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Abstract We prove an approximation theorem on a class of domains in C
n on which the

∂-problem is solvable in L∞. Furthermore, as a corollary, we obtain a version of the Axler–
Čučković–Rao theorem in higher dimensions.
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Let � be a domain in C

n and φ be a complex-valued function on �. Let H∞(�) and
H∞(�)[φ] denote the set of bounded holomorphic functions on � and the algebra gen-
erated by φ over H∞(�), respectively. In 1989, Christopher Bishop proved the following
approximation theorem (see [6, Theorem 1.2]).

Theorem (Bishop) Let � be an open set in C and f be a bounded holomorphic function
on � that is non-constant on every connected component of �. Then H∞(�)[ f ] is dense in
C(�) in the uniform topology.

In the same paper, Christophe Bishop also proved a stronger approximation result, [6,
Theorem 1.1], on a more restrictive class of domains on which f is only assumed to be a
non-holomorphic harmonic function. Such a result for the unit disc goes back to Sheldon
Axler and Allen Shields [4]. Recently, Guangfu Cao gave an incorrect statement [8, Theorem
5] in an attempt to give a higher dimensional version of Bishop’s Theorem. Alexander Izzo
and Bo Li [14, pg 246] noticed that the statement is incorrect. Håkan Samuelsson and Erlend
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Wold in [24, Theorem 1.3] proved a partial extension of Bishop’s Theorem for pluriharmonic
functions and C1-smooth polynomially convex domains in C

n .
This article is motivated by these papers and is an attempt to contribute an approximation

theorem akin to Bishop’s Theorem on domains in C
n . We are not able to generalize Bishop’s

theorem to C
n and this is still an open problem. However, we prove approximation results

under some restrictions on the functions and the domains. Furthermore, we apply our results
to prove a version of the Axler–Čučković–Rao Theorem [2] in higher dimensions.

To present our first result we need to make some definitions. Let � ⊂ C
n be a pseudo-

convex domain and CL∞
(0,q)(�) denote the set of (0, q)-forms with coefficient functions that

are C∞-smooth and bounded on �. That is, CL∞
(0,q)(�) = L∞

(0,q)(�) ∩ C∞
(0,q)(�). We call

� a L∞-pseudoconvex domain if for 1 ≤ q ≤ n, and f ∈ CL∞
(0,q)(�) such that ∂ f = 0

there exists g ∈ L∞
(0,q−1)(�) such that ∂g = f .

The class of L∞-pseudoconvex domains include the products of C2-smooth bounded
strongly pseudoconvex domains [23], smooth bounded pseudoconvex finite type domains
in C

2 [22], smooth bounded finite type convex domains in C
n [12], and some infinite type

smooth bounded convex domains in C
2 [13].

Given a holomorphic mapping f : � → C
m (where� ⊂ C

n) and λ ∈ C
m , we denote the

union of all non-isolated points of f −1(λ) by � f,λ. Since f −1(λ) is a complex subvariety
of � (for λ in the range of f ), it follows that � f,λ is the union of all positive dimensional
connected components of f −1(λ). In the case f extends smoothly up to the boundary of
�, we define �′

f,λ to be the union of all non-isolated points of f −1(λ) within �. Clearly
�′

f,λ ⊂ � f,λ ∪ b� where b� denotes the boundary of �. We define

� f =
⋃

λ∈Cm

� f,λ.

It is clear that � f is a subset of the set where the Jacobian of f has rank strictly less than n.
Now we are ready to present our first approximation result.

Theorem 1 Let � be a bounded L∞-pseudoconvex domain in C
n and f j ∈ H∞(�) for

j = 1, . . . ,m. Assume that g ∈ C(�) such that g|b�∪� f = 0 where f = ( f1, . . . , fm).

Then g belongs to the closure of H∞(�)[ f1, . . . , fm] in L∞(�).

Theorem 1 and [14, Theorem 4.2] lead to the following corollary.

Corollary 1 Let � be a bounded L∞-pseudoconvex domain in C
n and f j ∈ H∞(�) for

j = 1, . . . ,m and n ≤ m. Then the following are equivalent.

i. H∞(�)[ f1, . . . , fm] is dense in L p(�) for all 0 < p < ∞,
ii. H∞(�)[ f1, . . . , fm] is dense in L p(�) for some 1 ≤ p < ∞,
iii. the Jacobian of f = ( f1, . . . , fm) has rank n for some z ∈ �.

