module Pj

by Pj = e j A. The natural isomorphism A ∼= ⊕m
j=0Pj of right A-modules implies that Pj is

a projective right A-module. Let S j be the simple right A-module such that S j e j ∼= K and
S j ek ∼= 0 for all k 
= j and 0 ≤ k ≤ m.

Let Db(modA) be the bounded derived category of the abelian category modA of finitely
generated right A-modules. Bondal’s theorem [4, Theorem 6.2] states that RHom(G, •) :
Db(X) → Db(modA) is an exact equivalence. Since •⊗LG : Db(modA) → Db(X) is a
quasi-inverse of RHom(G, •), we have a natural isomorphism

RHom(G, •)⊗LG ∼= •
of functors on Db(X). If we write down this isomorphism for a coherent sheaf F on X in
terms of a spectral sequence, we obtain the following spectral sequence ([13, Theorem 1])

E p,q
2 = Tor A−p(Ext

q(G, F),G) ⇒ E p+q =
{
F if p + q = 0

0 if p + q 
= 0.
(2.1)

We call this sequence the Bondal spectral sequence. In practice, in order to apply the Bondal
spectral sequence (2.1), we need to compute E p,q

2 . One way to compute E p,q
2 is by definition:

E p,q
2 = Tor A−p(Ext

q(G, F),G), i.e., through a projective resolution of the right A-module
Extq(G, F). Recall here (see [11, Lemma 2.1] for a proof) that a finitely generated right
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A-module Extq(G, F) has a projective resolution of the form

0 → P
⊕em,0
0 → · · · →

m−l⊕
j=0

P
⊕el, j
j → · · · →

m⊕
j=0

P
⊕e0, j
j → Extq(G, F) → 0 (2.2)

where e0, j = dim Extq(G j , F) for 0 ≤ j ≤ m and el, j is determined inductively for l ≥ 1
and j ≤ m − l by the following formula:

el, j =
∑
j<k

el−1,k hom(G j ,Gk).

We shall freely use the following isomorphism:

Pj⊗L
AG = Pj ⊗A G ∼= G j .

This isomorphism together with (2.2) implies that E p,q
2 is the (−p)th homology of the

following complex

0 → G
⊕em,0
0 → · · · →

m−l⊕
j=0

G
⊕el, j
j → · · · →

m⊕
j=0

G
⊕e0, j
j → 0.

Throughout this paper, we set X = P
n , m = n, and G j = O( j) for 0 ≤ j ≤ n, and we

fix the notation G j , G, A, Pj , and S j as above.
A typical projective resolution of the form (2.2) in this paper is in the case where q = 0

and F = E(d) for some non-negative integer d . For example, if hom(O(2), E(d)) = 0, we
frequently and sometimes implicitly consider a projective resolution of the form

0 → P
⊕(n+1)e0,1
0 → P

⊕e0,1
1 ⊕ P

⊕e0,0
0 → Hom(G, E(d)) → 0 (2.3)

where e0,0 = hom(O, E(d)) and e0,1 = hom(O(1), E(d)).
Finally note that the Bott formula [14, p. 8] implies RHom(G,Ω

j
Pn

( j)) ∼= S j [− j] for
0 ≤ j ≤ n. Hence we have isomorphisms

S j⊗L
AG ∼= Ω

j
Pn

( j)[ j]. (2.4)

for 0 ≤ j ≤ n. In particular,
Sn⊗L

AG ∼= O(−1)[n]. (2.5)

Note that this gives another way to compute E p,q
2 = Hp(Extq(G, E(d))⊗L

AG): through
a filtration of Extq(G, E(d)) with subquotients the direct sums of the simple modules S j .

For example, if Extq(G, E(d)) ∼= S j then E p,q
2 = Hp(Ω

j
Pn

( j)[ j]), and thus E p,q
2 = 0 if

p 
= − j and E− j,q
2 = Ω

j
Pn

( j). In particular, if Extq(G, E(d)) ∼= Sn then E−n,q
2 = O(−1)

and E p,q
2 = 0 if p 
= −n. We shall also use these formulas frequently.

3 Set-up and formulas for the proofs of Theorems 1 and 3

In this section, we give some preparatory parts of our proofs of Theorems 1 and 3, and we
also collect several formulas needed later.

Let E be a nef vector bundle of rank r on a projective space P
n with c1 = 3. If

Hom(O(3), E) 
= 0, then E ∼= O(3) ⊕ O⊕r−1 by [11, Proposition 5.2 and Remark 5.3].
This is the case (1) of Theorem 1. Assume that Hom(O(3), E) = 0. Then r ≥ 2. If
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Hom(O(2), E) 
= 0, then it follows from [11, Theorem 6.4] that E is in the case (2) or
(5) of Theorem 1.

In the rest of our proof, we always assume that

H0(E(−2)) = Hom(O(2), E) = 0. (3.1)

Recall that the Kodaira vanishing theorem implies that

Hq(E|Ll (3 − k)) = 0 (3.2)

for all q > 0, all l-dimensional linear subspaces Ll ⊆ P
n , and all k ≤ l, since E is a nef

vector bundle with c1 = 3 (see [11, Lemma 4.1 (1)] for a proof). If H(E|Ll ) is big in addition,
then the Kawamata-Viehweg vanishing theorem implies that

Hq(E|Ll (2 − k)) = 0 (3.3)

for all q > 0 and all k ≤ l(see [11, Lemma 4.1 (2)] for a proof).
Since E is nef, Hq(E|L(1)) = 0 for all q > 0 and all lines L in P

n . Together with (3.2),
this implies that H2(E|L2) = 0 for any plane L2 ⊆ P

n . This vanishing H2(E|L2) = 0
then implies that H2(E|L2(−1)) = 0 since Hq(E|L) = 0 for all q > 0. Moreover we have
H2(E|L2(−2)) = 0 since Hq(E|L(−1)) = 0 for all q > 0. Summing up, we have

H2(E|L2(−k)) = 0 (3.4)

for all k ≤ 2 and any plane L2 in P
n .

If n = 2, the Riemann–Roch formula for a twisted vector bundle E(t) is

χ(E(t)) = 1

2
(r t + 6)(t + 3) + r − c2. (3.5)

Recall that this formula is for c1 = c1(E) = 3. It follows from this formula that χ(E(−2)) =
3 − c2. For arbitrary n ≥ 2, the vanishing (3.4) then implies that

h0(E|L2(−2)) − h1(E|L2(−2)) = 3 − c2(E|L2) (3.6)

for any plane L2 in P
n .

We claim here that

c2 ≥ 3

on P
n . Suppose, to the contrary, that c2 ≤ 2. Then χ(E|L2(−2)) = 3 − c2(E|L2) ≥ 1 since

c2 = c2(E|L2). Hence we obtain h0(E|L2(−2)) 
= 0. As we have seen, this implies that
E|L2 lies either in the case (1), (2), or (5) of Theorem 1; if E|L2 lies in the case (5) then
c2(E|L2) = 3, which contradicts that c2 ≤ 2. Thus E|L2 actually lies either in the case (1)
or (2) of Theorem 1. In particular it splits into a direct sum of line bundles. Hence E also
splits by the splitting criterion [14, Theorem 2.3.2] of Horrocks. Since h0(E|L2(−2)) 
= 0,
this implies that h0(E(−2)) 
= 0, which contradicts the assumption (3.1). Hence the claim
follows.

Since E|L2 is nef, we have an inequality 0 ≤ H(E|L2)r+1. Since H(E|L2)r+1 is equal to
c1(E|L2)2 − c2(E|L2) (see [6, §3.1 and §3.2]), we obtain c2(E|L2) ≤ 9. Hence we have

c2 ≤ 9.

Recall here the well-known non-negativity (see, e.g., [10, Theorem 8.2.1]) of the top Chern
class of a nef vector bundle E that

cn ≥ 0. (3.7)
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We shall divide the proof of Theorem 1 according to the value of c2 ≥ 3.
Note that H(E|L2) is nef and big if c2 < 9. The vanishing (3.3) then implies that

Hq(E|L2) = 0 (3.8)

for any q > 0 and any plane L2 in P
n . Together with the vanishing (3.2), this implies that

Hq(E|L3(−1)) = 0 (3.9)

for any q ≥ 2 and any three-dimensional linear subspace L3 ⊂ P
n .

3.1 Set-up for the two-dimensional case with h1(E) = 0

Note that the vanishing h1(E) = 0 holds if c2 < 9 by (3.8). It follows from (3.1) and (3.6)
that

h1(E(−2)) = c2 − 3. (3.10)

The Riemann–Roch formula (3.5) shows that χ(E(−1)) = 6 − c2 and χ(E) = 9 + r − c2.
Since we have the vanishings (3.4) and h1(E) = 0, these formulas imply

h0(E(−1)) − h1(E(−1)) = 6 − c2, (3.11)

h0(E) = 9 + r − c2. (3.12)

Since we have an exact sequence 0 → E(−2) → E(−1) → E|L(−1) → 0, by taking
cohomology, we see that

h1(E(−2)) ≥ h1(E(−1)). (3.13)

Nowwe apply to E the Bondal spectral sequence (2.1). It is clear that E p,q
2 = 0 if q < 0 or

p > 0. The vanishing (3.4) shows that E p,q
2 = 0 if q ≥ 2. Since H1(E) = 0 by assumption,

the right A-module Ext1(G, E) fits in an exact sequence

0 → S⊕h1(E(−1))
1 → Ext1(G, E) → S⊕h1(E(−2))

2 → 0.

Since S1⊗L
AG ∼= ΩP2(1)[1] and S2⊗L

AG ∼= O(−1)[2] by (2.4), the sequence above
induces the following distinguished triangle in Db(X):

O(−1)⊕h1(E(−2))[1] → ΩP2(1)
⊕h1(E(−1))[1] → Ext1(G, E)⊗L

AG → .

Since E p,1
2 = Hp(Ext1(G, E)⊗L

AG), the triangle above shows that E p,1
2 = 0 unless p =

− 2 or − 1 and that E−2,1
2 and E−1,1

2 fit in the following exact sequence of coherent sheaves:

0 → E−2,1
2 → O(−1)⊕h1(E(−2)) μ−→ ΩP2(1)

⊕h1(E(−1)) → E−1,1
2 → 0. (3.14)

It follows from (3.1) that the right A-module Hom(G, E) has, as in (2.3), a projective reso-
lution of the form

0 → P
⊕3e0,1
0 → P

⊕e0,1
1 ⊕ P

⊕e0,0
0 → Hom(G, E) → 0

where e0,0 = h0(E) and e0,1 = h0(E(−1)). In particular, we see that E p,0
2 = 0 if p < −1.

We have the following exact sequence

0 → E−2,1
2 → E0,0

2 → E0,0
3 → 0. (3.15)

Now the Bondal spectral sequence implies that E−1,0
2 = 0 and that E fits in an exact sequence

0 → E0,0
3 → E → E−1,1

2 → 0. (3.16)
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Since E−1,0
2 = 0, E0,0

2 fits in an exact sequence

0 → O⊕3e0,1 → O(1)⊕e0,1 ⊕ O⊕e0,0 → E0,0
2 → 0. (3.17)

The following lemma shall be applied repeatedly throughout this paper.

Lemma 3.1 For any finite morphism C → P
2 from a smooth projective curve C, the pullback

E−1,1
2 |C of the sheaf E−1,1

2 cannot admit a line bundle of negative degree as a quotient. In

particular, E−1,1
2 cannot admit the following sheaves as a quotient:

(1) ΩP2(1);
(2) Ip, where p is a point;
(3) IZ (1), where Z is a 0-dimensional closed subscheme of lengthZ ≥ 2;
(4) IZ (2), where Z is a 0-dimensional closed subscheme of lengthZ ≥ 5;
(5) OL(−p), where L is a line passing through a point p;
(6) OC (−p), where C is a conic passing through a point p.

Proof The first statement follows from the sequence (3.16) since E is nef. The second state-
ment is almost obvious from the first, so that we only give a proof in case (4). If there exists a
line L such that lengthZ ∩ L ≥ 3, then the double twist IZ ·OL (2) of the inverse image ideal
sheaf IZ ·OL has negative degree, which contradicts the first statement. If lengthZ ∩ L ≤ 2
for any line L , then Lemma 4.4 below shows that there exists a smooth conic C such that
lengthZ∩C ≥ 5. Hence IZ ·OC (2) has negative degree, which contradicts the first statement
again. Therefore E−1,1

2 cannot admit IZ (2) as a quotient if lengthZ ≥ 5. ��

Lemma 3.1 and the exact sequence (3.14) indicate that there are some relations between
h1(E(−2)) and h1(E(−1)); we shall explore these relations in Lemma 5.1.