To formulate our next result we will need the following notation. The set of holomorphic
functions on � that have smooth extensions up to the boundary is denoted by A∞(�). Given
a compact set K ⊂ �, we will denote by A�(K ) the norm closed subalgebra of continuous
functions on K spanned by restrictions of A∞(U ∩ �) onto K , where U runs through open
neighborhoods of K .

Theorem 2 Let � be a smooth bounded pseudoconvex domain in C
n and f j ∈ A∞(�) for

j = 1, . . . ,m. Then g ∈ C(�) belongs to the closure of A∞(�)[ f1, . . . , fm] in L∞(�) if
and only if for any λ in the range of f = ( f1, . . . , fm) we have g|�′

f,λ
∈ A�(�′

f,λ).
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Alexander Izzo in [15, Theorem1.3] proved (among other things) the following interesting
result.

Theorem (Izzo)Let A be a uniformalgebra on a compactHausdorff space X whosemaximal
ideal space is X and E ⊂ X be a closed subset such that X \E is anm-dimensional manifold.
Assume that

i. for any p ∈ X \ E there exists f1, . . . , fm ∈ A that are C1-smooth on X \ E and
d f1 ∧ · · · ∧ d fm(p) �= 0,

ii. the functions in A that are C1-smooth on X \ E separate points on X.

Then A = {g ∈ C(X) : g|E ∈ A|E}.
As pointed out to us by Alexander Izzo, a result along the lines of Theorem 1 (for a similar

class of domains) can be obtained from [15] as follows. Let us take X to be the maximal ideal
space (spectrum) of H∞(�) and X \ E to be the set of points in � where the Jacobian of f
has rank n with A being the closure of H∞(�)[ f1, . . . , fm]. Then one obtains Theorem 1 if
the set � f is replaced by the set of points where J f , the Jacobian of f , has rank strictly less
than n (usually a larger set than � f ).

Next we will present our generalization of the Axler–Čučković–Rao Theorem to C
n , but

first we will state the commuting problem for Toeplitz operators.
Let A2(�) denote the space of square integrable holomorphic functions on � and P :

L2(�) → A2(�) be the Bergman projection, the orthogonal projection onto A2(�). For
g ∈ L∞(�), the Toeplitz operator Tg : A2(�) → A2(�) is defined as Tg f = P(g f ) for all
f ∈ A2(�).
The commutingproblem canbe stated as follows:Letφ be anon-constant bounded function

on �. Determine all ψ ∈ L∞(�) such that [Tφ, Tψ ] = 0.
The commuting problemwas solved byArlen Brown and Paul Halmos on the Hardy space

of the unit disc in a famous paper [5]. However, on the Bergman space, the problem is still
open.Many partial answers has been obtained over the years. To list a few, we refer the reader
to [1,2,9,20] for results over the unit disc; to [18,19,25] for results over the ball in C

n ; and
to [3,7,11] for results on Fock spaces.

In this paper, we want to highlight the following result of Sheldon Axler, Željko Čučković,
and Nagisetti Rao (see [2]).

Theorem (Axler–Čučković–Rao) Let � be a bounded domain in C and φ be a nonconstant
bounded holomorphic function on �. Assume that ψ is a bounded measurable function on
� such that Tφ and Tψ commute. Then ψ is holomorphic.

As an application of our results, we get the following generalization of the Axler–
Čučković–Rao Theorem.

Corollary 2 Let � be a bounded L∞-pseudoconvex domain in C
n, g ∈ L∞(�), and f j ∈

H∞(�) for j = 1, . . . ,m and n ≤ m. Assume that the Jacobian of the function f =
( f1, . . . , fm) : � → C

m has rank n for some z ∈ � and Tg commutes with T f j for
1 ≤ j ≤ m. Then g is holomorphic.

This paper is organized as follows: The next section contains relevant basic facts and
results about ∂-Koszul complex. Then we will present the proofs of Theorems 1 and 2. We
will finish the paper with the proof of Corollaries 1 and 2.

123



240 S. Şahutoğlu, A. Tikaradze

The ∂-Koszul Complex

Let� be a domain inC
n and V be a vector space of dimensionm with a basis {e1, e2, . . . , em}.

We define

∧r V = span
{
e j1 ∧ e j2 ∧ · · · ∧ e jr : j1 < j2 < · · · < jr

}

and �∞
(r,s) = ∧r V ⊗ CL∞

(0,s)(�) where r and s are nonnegative integers. We note that
throughout the paper we use the convention that �∞

(r,s) = {0} if r ≥ m + 1 or s ≥ n + 1.
Finally, CL∞

(0,0)(�) = CL∞(�).

We define the unbounded operator ∂ : �∞
(r,s) → �∞

(r,s+1) as ∂(eJ ⊗W ) = eJ ⊗ ∂W where

eJ ∈ ∧r V and W ∈ CL∞
(0,s)(�). The operator ∂ is defined on

Dom∞(∂) =
{
f ∈ �∞

(r,s) : ∂ f ∈ �∞
(r,s+1)

}
.

Let f = ( f1, . . . , fm) : � → C
m be a bounded holomorphic mapping. Then for 0 ≤ s ≤ n

and 0 ≤ r ≤ m we define the operator

T f : �∞
(r+1,s) → �∞

(r,s)

with the following properties:

(1) T f (e j ⊗ W ) = f jW ,
(2) T f (A ∧ B) = T f (A) ∧ B + (−1)|A|1 A ∧ T f B (here |.|1 is the order of A in ∪m

r=0�
r V ),

(3) T f ∂ = ∂T f on Dom∞(∂) for 0 ≤ s ≤ n and 0 ≤ r ≤ m,
(4) T f T f = 0 and ∂∂ = 0.

We note that T f W = 0 for W ∈ �∞
(0,s) and 0 ≤ s ≤ n.

Lemma 1 Let � be a bounded domain in C
n, 0 ≤ s ≤ n, 0 ≤ r ≤ m, and f =

( f1, . . . , fm) : � → C
m be a bounded holomorphic mapping. Assume that W ∈ �∞

(r,s)

such that supp(W ) ⊂ � and supp(W ) ∩ f −1(0) = ∅.

i. If T f W = 0, then there exists Y ∈ �∞
(r+1,s) such that

a. T f Y = W,
b. supp(Y ) ⊂ � and supp(Y ) ∩ f −1(0) = ∅.

ii. If T f W = 0 and ∂W ∈ �∞
(r,s+1), then there exists Y ∈ �∞

(r+1,s) such that

a. ∂Y ∈ �∞
(r+1,s+1) and T f Y = W,

b. supp(Y ) ⊂ � and supp(Y ) ∩ f −1(0) = ∅.

Proof First let us prove the lemma in case r = m. In this case one can show that T f W = 0
and supp(W ) ∩ f −1(0) = ∅ imply that W = 0. So we can choose Y = 0 ∈ �∞

(m+1,s). For
the rest of the proof we will assume that 0 ≤ r ≤ m − 1.

Now let us prove i. Let χ ∈ C∞
0 (�) be a smooth compactly supported cut-off function

such that χ = 1 on a neighborhood of supp(W ) and supp(χ) ∩ f −1(0) = ∅. We define

g j = χ f j∑m
l=1 | fl |2

and

X =
m∑

j=1

e j ⊗ g j ∈ �∞
(1,0).
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On a theorem of Bishop and commutants of Toeplitz operators… 241

Then g j ∈ C∞
0 (�) for j = 1, 2, . . . ,m and T f X = 1 ∈ �∞

(0,0) on the support of W because
χ = 1 on a neighborhood of supp(W ) and

∑m
j=1 f j (z)g j (z) = 1 whenever χ(z) = 1.

Let us define Y = X ∧ W ∈ �∞
(r+1,s). Then supp(Y ) is a compact subset of � and

supp(Y ) ∩ f −1(0) = ∅. Furthermore, T f X = 1 on the support of W and

T f Y = T f (X) ∧ W − X ∧ T f W = 1 ∧ W = W

because T f W = 0.
To prove ii. we observe that, in the proof of i. above, X is smooth compactly supported in

�. Therefore, if ∂W is bounded then so is ∂Y as Y = X ∧ W . ��
If f j ∈ A∞(�) for j = 1, 2, . . . ,m in the lemma above, we have the following lemma.