3.2 Set-up for the three-dimensional case

The Riemann–Roch formula for a twisted vector bundle E(t) on P3 is

χ(E(t)) = 1

2
{9 − 3c2 + c3 + (9 − 2c2)(t + 2) + (3t2 + 12t + 11)}

+ r

6
(t + 3)(t + 2)(t + 1).

Recall that this formula is for c1 = c1(E) = 3. By this formula, we have

χ(E(−3)) = 1 − 1

2
(c2 − c3), (3.18)

χ(E(−2)) = 4 − 1

2
(3c2 − c3), (3.19)

χ(E(−1)) = 10 − 1

2
(5c2 − c3). (3.20)

By taking into account the vanishing (3.2), we also have

h0(E) = 19 − 1

2
(7c2 − c3) + r , (3.21)

h0(E(1)) = 31 − 1

2
(9c2 − c3) + 4r . (3.22)
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Recall here that H(E)r+2 = c3 − 2c1c2 + c31 (see [6, §3.1 and §3.2]). Since c1 = 3 and
H(E)r+2 ≥ 0, this implies that

c3 ≥ 6c2 − 27. (3.23)

4 Lemmas

In this section, we collect some lemmas applied in the proofs of Theorems 1 or 3.

Lemma 4.1 Let V be an (n+1)-dimensional vector space, (x0, x1, . . . , xn) a basis of V , and
(x∗

0 , . . . , x
∗
n ) the basis of the dual vector space V

∗ corresponding to (x0, x1, . . . , xn). Suppose
that a non-zero element s of H0(TP(V )(−1)) corresponds to

∑n
i=0 ai x

∗
i for some ai ∈ K via

the isomorphism from H0(TP(V )(−1)) to V ∗. Then the zero locus (s)0 of s is a (reduced)
point p whose homogeneous coordinates (x0(p) : · · · : xn(p)) are (a0 : a1 : · · · : an).
Proof See [16, Remark 2.3]. ��
Lemma 4.2 Let i be any integer such that 1 ≤ i ≤ n. For each non-zero morphism ϕ :
Ω i

P(V )
(i) → Ω i−1

P(V )
(i − 1), there exists a unique element s ∈ H0(TP(V )(−1)) such that ϕ is

the morphism appearing in the Koszul complex induced from s. In particular, every non-zero
morphism ϕ : Ω2

P3
(2) → ΩP3(1) determines a unique non-zero element s ∈ H0(TP3(−1))

whose corresponding Koszul complex is an exact sequence

0 → O(−1) → Ω2
P3

(2)
ϕ−→ ΩP3(1) → Ip → 0,

where {p} = (s)0.

Proof We have an isomorphism H0(TP(V )(−1)) ∼= Hom(Ω i
P(V )

(i),Ω i−1
P(V )

(i − 1)) by [3,
Lemma 2], and this isomorphism indeed sends a global section s of TP(V )(−1) to the mor-
phism ϕ : Ω i

P(V )
(i) → Ω i−1

P(V )
(i − 1) appearing in the Koszul complex associated to s. Note

that a non-zero section s is regular by Lemma 4.1, so that the corresponding Koszul complex
is exact. ��
Lemma 4.3 Let W be a 0-dimensional closed subscheme of P2 and w a point in P2. Suppose
that we have the following non-split exact sequence of coherent sheaves

0 → IW (d) → D → k(w) → 0,

where d is an integer and k(w) denotes the residue field of the point w. Then w is an
associated point of W and D is isomorphic to IZ (d) where Z is a closed subscheme of W
with lengthZ = lengthW − 1.

Proof First note that w is not an associated point of D, since the exact sequence above does
not split. Hence D is a torsion-free sheaf of rank one, and its double dual is isomorphic
to O(d). Therefore D is isomorphic to IZ (d), where Z is a closed subscheme of W with
lengthZ = lengthW − 1, and w is an associated point of W . ��
Lemma 4.4 Let Z be a 0-dimensional closed subscheme of length 5 in P2, and suppose that
length(Z ∩ L) ≤ 2 for any line L in P2. Then there exists a smooth conic C passing through
Z.

Proof See, e.g., the second paragraph of page 75 of [12]. ��
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5 Key Lemma

The following lemma together with the exact sequence (3.16) plays a crucial role in the proofs
of Theorems 1 and 3.

Lemma 5.1 Let

0 → E−2,1
2 → O(−1)⊕a μ−→ ΩP2(1)

⊕b → E−1,1
2 → 0

be the exact sequence (3.14) on P
2, where a = h1(E(−2)) and b = h1(E(−1)).

(1) If b ≥ 1, consider a surjection π : ΩP2(1)
⊕b → ΩP2(1), and let

ϕ : O(−1)⊕a → ΩP2(1)

be the composite of μ and π . Then H0(ϕ(1)) : H0(O⊕a) → H0(ΩP2(2)) is surjective;
consequently a ≥ 3 and ϕ is surjective. Moreover we have an exact sequence

0 → E−2,1
2 → O(−2) ⊕ O(−1)⊕a−3 μ1−→ ΩP2(1)

⊕b−1 → E−1,1
2 → 0.

(2) If b ≥ 2, consider a surjection q : ΩP2(1)
⊕b−1 → ΩP2(1), and let

ϕ1 : O(−2) ⊕ O(−1)⊕a−3 → ΩP2(1)

be the composite of μ1 and q. Then the image of H0(ϕ1(1)) has dimension two or three;
consequently a ≥ 5.

(a) If dim ImH0(ϕ1(1)) = 2, then we have the following exact sequence

0 → E−2,1
2 → O(−3) ⊕ O(−1)⊕a−5 ν2−→ ΩP2(1)

⊕b−2

→ E−1,1
2 → k(w) → 0

for some point w in P
2, where k(w) denotes the residue field of w.

(b) If dim ImH0(ϕ1(1)) = 3, then a ≥ 6 and we have the following exact sequence

0 → E−2,1
2 → O(−2)⊕2 ⊕ O(−1)⊕a−6 μ2−→ ΩP2(1)

⊕b−2 → E−1,1
2 → 0.

Proof (1) First note that there exists a surjection E−1,1
2 → Cokerϕ.

If H0(ϕ(1)) = 0, then ϕ = 0 and Cokerϕ ∼= ΩP2(1). This however contradicts
Lemma 3.1. Therefore H0(ϕ(1)) 
= 0.

Suppose that the image of H0(ϕ(1)) has dimension one, and let s be a non-zero element
in the image in H0(ΩP2(2)) ∼= H0(TP2(−1)). Then the zero locus of s is a (reduced) point
p by Lemma 4.1 and Cokerϕ is isomorphic to the ideal sheaf Ip of p, but this cannot occur
by Lemma 3.1. Therefore the image of H0(ϕ(1)) has dimension ≥ 2.

Suppose that the image of H0(ϕ(1)) has dimension two, and let (s, t) be a basis of the
image. As above, let p be the zero locus of s. Then t induces an injection O → Ip(1), and
this gives a line L passing through p. The quotient of the O(−1)-twist of this injection is
OL(−p) and is isomorphic to Cokerϕ. However this is impossible by Lemma 3.1. Therefore
the image of H0(ϕ(1)) has dimension ≥ 3, i.e., H0(ϕ(1)) is surjective. Hence ϕ is surjective
and Kerϕ ∼= O(−2) ⊕ O(−1)⊕a−3. Now Kerπ ∼= ΩP2(1)

⊕b−1, and the morphism μ1 :
Kerϕ → Kerπ induced by μ extends to the exact sequence in the statement.

(2) Note that there exists a surjection E−1,1
2 → Cokerϕ1. Denote by ι the inclusion

O(−1)⊕a−3 → O(−2) ⊕ O(−1)⊕a−3, and consider the composite ϕ1 ◦ ι : O(−1)⊕a−3 →
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ΩP2(1). We see that ϕ1 induces a morphism ϕ̄1 : Coker(ι) → Coker(ϕ1 ◦ ι) and that
Coker(ι) ∼= O(−2). Moreover we have the following long exact sequence

0 → Ker(ϕ1 ◦ ι) → Kerϕ1 → O(−2)
ϕ̄1−→ Coker(ϕ1 ◦ ι) → Cokerϕ1 → 0 (5.1)

by the snake lemma. In particular, Cokerϕ1 ∼= Cokerϕ̄1.
If H0(ϕ1(1)) = 0, then ϕ1 ◦ ι = 0 and thus Coker(ϕ1 ◦ ι) ∼= ΩP2(1). If ϕ̄1 = 0,

then Cokerϕ1 ∼= Coker(ϕ1 ◦ ι). Hence E−1,1
2 has ΩP2(1) as a quotient, which is absurd

by Lemma 3.1. Therefore ϕ̄1 : O(−2) → ΩP2(1) is a non-zero morphism. Suppose that
ϕ̄1 is decomposed as ϕ̄1 = sl, where l is an inclusion O(−2) → O(−1) and s is a non-
zero morphism O(−1) → ΩP2(1). The cokernel of the inclusion l : O(−2) → O(−1) is
isomorphic to OL(−1), where L is the line defined by l, and the cokernel of the morphism
s : O(−1) → ΩP2(1) is isomorphic to Ip , where p is a point; thus Cokerϕ̄1 fits in an exact
sequence

0 → OL(−1) → Cokerϕ̄1 → Ip → 0.

Therefore Cokerϕ1 (and hence E−1,1
2 ) has Ip as a quotient, which cannot happen by

Lemma 3.1. Hence ϕ̄1 does not factor as ϕ̄1 = sl. Let s̄ be the non-zero section of H0(ΩP2(3))
determined by ϕ̄1. Then s̄ is a regular section of ΩP2(3) ∼= TP2 , i.e., the zero locus Z of s̄
has dimension ≤ 0. Since c2(TP2) = 3, Z is thereby a 0-dimensional closed subscheme of
length three. Note that Cokerϕ̄1 ∼= IZ (1); this however contradicts Lemma 3.1. Therefore
H0(ϕ1(1)) 
= 0.

Suppose that the image of H0(ϕ1(1)) has dimension one. ThenCoker(ϕ1◦ι) is isomorphic
to the ideal sheaf Ip of some point p, as is shown in the proof of (1). If ϕ̄1 = 0, then
Cokerϕ̄1 ∼= Ip , which is absurd by Lemma 3.1. Hence ϕ̄1 : O(−2) → Ip is non-zero.
Then Cokerϕ̄1 is isomorphic to OC (−p) for some conic C on P

2, which again contradicts
Lemma 3.1. Therefore the image of H0(ϕ1(1)) has dimension at least two.

(2) (a) Suppose that dim ImH0(ϕ1(1)) = 2. Then Coker(ϕ1 ◦ ι) is isomorphic to OL(−p)
for some line L in P2 and some point p in L , as is shown in the proof of (1). If ϕ̄1 = 0, then
Cokerϕ̄1 ∼= OL(−p), which cannot happen by Lemma 3.1. Hence ϕ̄1 : O(−2) → OL(−p)
is non-zero. Then Cokerϕ̄1 ∼= k(w) for some point w on P2, and Kerϕ̄1 ∼= O(−3). The long
exact sequence (5.1) induces an exact sequence

0 → Ker(ϕ1 ◦ ι) → Kerϕ1 → Kerϕ̄1 → 0.

Note here that Kerϕ1 ◦ ι ∼= O(−1)⊕a−5; the above sequence then implies that Kerϕ1 ∼=
O(−3)⊕O(−1)⊕a−5. Now we get the exact sequence in the statement by the snake lemma.

(2) (b) Suppose that dim ImH0(ϕ1(1)) ≥ 3. Then H0(ϕ1(1)) is surjective, and thus ϕ1 ◦ ι

is surjective. Hence Kerϕ1 ◦ ι ∼= O(−2) ⊕ O(−1)⊕a−6. Then the long exact sequence (5.1)
gives an exact sequence

0 → O(−2) ⊕ O(−1)⊕a−6 → Kerϕ1 → O(−2) → 0.

Therefore Kerϕ1 ∼= O(−2)⊕2 ⊕ O(−1)⊕a−6. Now Kerq ∼= ΩP2(1)
⊕b−2, and μ1 induces a

morphism Kerϕ1 → Kerq , which extends to the exact sequence in the statement. ��

6 Global generation of E in case c2 ≤ 7

Theorem 3 Let E be a nef vector bundle of rank r on a projective space Pn with first Chern
class c1 = 3 and second Chern class c2 ≤ 7. Then E is globally generated.
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Proof Consider first the case n = 2. Note that E is 0-regular in the sense of Castelnuovo–
Mumford if h1(E(−1)) = 0 since we have the vanishing (3.4). Since 0-regularity implies
global generation, we may concentrate our attention to the case h1(E(−1)) 
= 0. We shall
work in the setting in §3.1 to apply the Bondal spectral sequence (2.1). Then it follows from
Lemma 5.1 (1) and formula (3.10) that c2 ≥ 6. Moreover the assumption c2 ≤ 7 implies that

h1(E(−1)) = 1 (6.1)

by Lemma 5.1 (2). Lemma 5.1 (1) then shows that E−1,1
2 = 0. Therefore E0,0

3
∼= E by the

exact sequence (3.16). Note that E0,0
3 is a quotient of E0,0

2 since E p,q
2 = 0 if p > 0. Since

E0,0
2 is globally generated by (3.17), this shows that E is globally generated if n = 2 and

c2 ≤ 7.
Consider next the case n ≥ 3. Recall here that E is globally generated if h1(E(−1)) = 0

and E|H is globally generated for any hyperplane H in P
n by [15, Lemma 3].

Suppose now that n = 3. Since E|H is globally generated for any plane H as we have seen
above, we may concentrate our attention to the case h1(E(−1)) 
= 0. Then it follows from
(3.3) that H(E) is not big, and hence c3 = 6c2−27 by (3.23). Thus c3 is odd. Hence c2 is odd
by (3.20). Since c3 is non-negative by (3.7), we see that c2 ≥ 5 by equality c3 = 6c2 − 27;
thus (c2, c3) = (5, 3) or (7, 15). Suppose that (c2, c3) = (7, 15). Then h1(E|H (−1)) = 1 by
(6.1). Hence h0(E|H (−1)) = 0 by (3.11). Since h0(E(−2)) = 0 by (3.1), this implies that
h0(E(−1)) = 0. Note here that Hq(E) = 0 for all q > 0 by (3.2) and that Hq(E|H ) = 0 for
all q > 0 by (3.8). Hence Hq(E(−1)) = 0 unless q = 1. Thus

−h1(E(−1)) = χ(E(−1)) = (c3 − 15)/2 = 0

by (3.20). This contradicts the assumption h1(E(−1)) 
= 0; thus the case where (c2, c3) =
(7, 15) is ruled out. In §6.1, we shall show that the case (c2, c3) = (5, 3) does not happen.
Therefore h1(E(−1)) = 0 and E is globally generated.

If n ≥ 4, then h1(E(−1)) = 0 by (3.2) and E|H is globally generated for any hyperplane
H in P

n as we have seen above. Therefore E is globally generated. ��

6.1 The case where (n, c2, c3) = (3, 5, 3)

We first claim that

Hq(E|L2(−k)) = 0 for all q > 0 and all k ≤ 2 unless (q, k) = (1, 2); (6.2)

h1(E|L2(−2)) = 2, (6.3)

where L2 denotes a plane in P
3. Indeed we have h1(E|L2(−2)) = 2 by (3.10), and

Hq(E|L2(−k)) vanishes for any k ≤ 0 and any q > 0 by (3.8), for (k, q) = (1, 2) and
(2, 2) by (3.4), and for (k, q) = (1, 1) by Lemma 5.1 (1) and (3.10). Since Hq(E(−k)) = 0
for all q > 0 if k ≤ 0 by (3.2), the claims above imply that

Hq(E(−k)) = 0 for all q ≥ 2 and all k ≤ 3 unless (q, k) = (2, 3); (6.4)

h2(E(−3)) ≤ 2. (6.5)

Set
a = h2(E(−3)). (6.6)

Then
a = h1(E(−3)) (6.7)
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by (3.1), (3.18), and (6.4). It follows from (3.1), (3.19), and (6.4) that

h1(E(−2)) = 2. (6.8)

We also have

χ(E(−1)) = −1

by (3.20). By (3.21), we have
h0(E) = r + 3. (6.9)

Note that there exists an exact sequence

0 → H0(E(−1)) → H0(E|L2(−1)) → H1(E(−2)) → H1(E(−1)) → 0

and that h0(E|L2(−1)) = 1 by (3.11) and (6.2). Therefore we have two cases, corresponding
to h0(E(−1)) = 0 or 1. If h0(E(−1)) = 1, then h1(E(−1)) = 2, and we shall consider the
following exact sequence

0 → O(1) → E → F → 0 (6.10)

of coherent sheaves on P
3. Note here that Extq(G, E) ∼= Extq(G,F) if q > 0, that

Hom(O(i),F) = 0 if i ≥ 2, that Hom(O(1),F) = 0 by the assumption h0(E(−1)) = 1,
and that hom(O,F) = r − 1 by (6.9).

6.1.1 Set-up using the Bondal spectral sequence

Suppose that (h0(E(−1)), h1(E(−1))) = (0, 1) (resp. (1, 2)). We apply to E (resp. F) the
Bondal spectral sequence (2.1). It follows from (6.4) that E p,q

2 = 0 for all p if q ≥ 3. We

have Ext2(G, E) ∼= S⊕a
3 by (6.4) and (6.6). Hence E p,2

2 = 0 unless p = −3, and E−3,2
2 =

O(−1)⊕a by (2.5). It follows from (6.7), (6.8), (3.2), and the assumption h1(E(−1)) = 1
(resp. 2) that the right A-module Ext1(G, E) (resp. Ext1(G,F)) has the filtration which
induces the following exact sequences of right A-modules

0 → F → Ext1(G, E) → S⊕a
3 → 0;

0 → S1 → F → S⊕2
2 → 0.

(resp. 0 → F → Ext1(G,F) → S⊕a
3 → 0;

0 → S⊕2
1 → F → S⊕2

2 → 0.)

Correspondingly we obtain the following distinguished triangles

F⊗L
AG → Ext1(G, E)⊗L

AG → O(−1)⊕a[3] →; (6.11)

ΩP3(1)[1] → F⊗L
AG → Ω2

P3
(2)⊕2[2] → (6.12)

(resp. F⊗L
AG → Ext1(G,F)⊗L

AG → O(−1)⊕a[3] →; (6.13)

ΩP3(1)
⊕2[1] → F⊗L

AG → Ω2
P3

(2)⊕2[2] → ) (6.14)

by (2.4). We see that H−1(F⊗L
AG) ∼= E−1,1

2 by (6.11) [resp. (6.13)]. Moreover we have
Hp(F⊗L

AG) = 0 unless p = −2 or −1 by (6.12) [resp. (6.14)]. SetM = H−2(F⊗L
AG).

Then it follows from (6.11) and (6.12) [resp. (6.13 and (6.14)] that M fits in the following
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exact sequences

0 → E−3,1
2 → O(−1)⊕a → M → E−2,1

2 → 0; (6.15)

0 → M → Ω2
P3

(2)⊕2 ϕ−→ ΩP3(1) → E−1,1
2 → 0. (6.16)

(resp. 0 → M → Ω2
P3

(2)⊕2 ϕ−→ ΩP3(1)
⊕2 → E−1,1

2 → 0.) (6.17)

It follows from (6.9) and the assumption h0(E(−1)) = 0 (resp. 1) that the right A-module
Hom(G, E) (resp. Hom(G,F)) is isomorphic to S⊕r+3

0 (resp. S⊕r−1
0 ). Hence E p,0

2 = 0

unless p = 0, and E0,0
2 is isomorphic toO⊕r+3

P3
(resp.O⊕r−1

P3
) by (2.4). Therefore E p,q

2 = 0
unless (p + q, q) = (0, 0), (0, 1), (− 1, 1), (− 1, 2), or (− 2, 1). Then it follows from (2.1)
that E−3,1

2 = 0, and consequently the sequence (6.15) becomes the following exact sequence

0 → O(−1)⊕a → M → E−2,1
2 → 0. (6.18)

Besides (6.16) [resp. (6.17)] and (6.18), the spectral sequence (2.1) induces the following
exact sequences

0 → E−2,1
2 → O⊕r+3

P3
→ E0,0

3 → 0; (6.19)

(resp. 0 → E−2,1
2 → O⊕r−1

P3
→ E0,0

3 → 0; ) (6.20)

0 → E−3,2
3 → O(−1)⊕a → E−1,1

2 → E−1,1
3 → 0; (6.21)

0 → E−3,2
3 → E0,0

3 → E0,0
4 → 0; (6.22)

0 → E0,0
4 → E → E−1,1

3 → 0. (6.23)

(resp. 0 → E0,0
4 → F → E−1,1

3 → 0.) (6.24)

For i = 1 (resp. i = 1, 2) and j = 1, 2, denote by ϕi j the composite of the j th inclusion
Ω2

P3
(2) ↪→ Ω2

P3
(2)⊕2 and the morphism ϕ appearing in the exact sequence (6.16) [resp.

(6.17)] and the i th projection.
We claim here that ϕ11 and ϕ12 (resp. ϕi1 and ϕi2 for each i , and ϕ1 j and ϕ2 j for each j) are

linearly independent in Hom(Ω2
P3

(2),ΩP3(1)). Indeed, if they are not, then we may assume
that ϕ12 = 0 by some row or column elementary transformations; thus ϕ (resp. the composite
of ϕ and the first projectionΩP3(1)

⊕2 → ΩP3(1)) factors through ϕ11 via the first projection
Ω2

P3
(2)⊕2 → Ω2

P3
(2). Note here that the cokernel of ϕ11 is isomorphic to the ideal sheaf Ip

for some point p ∈ P
3 by Lemma 4.2 if ϕ11 
= 0 and toΩP3(1) if ϕ11 = 0. Hence there exists

a surjection E−1,1
2 → Ip by (6.16) [resp. (6.17)] (even if ϕ11 = 0). Consider the composite

of the morphismO(−1)⊕a → E−1,1
2 in (6.21) and the surjection E−1,1

2 → Ip . The cokernel

of the composite O(−1)⊕a → Ip is a quotient of E
−1,1
3 . The composite determines a linear

subspace L ′ containing p and of codimension at most a in P
3, and its cokernel is the ideal

sheaf Jp of p in L ′. Since a ≤ 2 by (6.5) and (6.6), we have dim L ′ ≥ 3− a ≥ 1. Hence we
can take a line L such that p ∈ L ⊆ L ′. Since the restriction Jp → OL(−p) = O(−1) is
surjective, we infer that E−1,1

3 has OL(−1) as a quotient. On the other hand, E−1,1
3 cannot

have a negative degree sheaf as a quotient, since it is a quotient of the nef vector bundle E by
(6.23) [resp. (6.24) and (6.10)]. This is a contradiction. Therefore the claim holds.

In case (h0(E(−1)), h1(E(−1))) = (1, 2), denote by V the vector space generated by ϕi j
(1 ≤ i, j ≤ 2) in the following. If dim V ≤ 3, then the claim above implies that there exist
λi j ∈ K (1 ≤ i, j ≤ 2) such that λ21ϕ11 + λ22ϕ21 = λ11ϕ12 + λ12ϕ22 
= 0. Therefore,
by changing the free basis consisting of two elements of ΩP3(1)

⊕2, we may assume that
ϕ21 = ϕ12 in case dim V ≤ 3. Moreover if dim V = 2, we can make ϕ12 to be zero
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after some row and column elementary transformations, which contradicts the claim above.
Therefore dim V = 3 or 4, and wemay furthermore assume that ϕ11, ϕ12, and ϕ22 are linearly
independent.

Set ϕ0 = ϕ11 and ϕ1 = ϕ12. (resp. Set ϕ0 = ϕ11, ϕ1 = ϕ12, ϕ2 = ϕ21, and ϕ3 = ϕ22.
Note that ϕ1 = ϕ2 in case dim V = 3.)

Let e∗
i be the image of x∗

i via the isomorphism H0(O(1))∗ → H0(TP3(−1)). Let s be

an element of H0(TP3(−1)), and suppose that s = ∑3
i=0 ai e

∗
i for some ai ∈ K . Note that

e∗
0 = −∑3

i=1(xi/x0)e
∗
i and (e∗

1, e
∗
2, e

∗
3) is a local basis of TP3(−1) over D+(x0), where

D+(x0) is the open set defined by x0 
= 0. Thus s = ∑3
i=1{ai − a0(xi/x0)}e∗

i over D+(x0).
Let (e1, e2, e3) be the dual basis ofΩP3(1)|D+(x0). Then theKoszulmorphismϕs fromΩ2

P3
(2)

to ΩP3(1) corresponding to the section s has the representation matrix⎡
⎣ 0 a3 − a0(x3/x0) −(a2 − a0(x2/x0))

−(a3 − a0(x3/x0)) 0 a1 − a0(x1/x0)
a2 − a0(x2/x0) −(a1 − a0(x1/x0)) 0

⎤
⎦ (6.25)

with respect to the bases (e2 ∧ e3, e3 ∧ e1, e1 ∧ e2) and (e1, e2, e3) over D+(x0). Denote this
matrix by M(a0, a1, a2, a3).