Lemma 2 Let � be a bounded domain in C
n, V be an m-dimensional vector space, and

f j ∈ A∞(�) for j = 1, 2, . . . ,m. Assume that W ∈ ∧r V ⊗ C∞
(0,s)(�) for 0 ≤ r ≤ m, 0 ≤

s ≤ n, and supp(W ) ∩ f −1(0) = ∅ where f = ( f1, . . . , fm). If T f W = 0 then there exists
Y ∈ ∧r+1V ⊗ C∞

(0,s)(�) such that supp(Y ) ∩ f −1(0) = ∅ and T f Y = W.

Proof The proof of this lemma is very similar to the proof of Lemma 1. The only difference
is that we choose χ ∈ C∞(�) be a smooth function such that χ = 1 on a neighborhood of
supp(W ) and supp(χ) ∩ f −1(0) = ∅. ��
Lemma 3 Let � be a bounded L∞-pseudoconvex domain in C

n, f = ( f1, . . . , fm) : � →
C
m be a bounded holomorphic mapping, and W ∈ �∞

(r,s) for 0 ≤ r ≤ m and 1 ≤ s ≤ n such
that

i. supp(W ) ⊂ � and supp(W ) ∩ f −1(0) = ∅,
ii. ∂W = 0 and T f W = 0.

Then there exists Y ∈ �∞
(r+1,s−1) such that Y ∈ Dom∞(∂) and T f ∂Y = W.

Proof In case r = m, as in the proof of Lemma 1, one can show that if W satisfies the
conditions of the lemma then W = 0. So we can choose Y = 0. For the rest of the proof we
will assume that 0 ≤ r ≤ m − 1.

First we will assume that � is a bounded L∞-pseudoconvex domain. We will use a
descending induction on s to prove this lemma. So let s = n, 0 ≤ r ≤ m−1, andW ∈ �∞

(r,n)

such that supp(W ) ⊂ �, supp(W )∩ f −1(0) = ∅, andT f W = 0 (∂W = 0 as any (0, n)-form
is ∂-closed). Then i. in Lemma 1 implies that there exists Y1 ∈ �∞

(r+1,n) with the following
properties:

i. supp(Y1) ⊂ � and supp(Y1) ∩ f −1(0) = ∅,
ii. T f Y1 = W .

Furthermore, since Y1 ∈ �∞
(r+1,n) it is ∂-closed. Then (since � is L∞-pseudoconvex) there

exists Y ∈ �∞
(r+1,n−1) such that ∂Y = Y1. That is, T f ∂Y = W .

Now we will assume that the lemma is true for s = k + 1, k + 2, . . . , n and r =
0, 1, . . . ,m − 1. Let 0 ≤ r ≤ m − 1 and assume that W ∈ �∞

(r,k) with the following
properties:

i. supp(W ) ⊂ � and supp(W ) ∩ f −1(0) = ∅,
ii. ∂W = 0 and T f W = 0.

Then ii. in Lemma 1 implies that there exists Y1 ∈ �∞
(r+1,k) such that
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242 S. Şahutoğlu, A. Tikaradze

i. ∂Y1 ∈ �∞
(r+1,k+1) and W = T f Y1,

ii. supp(Y1) ⊂ � and supp(Y1) ∩ f −1(0) = ∅.

Then

T f ∂Y1 = ∂T f Y1 = ∂W = 0.

So ∂Y1 satisfies the conditions in the lemma for s = k + 1. That is, ∂Y1 ∈ �∞
(r+1,k+1) such

that

i. supp(∂Y1) ⊂ � and supp(∂Y1) ∩ f −1(0) = ∅,
ii. ∂∂Y1 = 0 and T f ∂Y1 = ∂W = 0.

By the induction hypothesis, there exists Y2 ∈ �∞
(r+2,k) such that ∂Y2 ∈ �∞

(r+2,k+1) and

T f ∂Y2 = ∂Y1. Then

∂T f Y2 = T f ∂Y2 = ∂Y1.

We define Y3 = Y1 − T f Y2 ∈ �∞
(r+1,k). Then the equality above implies that

T f Y3 = T f Y1 − T f T f Y2 = W

and ∂Y3 = ∂Y1 − ∂T f Y2 = 0. Since � is L∞-pseudoconvex domain we conclude that there
exists Y ∈ �∞

(r+1,k−1) such that ∂Y = Y3. That is, T f ∂Y = W . Hence the proof of Lemma 3
is complete. ��
Lemma 4 Let� be a smooth bounded pseudoconvex domain inC

n, V be an m-dimensional
vector space, and fi ∈ A∞(�) for i = 1, . . . ,m. Assume that W ∈ ∧r V ⊗ C∞

(0,s)(�) for

0 ≤ r ≤ m and 1 ≤ s ≤ n such that supp(W )∩ f −1(0) = ∅, ∂W = 0, and T f W = 0. Then
there exists Y ∈ ∧r+1V ⊗ C∞

(0,s−1)(�) such that T f ∂Y = W.