Lemma 4.2 enables us to assume, by taking homogeneous coordinates (x0 : x1 : x2 : x3)
of P3 suitably, that ϕi corresponds to the global section e∗

i of TP3(−1) for i = 0, 1.
In case (h0(E(−1)), h1(E(−1))) = (1, 2), Lemma 4.2 furthermore enables us to assume

the following: if dim V = 4, ϕ2 and ϕ3 corresponds respectively to e∗
2 and e∗

3; if dim V = 3
ϕ3 corresponds to e∗

3. Note here that if dim V = 3 then ϕ2 corresponds to e∗
1 since ϕ2 = ϕ1.

We claim here that coker([ϕ0, ϕ1]) : ΩP3(1) → Coker([ϕ0, ϕ1]) is the composite of the
two restrictions ΩP3(1) → ΩP3(1)|L and ΩP3(1)|L → ΩL(1) where L is the line defined
by x2 = x3 = 0. Note first that the morphism [ϕ0, ϕ1] : Ω2

P3
(2)⊕2 → ΩP3(1) has the

representation matrix

[
M(1, 0, 0, 0) M(0, 1, 0, 0)

] =
⎡
⎣ 0 −x3/x0 x2/x0 0 0 0

x3/x0 0 −x1/x0 0 0 1
−x2/x0 x1/x0 0 0 − 1 0

⎤
⎦

with respect to the bases (e2∧e3, e3∧e1, e1∧e2, e′
2∧e′

3, e
′
3∧e′

1, e
′
1∧e′

2) and (e1, e2, e3) over
D+(x0), where (e′

1, e
′
2, e

′
3) is the dual basis of the second component ΩP3(1)|D+(x0) of the

direct sum Ω2
P3

(2)⊕2. Since ei = x0d(xi/x0) for i = 1, 2, 3, the image Im[ϕ0, ϕ1]|D+(x0) of
[ϕ0, ϕ1]|D+(x0) is generated by x0d(x2/x0), x0d(x3/x0), x2d(x1/x0), and x3d(x1/x0). Note
that x2d(xi/x0) = (x2/x0)x0d(xi/x0) and x3d(xi/x0) = (x3/x0)x0d(xi/x0) (1 ≤ i ≤ 3)
and that the quotient of ΩP3(1)|D+(x0) by the submodule generated by x2d(xi/x0) and
x3d(xi/x0) (1 ≤ i ≤ 3) is (ΩP3(1) ⊗ OL)|D+(x0), where L is the line defined by
x2 = x3 = 0. Hence Coker([ϕ0, ϕ1])|D+(x0) is nothing but the quotient ΩL(1)|D+(x0) of
(ΩP3(1) ⊗ OL)|D+(x0) by the submodule generated by x0d(x2/x0) ⊗ 1 and x0d(x3/x0) ⊗
1. Similarly Coker([ϕ0, ϕ1])|D+(x1) is naturally isomorphic to ΩL(1)|D+(x1). Moreover
Coker([ϕ0, ϕ1])|D+(xi ) = 0 for i = 2 and 3. Therefore the claim holds.

6.1.2 The case where (h0(E(−1)), h1(E(−1))) = (0, 1)

Since ϕ = [ϕ0, ϕ1], we see by the claim above that coker(ϕ) : ΩP3(1) → E−1,1
2 is nothing

but the composite ΩP3(1) → ΩP3(1)|L → ΩL(1) of the restrictions, where L is a line.
Therefore E−1,1

2
∼= OL(−1). Then the sequence (6.21) implies that E−1,1

3 is either OL(−1)
or zero, but (6.23) and the nefness of E imply that the former cannot happen. Therefore
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E−1,1
3 = 0 and E0,0

4
∼= E ; thus we obtain a surjection O⊕r+3 → E by (6.19) and (6.22). In

fact, this cannot happen, as can be seen below.
Denote byH the kernel of the surjectionO⊕r+3 → E ;H is a vector bundle of rank three.

Note here that the dual H∨ of H is globally generated. Moreover c1(H∨) = 3 and

c2(H∨) = c2(H) = −c1(H)c1 − c2 = 4.

Furthermore

c3(H∨) = −c3(H) = c2(H)c1 + c1(H)c2 + c3 = 0.

Since H∨ is a globally generated vector bundle of rank three with c3(H∨) = 0, we have an
exact sequence of vector bundles

0 → O → H∨ → H′ → 0.

Then it follows from [5, Proposition 2.4] that H′ ∼= O(1) ⊕ O(2). This however contradicts
that c2(H∨) = 4. The case (h0(E(−1)), h1(E(−1))) = (0, 1) thus cannot happen.

6.1.3 The case where (h0(E(−1)), h1(E(−1))) = (1, 2)

Aswe have shown in §6.1.1, the composite [ϕ0, ϕ1] of ϕ and the first projectionΩP3(1)
⊕2 →

ΩP3(1) has ΩL(1) as its cokernel, where L is the line defined by x2 = x3 = 0. Therefore
E−1,1
2 has OL(−1) as a quotient by (6.17).
It follows from (6.25) that ϕ has, with respect to the bases (e2 ∧ e3, e3 ∧ e1, e1 ∧ e2, e′

2 ∧
e′
3, e

′
3 ∧ e′

1, e
′
1 ∧ e′

2) and (e1, e2, e3, e′
1, e

′
2, e

′
3) over D+(x0), the representation matrix

[
M(1, 0, 0, 0) M(0, 1, 0, 0)
M(0, 0, 1, 0) M(0, 0, 0, 1)

]

if dim V = 4, and the representation matrix

[
M(1, 0, 0, 0) M(0, 1, 0, 0)
M(0, 1, 0, 0) M(0, 0, 0, 1)

]

if dim V = 3. Therefore Coker(ϕ) is supported on the quadric surface defined by x0x3 −
x1x2 = 0 if dim V = 4 and by x22 = 0 if dim V = 3. This implies that ϕ is injective. Hence

M = 0 by (6.17); it follows from (6.18) that a = 0 and E−2,1
2 = 0; thus E−1,1

2
∼= E−1,1

3 by

(6.21). Since E−1,1
2 has OL(−1) as a quotient, so does E−1,1

3 . However E−1,1
3 cannot have

OL(−1) as a quotient by (6.10) and (6.24) since E is nef. Therefore we conclude that the
case (h0(E(−1)), h1(E(−1))) = (1, 2) does not happen.

7 Proof of Theorem 1

As we stated at the end of §1, we always assume that c2 = 9 in this section.
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7.1 Proof for the case n = 2 and h1(E) = 0

It follows from (3.10), (3.11), and (3.12) that

h1(E(−2)) = 6, (7.1)

h0(E(−1)) − h1(E(−1)) = −3, (7.2)

h0(E) = r . (7.3)

As in §3.1, set e0,1 = h0(E(−1)). Then

e0,1 ≤ 1. (7.4)

The proof of this fact goes almost identical to that in case c2 = 8, i.e., that in [12, § 3.1]:
what we have to do is just to change several numerals related to c2 = 8 to those related to
c2 = 9; so we omit the proof of this fact.

We apply to E the Bondal spectral sequence (2.1). As we have seen in §3.1 and Lemma 5.1
(2), E p,q

2 vanishes unless (p, q) = (− 2, 1), (− 1, 1) or (0, 0), and E−2,1
2 and E−1,1

2 fit in
one of the following exact sequences:

0 → E−2,1
2 → O(−3) ⊕ O(−1)

ν2−→ ΩP2(1)
⊕e0,1+1 → E−1,1

2 → k(w) → 0; (7.5)

0 → E−2,1
2 → O(−2)⊕2 μ2−→ ΩP2(1)

⊕e0,1+1 → E−1,1
2 → 0, (7.6)

where k(w) denotes the residue field of some point w in P
2. Recall that each of the exact

sequences is a consequence of the assumption H1(E) = 0. Note that E0,0
2 fits in the following

exact sequence by (3.17)

0 → O⊕3e0,1 → O(1)⊕e0,1 ⊕ O⊕r → E0,0
2 → 0. (7.7)

Lemma 7.1 If E−2,1
2 = 0, then E0,0

2
∼= E0,0

3
∼= O(1)⊕e0,1 ⊕ O⊕r−3e0,1 , and E fits in the

following exact sequence

0 → O(1)⊕e0,1 ⊕ O⊕r−3e0,1 → E → E−1,1
2 → 0. (7.8)

Moreover Hi (E−1,1
2 ) = 0 for all i ; thus E−1,1

2 is the cokernel of the evaluation map H0(E)⊗
O → E .

Proof Since E−2,1
2 = 0, E0,0

2
∼= E0,0

3 by (3.15), and hence E0,0
2 is torsion-free by (3.16).

Therefore (7.7) shows that O(1) is a subsheaf of E0,0
2 if e0,1 = 1, and consequently we

see that E0,0
2 is isomorphic to O(1)⊕e0,1 ⊕ O⊕r−3e0,1 . Hence it follows from (3.16) that E

fits in the desired exact sequence (7.8). Since we have (7.3), H0(O(1)⊕e0,1 ⊕ O⊕r−3e0,1)

is isomorphic to H0(E), and thus H0(E−1,1
2 ) vanishes. Furthermore Hi (E−1,1

2 ) = 0 for
all i since h1(E) = 0 by assumption and h2(E) = 0 by (3.4). Now we have the following
commutative diagram

H0(O(1)⊕e0,1 ⊕ O⊕r−3e0,1) ⊗ O H0(E) ⊗ O

O(1)⊕e0,1 ⊕ O⊕r−3e0,1 E

where the vertical arrows are the evaluation maps. Since the upper horizontal arrow is an
isomorphism, the lower one is injective, and the left vertical arrow is surjective, we infer that
O(1)⊕e0,1 ⊕ O⊕r−3e0,1 is the image of the evaluation map H0(E) ⊗ O → E . Therefore it
follows from (7.8) that E−1,1

2 is the cokernel of the evaluation map H0(E) ⊗ O → E . ��
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Let αi j : O(−2) → ΩP2(1) be the composite of the j th inclusion O(−2) → O(−2)⊕2,
μ2, and the i th projection ΩP2(1)

⊕e0,1+1 → ΩP2(1). The αi j ’s form a matrix [αi j ], which is
another expression of μ2.

Lemma 7.2 For each i , αi1 and αi2 are linearly independent. Similarly, for each j , elements
in the j th column are linearly independent. Furthermore the cokernel of the composite
[α11, α12] of μ2 and the first projection ΩP2(1)

⊕e0,1+1 → ΩP2(1) is supported on a cubic
curve E, and [α11, α12] and μ2 are injective. In particular E−2,1

2 = 0 in (7.6).

Proof First note that E−1,1
2 in (7.6) has as a quotient the cokernel of the composite, say ψ ,

of μ2 and any surjection ΩP2(1)
e0,1+1 → ΩP2(1). Since E−1,1

2 cannot have ΩP2(1) as a
quotient by Lemma 3.1, we observe that the composite ψ cannot be zero.

Suppose that elements in one of the rows or the columns are linearly dependent. After
some row or column elementary transformations, by replacing αi j , we may then assume that
α11 
= 0 and that α12 = 0 by the observation above. The morphism [α11, 0] factors through
the first projection O(−2)⊕2 → O(−2), and Coker([α11, 0]) = Coker(α11). If α11 factors
through O(−1), the cokernel of the induced morphism O(−1) → ΩP2(1) is isomorphic to
Ip for some point p ∈ P

2 and Coker(α11) fits in the following exact sequence

0 → OL(−1) → Coker(α11) → Ip → 0,

where OL(−1) is the cokernel of the induced injection O(−2) → O(−1). In particular
OL(−1) is the torsion subsheaf of Coker(α11), and Ip is the quotient of Coker(α11) by its
torsion subsheaf. This contradicts Lemma 3.1. Therefore α11 does not factor throughO(−1);
this implies that Coker(α11) is isomorphic to IZ (1), where Z is a 0-dimensional closed
subscheme of length three on P

2. This however cannot happen by Lemma 3.1. Therefore
elements in the same row or column are linearly independent.

Since α11 and α12 are linearly independent, the morphism [α11, α12] induces a non-zero
morphism ᾱ12 : O(−2) → Coker(α11), and we see that Coker([α11, α12]) ∼= Coker(ᾱ12).
Denote by Coker(α11)/tors the quotient of Coker(α11) by its torsion subsheaf. As we have
seen above, Coker(α11)/tors is either Ip or IZ (1). If Coker(α11)/tors = Ip , then Coker(ᾱ12)

admits a negative degree line bundle on a conic as a quotient, which is impossible by
Lemma 3.1. Hence Coker(α11) = IZ (1); thus Coker(ᾱ12) is supported on a cubic curve
E passing through Z . Therefore ᾱ12 is injective. Since α11 is also injective, so is [α11, α12].
Hence μ2 is injective, and thus E

−2,1
2 = 0. ��

Lemma 7.3 If E−1,1
2 fits in the exact sequence (7.6), then it fits in the following exact sequence

0 → O(−2)⊕e0,1+3 → O(−1)⊕3e0,1+3 → E−1,1
2 → 0. (7.9)

Proof By Lemma 7.2, E−2,1
2 = 0, and thus E−1,1

2 fits in the following exact sequence

0 → O(−2)⊕2 μ2−→ ΩP2(1)
⊕e0,1+1 → E−1,1

2 → 0. (7.10)

Since ΩP2(1) is isomorphic to TP2(−2), the Euler sequence and the sequence above induce
the desired exact sequence (7.9). ��

Denote by K the kernel of the surjection E−1,1
2 → k(w) in (7.5).

Lemma 7.4 The sheaf K cannot admit the following sheaves as a quotient:

(1) ΩP2(1);

123



Nef vector bundles on a projective space with first Chern… 443

(2) IW (1), where W is a 0-dimensional closed subscheme of lengthW ≥ 3;
(3) IW (2), where W is a 0-dimensional closed subscheme of lengthW ≥ 6.

Proof If K admits ΩP2(1) as a quotient, then E−1,1
2 |L admits OL(−1) as a quotient for a

line L not passing through w. This contradicts Lemma 3.1. Suppose that K admits IW (d)

as a quotient, where lengthW ≥ 3 if d = 1 and lengthW ≥ 6 if d = 2. Then we obtain the
following exact sequence

0 → IW (d) → D → k(w) → 0

for some quotient sheaf D of E−1,1
2 . Note that this sequence does not split since E−1,1

2 does
not admit IW (d) as a quotient by Lemma 3.1. Lemma 4.3 then implies that D ∼= IZ (d),
where Z is a 0-dimensional closed subscheme of lengthZ = lengthW − 1. However E−1,1

2
cannot admit IZ (d) as a quotient by Lemma 3.1. ��

Let βi : O(−1) → ΩP2(1) be the composite of the inclusionO(−1) → O(−3)⊕O(−1),
ν2, and the i th projection ΩP2(1)

⊕e0,1+1 → ΩP2(1), and let γi : O(−3) → ΩP2(1) be
the composite of the inclusion O(−3) → O(−3) ⊕ O(−1), ν2, and the i th projection
ΩP2(1)

⊕e0,1+1 → ΩP2(1). We shall denote by Coker(γi )/tors the quotient of Coker(γi ) by
its torsion subsheaf.

Lemma 7.5 If γi 
= 0, then Coker(γi )/tors is isomorphic to IW (d) for some 0-dimensional
closed subscheme W of P

2 and some integer d, and the possible values of the pair
(lengthW , d) are (7, 2), (3, 1), or (1, 0).

Proof Suppose that γi factors through O(−1). The cokernel of the induced morphism
O(−1) → ΩP2(1) is isomorphic to Ip for some point p ∈ P

2, and Coker(γi ) fits in the
following exact sequence

0 → OC (−1) → Coker(γi ) → Ip → 0,

where C is a conic andOC (−1) is the cokernel of the induced morphismO(−3) → O(−1).
Hence (lengthW , d) = (1, 0) in this case.

Suppose that γi does not factor through O(−1) and that it factors through O(−2). Then
the induced morphismO(−2) → ΩP2(1) does not factor throughO(−1) and the cokernel of
the morphismO(−2) → ΩP2(1) is isomorphic to IZ (1) for some closed subscheme Z ⊂ P

2

of length three. Moreover Coker(γi ) fits in the following exact sequence

0 → OL(−2) → Coker(γi ) → IZ (1) → 0,

where L is the line determined by the induced morphism O(−3) → O(−2) and OL(−2) is
the cokernel of that morphism. Hence (lengthW , d) = (3, 1) in this case.

Finally suppose that γi does not factor through O(−1) nor O(−2). Then γi induces a
regular section s ∈ H0(ΩP2(4)), whose zero locus (s)0 has length seven. Hence Coker(γi )
is isomorphic to IW (2), where W = (s)0. Therefore (lengthW , d) = (7, 2) in this case. ��
Lemma 7.6 For any i , βi is non-zero.

Proof Suppose, to the contrary, that β1 = 0. Then the composite [γ1, β1] of ν2 and the
first projection ΩP2(1)

e0,1+1 → ΩP2(1) factors through O(−3) via the projection O(−3) ⊕
O(−1) → O(−3), and Coker([γ1, 0]) is isomorphic to Coker(γ1). Note that Coker(γ1) is
a quotient of K. It follows from Lemma 7.4 that γ1 
= 0. Then Coker(γ1)/tors ∼= IW (d)

for some 0-dimensional closed subscheme W of P2, and the possible values of the pair
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(lengthW , d) are (7, 2), (3, 1), or (1, 0) by Lemma 7.5. However the values (7, 2) and (3, 1)
are ruled out by Lemma 7.4. Hence (lengthW , d) = (1, 0) and thus the torsion subsheaf of
Coker(γ1) is isomorphic to OC (−1), where C is a conic on P

2. Set {p} = W . There exists
the following commutative diagram with exact rows

0 K E−1,1
2 k(w) 0

0 Coker(γ1) G k(w) 0

for some quotient coherent sheaf G of E−1,1
2 . Denote by D the cokernel of the composite of

the two inclusionsOC (−1) → Coker(γ1) and Coker(γ1) → G. Then we have the following
commutative diagram with exact rows.

0 Coker(γ1) G k(w) 0

0 Ip D k(w) 0

Note here that the bottom row of the diagram above does not split since E−1,1
2 cannot admit

Ip as a quotient by Lemma 3.1. Therefore Lemma 4.3 implies that w = p and that D is
isomorphic to OP2 . Hence G fits in the following exact sequence

0 → OC (−1) → G → OP2 → 0.

Let E1 be the kernel of the composite of the two surjections E → G and G → OP2 . Then
OC (−1) is a quotient of E1. Hence E1|C admits OC (−1) as a quotient, and it also fits in the
following exact sequence

0 → E1|C → E|C → OC → 0.

Since C is a conic, this implies that E|C admits a negative degree quotient, which contradicts
that E is nef. ��

There exists the natural composition

Hom(O(−1),ΩP2(1)) × Hom(O(−3),O(−1)) → Hom(O(−3),ΩP2(1)),

and we have two cases:

– γ1 has β1 as a factor;
– γ1 does not have β1 as a factor.

Lemma 7.7 If γ1 does not have β1 as a factor, then E−2,1
2 = 0 and E−1,1

2 fits in (7.8) and
(7.9).

Proof If γ1 does not have β1 as a factor, then [γ1, β1] induces a non-zero morphism γ̄1 :
O(−3) → Coker(β1). Since β1 
= 0 by Lemma 7.6, this implies that [γ1, β1] is injective.
Hence ν2 is injective and thus E−2,1

2 = 0. Lemma 7.1 then shows that E−1,1
2 lies in (7.8).

Since E−2,1
2 = 0, K fits in the following exact sequence

0 → O(−3) ⊕ O(−1) → ΩP2(1)
⊕e0,1+1 → K → 0.
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This together with the isomorphism ΩP2(1) ∼= TP2(−2) and the Euler sequence induces the
following exact sequence

0 → O(−3) ⊕ O(−2)⊕e0,1+1 → O(−1)⊕3e0,1+2 → K → 0.

Since we have an exact sequence

0 → O(−3) → O(−2)⊕2 → O(−1) → k(w) → 0, (7.11)

the resolution of K above implies that E−1,1
2 fits in the following exact sequence

0 → O(−3)
d2−→ O(−3) ⊕ O(−2)⊕e0,1+3 → O(−1)⊕3e0,1+3 → E−1,1

2 → 0. (7.12)

Lemma 7.1 and this sequence (7.12) then show that H2(d2) is an isomorphism; we infer that
the composite of d2 and the projectionO(−3)⊕O(−2)⊕e0,1+3 → O(−3) is an isomorphism.
Therefore the exact sequence (7.12) is reduced to the exact sequence (7.9). ��

Now if E−1,1
2 lies in (7.6) or if E−1,1

2 lies in (7.5) and γ1 does not have β1 as a factor, then

E−1,1
2 lies also in (7.8) and (7.9) by Lemmas 7.1, 7.2, 7.3, and 7.7. Hence if e0,1 = 1 then

we obtain the following exact sequences:

0 → O(−2)⊕4 → O(−1)⊕6 → E−1,1
2 → 0; (7.13)

0 → O(1) ⊕ O⊕r−3 → E → E−1,1
2 → 0. (7.14)

These two exact sequences imply that E fits in the exact sequence in case (18) of Theorem 1.
If e0,1 = 0 then we obtain the following exact sequences:

0 → O(−2)⊕3 → O(−1)⊕3 → E−1,1
2 → 0; (7.15)

0 → O⊕r → E → E−1,1
2 → 0. (7.16)

These two exact sequences show that E fits in the exact sequence in case (16) of Theorem 1.

Question 1 Does there exist a nef vector bundle fitting in the exact sequence in case (18) of
Theorem 1 ?

Remark 7.1 If E−1,1
2 is in (7.15), then E−1,1

2 is supported on a cubic curve.

Lemma 7.8 If γ1 has β1 as a factor, then e0,1 = 0, E−1,1
2

∼= O, and we have the following
non-split exact sequences:

0 → O(−3) → O⊕r → E0,0
3 → 0; (7.17)

0 → E0,0
3 → E → O → 0. (7.18)

In particular E−1,1
2 is the cokernel of the evaluation map H0(E) ⊗ O → E .

Proof Since γ1 has β1 as a factor, by changing the free basis of O(−3) ⊕ O(−1), we may
assume that γ1 = 0.

Suppose that e0,1 = 1. Then we have the following commutative diagram with exact
rows.

0 O(−3)

γ2

O(−3) ⊕ O(−1)

ν2

O(−1)

β1

0

0 ΩP2(1)

[
0
1

]
ΩP2(1)

⊕2 [1,0]
ΩP2(1) 0
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Since β1 
= 0 by Lemma 7.6, β1 is injective and Coker(β1) = Ip for some point p ∈ P
2.

Hence the diagram above induces an exact sequence

0 → Coker(γ2) → K → Ip → 0.

Denote byD the quotient of E−1,1
2 by Coker(γ2). Then we obtain the following commutative

diagram with exact rows.

0 K E−1,1
2 k(w) 0

0 Ip D k(w) 0

Since E−1,1
2 cannot admit Ip as a quotient by Lemma 3.1, the bottom row of the diagram

above does not split. Hence p = w andD is isomorphic toOP2 by Lemma 4.3. The definition
of D induces the following exact sequence

0 → Coker(γ2) → E−1,1
2 → O → 0.

If γ2 = 0, then Coker(γ2) ∼= ΩP2(1), and thus E−1,1
2

∼= ΩP2(1) ⊕ O, but this is absurd
by Lemma 3.1. Therefore γ2 
= 0, and it follows from Lemma 7.5 that Coker(γ2)/tors is
isomorphic to IW (d) for some 0-dimensional closed subschemeW ofP2 and that the possible
values of the pair (lengthW , d) are (7, 2), (3, 1), or (1, 0). The sequence above induces an
exact sequence

0 → IW (d) → E−1,1
2 /tors → O → 0.

Now Lemma 4.4 implies that there exists a smooth rational curve C such that the dth twist
IW · OC (d) of the inverse image ideal sheaf IW · OC is a negative degree line bundle.
This implies that E−1,1

2 |C admits a negative degree line bundle as a direct summand, which
contradicts Lemma 3.1. Therefore the case e0,1 = 1 cannot happen.

Suppose that e0,1 = 0. Since β1 
= 0 by Lemma 7.6 and γ1 = 0 by assumption, the
exact sequence (7.5) shows that E−2,1

2
∼= O(−3) and that K ∼= Coker(β1) ∼= Ip . Since the

sequence

0 → Ip → E−1,1
2 → k(w) → 0

does not split by Lemma 3.1, we see that p = w and that

E−1,1
2

∼= OP2

by Lemma 4.3. Note here that E0,0
2

∼= O⊕r by (7.7). Hence we obtain the desired exact
sequences (7.17) and (7.18) by (3.15) and (3.16). Moreover the sequence (7.18) does not split
since H0(E0,0

3 ) ∼= H0(E) by (7.3) and (7.17). Furthermore the isomorphism H0(E0,0
3 ) ∼=

H0(E) together with the global generation of E0,0
3 by (7.17) implies that E0,0

3 is the image
of the evaluation map H0(E) ⊗ O → E by the same argument at the end of the proof of
Lemma 7.1. Therefore E−1,1

2 , which is isomorphic to O, is the cokernel of the evaluation
map H0(E) ⊗ O → E by (7.18). ��

Suppose that γ1 has β1 as a factor. We shall give a resolution of E in terms of a full strong
exceptional collection (O(−3),O(−2),O(−1)) of line bundles on P

2. By composing the
Euler exact sequence and the dual of that, we obtain the following exact sequence

0 → O(−3) → O(−2)⊕3 → O(−1)⊕3 → O → 0. (7.19)
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Hence we obtain the following exact sequence

0 → O(−3)⊕r → O(−2)⊕3r → O(−1)⊕3r → O⊕r → 0.

The exact sequence (7.17) then induces the following exact sequence

0 → O(−3)⊕r → O(−2)⊕3r ⊕ O(−3) → O(−1)⊕3r → E0,0
3 → 0. (7.20)

The sequence (7.18) together with (7.20) and (7.19) induces the following resolution of E :

0 → O(−3)⊕r+1 d2−→ O(−2)⊕3r+3 ⊕ O(−3) → O(−1)⊕3r+3 → E → 0.

Since h1(E) = 0 by assumption, the linear map H2(d2) is surjective. Hence the composite
of d2 and the projectionO(−2)⊕3r+3 ⊕O(−3) → O(−3) is non-zero and thus a surjection.
Therefore the resolution above is reduced to that in case (17) of Theorem 1. This completes
the proof of Theorem 1 for the case n = 2, c2 = 9, and h1(E) = 0.

Here we give the following two remarks about the property of E−1,1
2 in (7.13), but they

do not effect the rest of the proof at all, so the reader may skip them.

Remark 7.2 Since O(1)⊕6 is globally generated of rank six, a general morphism from
O(−2)⊕4 to O(−1)⊕6 is a subbundle morphism, and hence its cokernel is a vector bun-
dle. On the other hand, E−1,1

2 is not a vector bundle; indeed, since E−1,1
2 lies also in (7.14),

we see c1(E
−1,1
2 ) = 2 and c2(E

−1,1
2 ) = 7, and if E−1,1

2 were a vector bundle, it would be

a nef vector bundle, so that c2(E
−1,1
2 ) ≤ c1(E

−1,1
2 )2 = 4, which is absurd. Therefore the

morphism O(−2)⊕4 → O(−1)⊕6 in (7.13) is not a general morphism.

Recall that (7.13) comes from the exact sequence (7.10) with e0,1 = 1:

0 → O(−2)⊕2 μ2−→ ΩP2(1)
⊕2 → E−1,1

2 → 0.

Remark 7.3 We have the following commutative diagram with exact rows

0 O(−2)⊕2 μ2
ΩP2(1)

⊕2

[1,0]

E−1,1
2 0

0 O(−2)⊕2 [α11,α12]
ΩP2(1) Coker([α11, α12]) 0

and an exact sequence

0 → ΩP2(1) → E−1,1
2 → Coker([α11, α12]) → 0.

Since α11 and α12 are linearly independent and so are α11 and α21, there exist no elements
λ ∈ K and λi j ∈ K (1 ≤ i, j ≤ 2) such that[

α11 α12

α21 α22

] [
λ11 λ12
λ21 λ22

]
=

[
1
λ

] [
α11 α12

]
.

Hence no splitting injection t [1, λ] (λ ∈ K ) of the projection [1, 0] induces a splitting
injection of the surjection E−1,1

2 → Coker([α11, α12]).
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7.2 The sheaf E−1,1
2 in (7.14) is torsion-free

We shall apply the following lemma in §7.3.

Lemma 7.9 The sheaf E−1,1
2 in (7.14) is a torsion-free sheaf of rank two with c1(E

−1,1
2 ) = 2

and c2(E
−1,1
2 ) = 7.

Proof Denote by F the cokernel of the composite of the two inclusions O(1) → O(1) ⊕
O⊕r−3 and O(1) ⊕ O⊕r−3 → E . Then c1(F) = 2 and c2(F) = 7. Moreover F fits in the
following exact sequence

0 → O⊕r−3 → F → E−1,1
2 → 0.

Let (e1, e2, . . . , er−3) be the free basis of O⊕r−3. For 0 ≤ s ≤ r − 3, denote by O⊕s the
submodule generated by the set {ei |i ≤ s} in O⊕r−3 and by Fs the quotient of F by O⊕s .
We have the following exact sequence

0 → O → Fs → Fs+1 → 0.

Note that F0 = F and that Fr−3 = E−1,1
2 .

We shall show that Fs is torsion-free for all s (0 ≤ s ≤ r − 3) by induction on s. Now
consider the case s = 0. Since we have (3.1) and E is locally free, the singular locus of F
has codimension ≥ 2. Hence it follows from [11, Lemma 5.4] that F is torsion-free; thus the
claim holds for the case s = 0.

Suppose that Fs is torsion-free. We shall show that Fs+1 is torsion-free by contradiction.
For simplicity, by changing the symbols, we denote Fs by F and Fs+1 by F+, and assume
that F is a torsion-free sheaf with c1(F) = 2 and c2(F) = 7, that F cannot admit a negative
degree line bundle on a line or a conic as a quotient, and that F+ is not torsion-free. Let
F∨∨ be the double dual of F . Then F∨∨ is a nef vector bundle with first Chern class two by
Lemma 9.1. Denote by Q the cokernel of the inclusion F → F∨∨. Then we have

lengthQ = c2(F) − c2(F∨∨) = 7 − c2(F∨∨). (7.21)

Denote by α the composite of the two inclusionsO → F and F → F∨∨, and let F∨∨/O
be the cokernel of α. If h0(F∨∨(−1)) = 0, then F∨∨/O is torsion-free by [11, Lemma
5.4]. Since F+ is a subsheaf of F∨∨/O and it has a non-zero torsion subsheaf, we infer that
h0(F∨∨(−1)) 
= 0. It then follows from [11, Theorem 6.5] that F∨∨ satisfies one of the
following:

(1) F∨∨ ∼= O(2) ⊕ O⊕ f −1;
(2) F∨∨ ∼= O(1)⊕2 ⊕ O⊕ f −2;
(3) F∨∨ fits in an exact sequence 0 → O(−1) → O(1) ⊕ O⊕ f → F∨∨ → 0.

In particular, we see that c2(F∨∨) ≤ 2. Therefore lengthQ ≥ 5 by (7.21). Since F does not
admit a negative degree line bundle on a line as a quotient, we infer that lengthQ|L ≤ 2 for
any line L . Similarly we infer that lengthQ|C ≤ 4 for any smooth conic C by the assumption
on F . If Q is generated by a single element, then Q is isomorphic to the structure sheaf OZ

of the scheme-theoretic support Z of Q. Lemma 4.4 then shows the existence of a conic C
such that lengthZ ∩ C ≥ 5. Hence lengthQ|C = lengthOZ |C ≥ 5, which is a contradiction.
In the following, we assume that Q is not generated by a single element.

Suppose that the case (1) holds. Let Q1 be the image of the composite of the inclusion
O(2) → F∨∨ and the surjection F∨∨ → Q. Denote by Q2 the quotient of Q by Q1. Then
we have a surjection O⊕ f −1 → Q2. Let G be the kernel of this surjection O⊕ f −1 → Q2.
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Then we have a surjection F → G. Suppose that Q2 
= 0. Then there exists a line L such
that lengthQ2|L ≥ 1. This implies that the kernel of the surjection O⊕ f −1

L → Q2|L , i.e., a
quotient of G|L has negative degree. Since we have a surjection F |L → G|L , this contradicts
the assumption on F . Therefore Q2 = 0; thus Q1 ∼= Q. Hence we obtain a surjection
O(2) → Q ∼= Q(2), and thus Q is generated by a single element. This contradicts the
assumption. Hence the case (1) does not happen.

Suppose that we are in case (2) or (3). We have an inclusionO(1) → F∨∨. Denote by F ′
the cokernel of the inclusion. If F∨∨ lies in the case (2), then F ′ ∼= O(1) ⊕ O⊕ f −2. If F∨∨
lies in the case (3), then F ′ is a torsion-free sheaf with c1(F ′) = 1 and c2(F ′) = 1. Hence its
double dualF ′∨∨ is eitherO(1)⊕O⊕ f −2 or TP2(−1)⊕O⊕ f −3. IfF ′∨∨ ∼= TP2(−1)⊕O⊕ f −3,
then c2(F ′) = 1 = c2(F ′∨∨); thus F ′ and F ′∨∨ are isomorphic. In particular F ′ is locally
free. If F ′∨∨ ∼= O(1)⊕O⊕ f −2, then F ′ is Iq(1)⊕O⊕ f −2 for some point q . LetH1 andQ1

be respectively the kernel and the image of the composite of the inclusionO(1) → F∨∨ and
the projection F∨∨ → Q. Denote by G the quotient of F by H1 and by Q2 the quotient of
Q byQ1. SinceH1(−1) is a coherent subsheaf ofO, it is the ideal sheaf IZ1 of some closed
subscheme Z1 of P2; thusQ1(−1) ∼= OZ1 . SinceQ1 is a subsheaf ofQ, Z1 is 0-dimensional.
Hence Q1 ∼= OZ1 . Now we have the following commutative diagram with exact rows and
columns.

0 0 0

0 IZ1(1) O(1) OZ1 0

0 F F∨∨ Q 0

0 G F ′ Q2 0

0 0 0

(7.22)

We claim that lengthQ2|L ≤ 1 for any line L; this follows from the fact that G|L cannot
admit a line bundle of negative degree as a quotient, but a careful argument is needed if
F ′ ∼= Iq(1) ⊕ O⊕ f −2 and q ∈ L; suppose that lengthQ2|L ≥ 1 for a line L passing
through q . Note here that Iq(1)|L is isomorphic to OL ⊕ k(q). Since G|L does not admit
a line bundle of negative degree as a quotient, we infer that the composite of the inclusion
k(q) → Iq(1)|L → F ′|L and the surjection F ′|L → Q2|L must be surjective. Hence
lengthQ2|L = 1. Therefore the claim holds.

The claim above implies, in particular, that the number of minimal (non-zero) generators
of Q2,p at each point p is at most one. Hence it follows from the claim above that Q2 is
isomorphic to the residue field k(p) of some point p unless Q2 is zero.

IfQ2 = 0, thenQ ∼= Q1 ∼= OZ1 , which contradicts our assumption thatQ is not generated
by a single element. Hence Q2 ∼= k(p). Then lengthZ1 ≥ 4. If p /∈ Z1, then the support Z
of Q is the disjoint union of Z1 and p, and we see that Q ∼= OZ ; this case is also ruled out.
In the following, we assume that p ∈ Z1.

We claim that lengthZ1 ∩ L ≤ 2 for any line L . If OZ1 |L → Q|L is injective, then the
claim holds since lengthQ|L ≤ 2. Suppose that OZ1 |L → Q|L is not injective. Then p ∈ L .
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Now pull back to L the diagram (7.22); the left half of the diagram becomes the following
commutative diagram with exact rows.

IZ1(1)|L F |L G|L 0

0 OL(1) F∨∨|L F ′|L 0

By the snake lemma, the diagram above induces the following exact sequence

κ → OZ1 |L → Q|L → k(p) → 0, (7.23)

where κ denotes the kernel of the morphism G|L → F ′|L . Note here that κ ∼= k(p); indeed,
the defining morphism G|L → F ′|L of κ also fits in the following commutative diagram with
exact rows,

0 G(−1) G G|L 0

0 F ′(−1) F ′ F ′|L 0

and this diagram induces the following exact sequence by the snake lemma

0 → κ → k(p) → k(p) → k(p) → 0;
thus the isomorphism κ ∼= k(p) follows. Since Ker(OZ1 |L → Q|L) 
= 0 by assumption, the
exact sequence (7.23) together with the isomorphism κ ∼= k(p) induces the following exact
sequence

0 → k(p) → OZ1 |L → Q|L → k(p) → 0; (7.24)

in particular k(p) → OZ1 |L is injective. Indeed, the exact sequence (7.23) induces a surjec-
tion κ → Ker(OZ1 |L → Q|L), and this is a non-zero K -linear from κ ∼= k(p) ∼= K ; thus the
injectivity follows.Now the exact sequence (7.24) shows that lengthZ1∩L = lengthOZ1 |L =
lengthQ|L ≤ 2.

We claim here thatα factors through some subsheafO(1) ofF∨∨. Assume, to the contrary,
that α does not factor through any O(1). Recall and observe here that F∨∨/O cannot be
torsion-free, since its subsheafF+ contains a non-zero torsion subsheaf. Suppose thatF∨∨ ∼=
O(1)⊕2 ⊕ O⊕ f −2. The composite of α and the projection F∨∨ → O⊕ f −2 is zero, since
otherwise F∨∨/O would be locally free. Hence α factors throughO(1)⊕2. Since α does not
factor through anyO(1), the cokernel of the induced morphismO → O(1)⊕2 is I(2), where
I is the ideal sheaf of some point. Since it fits in the following exact sequence

0 → I(2) → F∨∨/O → F ′ → 0,

we infer that F∨∨/O is torsion-free, but this contradicts the observation above. Suppose that
we are in case (3). ThenF ′ is either TP2(−1)⊕O⊕ f −3 or Ip(1)⊕O⊕ f −2. Now α induces an
injection O → F ′, since α does not factor through O(1). Note here that the cokernel F ′/O
of the injection cannot be torsion-free, since it fits in the following exact sequence

0 → O(1) → F∨∨/O → F ′/O → 0

and F∨∨/O cannot be torsion-free. If F ′ = TP2(−1) ⊕ O⊕ f −3, then it follows from [11,
Lemma 5.4] thatF ′/O is torsion-free, which is a contradiction. IfF ′ = Ip(1)⊕O⊕ f −2, then
F ′/O is isomorphic to either Ip(1) ⊕ O⊕ f −3 or OL ⊕ O⊕ f −2 for some line L containing
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p, but the former is ruled out since it is torsion-free. Hence F ′/O is OL ⊕ O⊕ f −2. Now we
have the following commutative diagram with exact rows.

0 F+ F∨∨/O Q 0

0 G/O OL ⊕ O⊕ f −2 k(p) 0

We see that (G/O)|L admits a negative degree line bundle as a quotient. This is a contradiction.
Therefore the claim holds.

Note here that the composite of α and the surjection F∨∨ → Q is zero, since α factors
through F by definition. Hence the claim above implies that α factors through not onlyO(1)
but also IZ1(1). Therefore Z1 lies on a line L . Since lengthZ1 ≥ 4, this contradicts the claim
that lengthZ1 ∩ L ≤ 2. Therefore we conclude that F+ is torsion-free. ��

7.3 Proof for the case n = 2 and h1(E) > 0

Set s = h1(E). Then we have the following exact sequence

0 → E → E0 → O⊕s → 0

which induces an isomorphism H0(O⊕s) ∼= H1(E). It follows from [10, Theorem 6.2.12
(ii)] that E0 is a nef vector bundle of rank r + s with first Chern class three, second Chern
class nine, and h1(E0) = 0. Since H0(E) ∼= H0(E0), the image E1 of the evaluation map
H0(E0) ⊗ O → E0 is contained in E . Denote by F the quotient of E by E1. By abuse of
notation, we also denote by E−1,1

2 the cokernel of the evaluation map H0(E0) ⊗ O → E0.
Then we have the following commutative diagram with exact rows.

0 E E0 O⊕s 0

0 F E−1,1
2 O⊕s 0

Since we have a surjection E−1,1
2 → O⊕s with s ≥ 1, Remark 7.1 and Lemmas 7.8 and

7.9 imply that E−1,1
2 is either O or a torsion-free sheaf of rank two with c1(E

−1,1
2 ) = 2 and

c2(E
−1,1
2 ) = 7. If E−1.1

2 is the latter, then s = 1 and F ∼= IZ (2) for some 0-dimensional
closed subscheme Z of length seven. Lemma 4.4 then shows that E admits a negative degree
quotient, which contradicts that E is nef. Hence E−1,1

2
∼= O, and thus F = 0, E1 = E , and

E0 and E1 fit in the following exact sequences

0 → O(−3) → O⊕r+1 → E1 → 0;
0 → E1 → E0 → O → 0

as in (7.17) and (7.18). Hence we obtain the case (15) of Theorem 1, for n = 2.

7.4 Proof for the case n ≥ 3

What we have to show in case n ≥ 3 is the following lemma.
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Lemma 7.10 If n ≥ 3, then c3 = 27 and h0(E(−1)) ≤ 1. Moreover E satisfies one of the
following:

(1) h0(E(−1)) = 0, hn−3(E(2 − n)) = 0, and E lies in the case (15) of Theorem 1;
(2) h0(E(−1)) = 1;
(3) n ≥ 4, h0(E(−1)) = 0, and hn−3(E(2 − n)) = 1.

Proof Weshall first show that h0(E(−1)) ≤ 1by induction onn ≥ 3. It follows from (3.1) that
h0(E(−1)) ≤ h0(E|H (−1)) for any hyperplane H in P

n . Note here that h0(E|H (−1)) ≤ 1
by induction hypothesis if n ≥ 4 and by what we have seen in §7.1 and §7.1 if n = 3. Hence
h0(E(−1)) ≤ 1.

Recall here that E is globally generated if h1(E(−1)) = 0 and E|H is globally generated
for any hyperplane H in P

n by [15, Lemma 3]. In order to show that E lies in the case (15)
of Theorem 1, it is enough to show that h0(E) = r + 1 and that E is globally generated.

Suppose that n = 3. As we have seen in §7.1, we have h1(E|H ) ≤ 1.
Suppose furthermore that h0(E(−1)) = 1. Then we get the case (2) of Lemma 7.10 in

case n = 3. Note here that we have c3 = 27 in this case. Indeed, the argument above shows
that h0(E|H (−1)) = 1, and this implies that h1(E|H ) = 0 as we have also seen in §7.1 and
§7.1. It then follows from (3.2) and (3.4) that hq(E(−1)) = 0 for q ≥ 2. Now we have

1 ≥ 1 − h1(E(−1)) = χ(E(−1)) = (c3 − 25)/2

by (3.20).Note here that c3 ≥ 27by (3.23).Hencewe infer that c3 = 27 and thath1(E(−1)) =
0.

Suppose furthermore that h0(E(−1)) = 0. It follows from h1(E|H ) ≤ 1 and (3.2) that
h2(E(−1)) ≤ 1 and that equality holds if and only if h1(E|H ) = 1. Moreover we have
h3(E(−1)) = 0 by (3.2) and (3.4). It then follows from (3.20) that

1 ≥ −h1(E(−1)) + h2(E(−1)) = χ(E(−1)) = (c3 − 25)/2.

Since c3 ≥ 27 by (3.23), this implies that c3 = 27, that h2(E(−1)) = 1, and that h1(E(−1)) =
0. Hence h1(E|H ) = 1. As we have seen in §7.3, this implies that E|H is globally generated
and that h0(E|H ) = r + 1. Therefore E is globally generated and h0(E) = r + 1. This is the
case (1) of Lemma 7.10 in case n = 3.

Suppose that n ≥ 4. If h0(E(−1)) = 1, we get the case (2) of Lemma 7.10. Suppose that
h0(E(−1)) = 0. We shall show that hn−3(E(2 − n)) ≤ 1 by induction on n ≥ 4. Note here
that hq(E(3−n)) = 0 for all q > 0 by (3.2). Hence hn−3(E(2−n)) ≤ hn−4(E|H (3−n)) ≤ 1
by induction hypothesis if n ≥ 5 and bywhat we have shown, i.e., h0(E|H (−1)) ≤ 1 if n = 4.
If hn−3(E(2 − n)) = 1, we obtain the case (3) of Lemma 7.10.

Suppose that n ≥ 4, that h0(E(−1)) = 0, and that hn−3(E(2 − n)) = 0. We claim here
that E lies in the case (15) of Theorem 1. We proceed by induction not only on n ≥ 4 but
also on n ≥ 3; if n = 3, then the two conditions h0(E(−1)) = 0 and hn−3(E(2 − n)) = 0
become the same and E lies in the case (15) of Theorem 1 as we have seen above. Suppose
now that n ≥ 4. The assumption hn−3(E(2 − n)) = 0 implies that hn−4(E|H (3 − n)) = 0
by (3.2) if n ≥ 5 and by the assumption h0(E(−1)) = 0 if n = 4. Hence we infer that
h0(E|L3(−1)) = hn−3(E(2 − n)) = 0 for any linear subspace L3 of dimension three in P

n .
Therefore we see that h0(E|H (−1)) ≤ h0(E|L3(−1)) = 0 by (3.1). Now it follows from the
induction hypothesis that E|H lies in the case (15) of Theorem 1. Thus h0(E|H ) = r + 1
and E|H is globally generated. Moreover h1(E(−1)) = 0 by (3.2) and h0(E(−1)) = 0 by
assumption. Hence h0(E) = r + 1 and E is globally generated. ��
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8 Several remarks on Theorem 1

Remark 8.1 The exact sequence in the case (7) of Theorem 1 induces the following

0 → TP3(−2) → O(1) ⊕ O⊕r+2 → E → 0,

and, dualizing this, we obtain the following exact sequence

0 → E∨ → O(−1) ⊕ O⊕r+2 → ΩP3(2) → 0.

Note that the injection H0(E∨) → H0(O(−1) ⊕ O⊕r+2) induces a splitting injection O ⊗
H0(E∨) → O⊕r+2 and that the composite of two splitting injectionO⊗ H0(E∨) → O⊕r+2

and O⊕r+2 → O(−1) ⊕ O⊕r+2 is equal to the composite of O ⊗ H0(E∨) → E∨ and
E∨ → O(−1) ⊕ O⊕r+2. Thus O ⊗ H0(E∨) → E∨ is also a splitting injection. Hence
E∨ ∼= E∨

0 ⊕ O ⊗ H0(E∨) for some vector bundle E0 of rank s = r − h0(E∨). Since
c3(E0) = 2 
= 0, we infer that s ≥ 3. Note that h0(E∨

0 ) = 0 and that E∨
0 fits in an exact

sequence

0 → E∨
0 → O(−1) ⊕ O⊕s+2 → ΩP3(2) → 0.

Since h0(ΩP3(2)) = 6 by the Bott formula [14, p. 8], we see that s ≤ 4. Moreover h1(E∨
0 ) =

4−s. The image of E∨
0 → O(−1)⊕O⊕s+2 → O(−1) is IZ (−1) for some closed subscheme

Z in P
3.

Suppose that Z = ∅. Let F∨ be the kernel of the surjection E∨
0 → O(−1). Then F fits in

an exact sequence

0 → TP3(−2) → O⊕s+2 → F → 0,

andF is a nef vector bundle of rank s−1 with c1(F) = 2. Moreover, as we have seen in [11,
Remark 6.7], F ∼= ΩP3(2) if s = 4 and F ∼= N (1) if s = 3 where N is a null correlation
bundle on P3. Hence E is eitherO(1)⊕ΩP3(2)⊕O⊕r−4 orO(1)⊕N (1)⊕O⊕r−3 if Z = ∅.
Remark 8.2 Suppose that E is in the case (8) of Theorem 1. Then E hasO⊕r−4 as a subbundle;
let E0 be the quotient bundle E/O⊕r−4 of rank four. In [1, §6 III (a)], it is stated that E0 ∼=
ΩP4(2). (Therefore we see that E ∼= ΩP4(2) ⊕ O⊕r−4.)

For the sake of completeness, we give a different proof of this result in our context. First
note that E0 fits in an exact sequence

0 → TP4(−3) → O(−1)⊕10 → O⊕10 → E0 → 0.

Therefore we obtain the following exact sequence

0 → E∨
0 (−1) → O(−1)⊕10 → O⊕10 → ΩP4(2) → 0.

We split this sequence into the following two exact sequences:

0 → E∨
0 (−1) → O(−1)⊕10 → G → 0; (8.1)

0 → G → O⊕10 → ΩP4(2) → 0. (8.2)

We claim here that the induced map H0(O⊕10) → H0(ΩP4(2)) is an isomorphism. Since
h0(ΩP4(2)) = 10 by the Bott formula [14, p. 8], it is enough to show that the map is injective.
Suppose, to the contrary, that there exists a subbundle O → O⊕10 such that the composite
O → O⊕10 → ΩP4(2) is zero. Then the subbundle morphism O → O⊕10 induces a
subbundle morphism O → G; let G0 be the quotient bundle G/O. The composite of the
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subbundle morphism O → G and the extension class in Ext1(G, E∨
0 (−1)) corresponding to

(8.1) lies in H1(E∨
0 (−1)), and it gives rise to an exact sequence

0 → E∨
0 → F → O(1) → 0. (8.3)

Then F is a vector bundle, and it also fits in an exact sequence

0 → F → O⊕10 → G0(1) → 0.

Hence F∨ is nef. On the other hand, it follows from (8.3) that c3(F∨) = −2 since c2 = 4
and c3 = 2. This contradicts the non-negativity of the Chern classes of nef vector bundles.
Therefore the claim holds. Hence we may assume that the dual of (8.2) is nothing but the
exact sequence induced by the two wedge ∧2(O⊕5) → ∧2(TP4(−1)) of the surjection in the
Euler exact sequence

0 → O(−1) → O⊕5 → TP4(−1) → 0. (8.4)

In particular, G ∼= Ω2
P4

(2). Thus the exact sequence (8.1) implies an exact sequence

0 → E∨
0 → O⊕10 → Ω2

P4
(3) → 0. (8.5)

Next we claim that the induced map H0(O⊕10) → H0(Ω2
P4

(3)) is an isomorphism. Since

h0(Ω2
P4

(3)) = 10 by the Bott formula, it is enough to show that the map is injective. Suppose,

to the contrary, that there exists a subbundle O → O⊕10 such that the composite O →
O⊕10 → Ω2

P4
(3) is zero. Then the subbundle morphism O → O⊕10 induces a subbundle

morphismO → E∨
0 ; let E∨

1 be the quotient bundle E∨
0 /O. Then E∨

1 fits in an exact sequence

0 → E∨
1 → O⊕9 → Ω2

P4
(3) → 0.

Hence it follows from the Bott formula that h0(E1) = 9. Since h0(E0) = 10, this implies
that E0 ∼= E1 ⊕ O. Thus c4(E0) = 0, which however contradicts that c4 = 1. Therefore
H0(O⊕10) → H0(Ω2

P4
(3)) is an isomorphism, and we conclude that the exact sequence

(8.5) is nothing but the exact sequence induced by the two wedge∧2(O⊕5) → ∧2(TP4(−1))
of the surjection in the Euler exact sequence (8.4). Therefore E0 ∼= ΩP4(2).

Remark 8.3 Suppose that n = 4 and that E fits in an exact sequence in the case (10) of
Theorem 1. Then E is an extension of the Tango bundle by a trivial bundle O⊕r−3.

The reason is as follows. Since E is globally generated, E has O⊕r−4 as a subbundle;
denote by E0 the quotient bundle E/O⊕r−4. Since E0 is globally generated of rank four with
c4(E0) = 0, E0 has also O as a subbundle; denote by E1 the quotient bundle E0/O. We show
that E1 is the Tango bundle. First note that the dual E∨

1 of E1 fits in an exact sequence

0 → E∨
1 → O⊕7 → ΩP4(2) → 0.

Note also that h0(E∨
1 ) = 0; indeed, if h0(E∨

1 ) 
= 0, then E1 would admit O as a direct
summand, which contradicts the fact that c3(E1) = 5 
= 0 and the rank of E1 is three. Since
h0(ΩP4(2)) = 10 by the Bott formula [14, p. 8], this implies that h1(E∨

1 ) = 3. Now we have
an isomorphism Ext1(Ext1(O, E∨

1 ) ⊗ O, E∨
1 ) ∼= End(Ext1(O, E∨

1 )); let ξ be the element in
Ext1(Ext1(O, E∨

1 ) ⊗ O, E∨
1 ) corresponding to the identity in End(Ext1(O, E∨

1 )). Consider
the extension

0 → E∨
1 → F → Ext1(O, E∨

1 ) ⊗ O → 0

corresponding to ξ ; then H0(F) ∼= H0(E∨
1 ) = 0 and H1(F) = 0. Let

0 → O⊕7 → O⊕10 → Ext1(O, E∨
1 ) ⊗ O → 0
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be the extension corresponding to the image of ξ via the map

Ext1(Ext1(O, E∨
1 ) ⊗ O, E∨

1 ) → Ext1(Ext1(O, E∨
1 ) ⊗ O,O⊕7).

Then F fits in an exact sequence

0 → F → O⊕10 → ΩP4(2) → 0.

Since h0(F) = h1(F) = 0, the induced map H0(O⊕10) → H0(ΩP4(2)) is an isomorphism.
Therefore F∨ ∼= Ω2

P4
(3), and thus E1 is the Tango bundle.

According to [8, §4], Trautmann [20] and Vetter [21] give an explicit construction of the
bundle which is, up to taking duals and twists by O(1), the Tango bundle.

In the following, we give an example in case (16) of Theorem 1.

Example 1 Let ψ : O(−2)⊕3 → O(−1)⊕3 be the morphism defined by a matrix⎡
⎣0 y x − λz
x 0 y
z z − x 0

⎤
⎦ ,

where (x : y : z) are homogeneous coordinates of P2 and λ ∈ K\{0, 1}. Then Coker(ψ)

is supported on an elliptic curve E : y2z = x(x − z)(x − λz), and its Chern polynomial
ct (Coker(ψ)) = 1+3t +9t2. Moreover h0(Coker(ψ)) = 0. Take a sufficiently large integer
r (e.g., r ≥ 6) and a general morphism ψ ′ : O(−2)⊕3 → O⊕r , and consider a subbundle
morphism Ψ = t [ψ ′, ψ] : O(−2)⊕3 → O⊕r ⊕O(−1)⊕3. Let E be the cokernel of Ψ . Then
E fits in an exact sequence

0 → O⊕r ϕ−→ E → Coker(ψ) → 0,

where c1(E) = 3 and c2(E) = 9. The degeneracy locus Z of the composite of a general
inclusion O⊕r−1 ↪→ O⊕r and ϕ has codimension two, and we see that the cokernel of the
composite is isomorphic to IZ (3), where Z is a 0-dimensional closed subscheme of length
9 in P

2. Moreover we have the following exact sequence

0 → OP2 → IZ (3) → Coker(ψ) → 0.

Therefore Z lies on the elliptic curve E , and Coker(ψ) is isomorphic to OE (d), where d is
a divisor of degree zero on E ; thus E fits in the following exact sequence

0 → O⊕r → E → OE (d) → 0.

This implies that E is nef. Finally note that d 
= 0 since h0(Coker(ψ)) = 0.

We end this section with the following question about some properties of a nef vector
bundle E in case (16) of Theorem 1.

Question 2 Is the support of the evaluation map H0(E) ⊗O → E in case (16) of Theorem 1
necessarily reduced, irreducible and nonsingular?
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9 Nef but non-globally generated vector bundles

Lemma 9.1 Let F be a nef vector bundle on a smooth projective surface X. Let E0 be a
torsion-free quotient of F , i.e., there exists a surjection F → E0 with E0 a torsion-free
coherent sheaf. Let E denote the double dual E∨∨

0 of E0. Then E is a nef vector bundle.

Proof Since E is a reflexive sheaf on a smooth surface, E is a vector bundle. To show that
E is nef, it is enough to show that, for any finite morphism C → X from a smooth curve
C , every quotient line bundle L of E|C has non-negative degree. Note here that the natural
injection E0 → E induces a generically injective morphism E0|C → E|C . Now letM be the
image of the composite of the morphism E0|C → E|C and the surjection E|C → L. Since
the composite of F |C → E0|C and E0|C → M is surjective and F is nef, we see thatM has
non-negative degree. Hence L has non-negative degree since there is an injection M → L
of line bundles on the smooth curve C . Therefore E is nef. ��

As is indicated by the statement in Lemma 5.1 (2) (a), we can construct a nef but non-
globally generated vector bundle on P

2 if c1 = 3 and c2 = 8. See also Example 3 in §10
(besides Example 1 in the previous section) for an example of a nef but non-globally generated
vector bundle on P2 with c1 = 3 and c2 = 9.

Proof of Proposition 2 Given an integer r ≥ 2 and a closed point w in P
2, note first that

there exists a section s in H0(O(3)⊕r+1) such that the zero locus (s)0 of s is {w} as closed
subschemes. Letϕ : O(−3) → O⊕r+1 be themorphism determined by s, and E0 the cokernel
of ϕ. The dual ϕ∨ : O⊕r+1 → O(3) of ϕ has Iw(3) as its image, and we obtain an exact
sequence

0 → E∨
0 → O⊕r+1 → Iw(3) → 0.

On the other hand, the ideal sheaf Iw sits in an exact sequence

0 → O(−2) → O(−1)⊕2 → Iw → 0. (9.1)

Therefore TorOw

i (Iw(3), k(w)) = 0 for i > 1. Hence E∨
0 is a vector bundle. The exact

sequence (9.1) also implies that Ext1(Iw(3),O) ∼= k(w). Let E be the double dual E∨∨
0 of

E0. Since Hom(Iw(3),O) ∼= O(−3), the vector bundle E fits in the desired exact sequence

0 → O(−3)
ϕ−→ O⊕r+1 → E → k(w) → 0. (9.2)

Suppose next that a vector bundle E fits in the exact sequence (9.2). We split the sequence
(9.2) into the following two exact sequences:

0 → O(−3) → O⊕r+1 → E0 → 0;
0 → E0 → E → k(w) → 0.

We see that E0 is a torsion-free sheaf of rank r with c1(E0) = 3, c2(E0) = 9, and h1(E0) = 1.
We have E ∼= E∨∨

0 , and thus E is a nef vector bundle by Lemma 9.1. Moreover c1 = 3 and
c2 = 8. Since c2 < 9, we obtain h1(E) = 0 by (3.8). Hence H0(E0) ∼= H0(E). Therefore E
is not globally generated. ��
Remark 9.1 If r = 2, the exact sequence in Proposition 2 already appears in [9, 3.2.5].
Professor Adrian Langer kindly informed the author of this fact and that he ruled out this
case by mistake.
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10 Some examples

Let X be a smooth projective variety, and E a vector bundle on X of rank r . It is well known
(see, e.g., [2, Statement(folklore) 4.1]) that if E is globally generated then r−1 general global
sections of E define an injectionO⊕r−1

X → E and this injection extends to an exact sequence

0 → O⊕r−1
X → E → IZ ⊗ det E → 0

where Z is a locally complete intersection subscheme of codimension two in X , if not
empty. For nef vector bundles, however, analogous results do not hold in general, even if
h0(E) ≥ r − 1, as the following examples show.

Example 2 Let E0 be a nef vector bundle of rank r − 2 on P
2 fitting in the following exact

sequence

0 → O(−4) → O⊕r−1 → E0 → 0.

Then r ≥ 4 and h1(E0) = 3. Let ξ1 and ξ2 be linearly independent elements in H1(E0), and
let

0 → E0 → E → O⊕2 → 0

be the exact sequence whose extension class in Ext1(O⊕2, E0) is determined by ξ1 and ξ2.
Then the connecting homomorphism H0(O⊕2) → H1(E0) is injective, and thus h0(E) =
h0(E0) = r − 1. Moreover E is a nef vector bundle of rank r by [10, Theorem 6.2.12 (ii)].
In this example, every morphism O⊕r−1 → E is not injective, since it factors through the
bundle E0 of rank r − 2.

Example 3 Let E0 be a nef vector bundle of rank r − 1 on P
2 fitting in the following exact

sequence

0 → O(−3) → O⊕r → E0 → 0.

Then r ≥ 3 and h1(E0) = 1. Let

0 → E0 → E → O → 0

be a non-split exact sequence; the connecting homomorphism H0(O) → H1(E0) is an
isomorphism. Then h0(E) = h0(E0) = r , and it follows from [10, Theorem 6.2.12 (ii)] that
E is a nef but non-globally generated vector bundle of rank r with c1 = 3 and c2 = 9. In this
example, a general morphism O⊕r−1 → E is injective, but its cokernel C fits in a non-split
exact sequence

0 → OC → C → O → 0

where OC is the structure sheaf of some curve C of degree 3 in P
2; since C has a non-zero

torsion subsheafOC , C is not isomorphic to a torsion-free coherent sheaf IZ ⊗ det E for any
closed subscheme Z of P2.
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