Proof This proof is similar to the proof of Lemma 3 with the following changes: Instead
of Lemma 1 we use Lemma 2 and, at the last step (since and f j ∈ A∞(�)), we use the
following result of Joseph Kohn [16] (see also [10, Theorem 6.1.1]): Let � be a smooth
bounded pseudoconvex domain in C

n, 1 ≤ q ≤ n, and u ∈ C∞
(0,q)(�) with ∂u = 0. Then

there exists f ∈ C∞
(0,q−1)(�) such that ∂ f = u. ��

Lemma 5 Let � be a bounded domain in C
n and f j ∈ H∞(�) for j = 1, . . . ,m such that∑m

j=1 | f j |2 > ε on � for some ε > 0 and ∂ f j ∈ L∞
(1,0)(�) for j = 1, . . . ,m. Assume that

W ∈ �∞
(r,s) for 0 ≤ r ≤ m and 0 ≤ s ≤ n such that T f W = 0 and ∂W ∈ �∞

(r,s+1). Then

there exists Y ∈ �∞
(r+1,s) such that ∂Y ∈ �∞

(r+1,s+1) and T f Y = W.

Proof The proofwill be similar to the proof of Lemma1. LetV be a vector space of dimension
m and {e1, e2, . . . , em} be a basis for V . We define

g j = f j∑m
l=1 | fl |2

and X = ∑m
j=1 e j ⊗ g j ∈ �∞

(1,0). Then g j ∈ L∞(�) and

∂g j = ∂ f j∑m
l=1 | fl |2 − f j

∑m
l=1 fl∂ fl

(∑m
l=1 | fl |2

)2 ∈ L∞
(0,1)(�).
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Furthermore, ∂X = ∑m
j=1 e j ⊗ ∂g j ∈ �∞

(1,1). Then Y = X ∧ W ∈ �∞
(r+1,s) satisfies the

following properties: ∂Y = ∂X ∧ W + X ∧ ∂W ∈ �∞
(r+1,s+1) and

T f Y = T f (X) ∧ W − X ∧ T f W = 1 ∧ W = W

as T f W = 0. ��
Proposition 1 Let � be a bounded L∞-pseudoconvex domain in C

n and f j ∈ H∞(�) for
j = 1, . . . ,m such that

∑m
j=1 | f j |2 > ε on � for some ε > 0 and ∂ f j ∈ L∞

(1,0)(�) for

j = 1, . . . ,m. Assume that W ∈ �∞
(r,s) for 0 ≤ r ≤ m and 0 ≤ s ≤ n such that ∂W = 0 and

T f W = 0. Then there exists Y ∈ �∞
(r+1,s) such that ∂Y = 0 and T f Y = W.

Proof We will use a descending induction on s as in the proof of Proposition 1. Let s = n.
Any form of type (r, n) for 0 ≤ r ≤ m is ∂-closed. Then ∂Y = 0 and Lemma 5 implies that
there exists Y ∈ �∞

(r+1,n) such that T f Y = W .
Nowwewill assume that the lemma is true for s = l+1, l+2, . . . , n and r = 0, 1, . . . ,m

to prove that it is also true for s = l ≤ n − 1 and 0 ≤ r ≤ m.
Assume that W ∈ �∞

(r,l) such that ∂W = 0 and T f W = 0. Then Lemma 5 implies that

there exists Ỹ ∈ �∞
(r+1,l) such that ∂Ỹ ∈ �∞

(r+1,l+1) and W = T f Ỹ . Then

T f ∂Ỹ = ∂T f Ỹ = ∂W = 0.

So ∂Ỹ satisfies the conditions in the lemma for s = l +1. That is, ∂Ỹ ∈ �∞
(r+1,l+1), ∂∂Ỹ = 0

and T f ∂Ỹ = ∂W = 0. Then, by the induction hypothesis, there exists Y1 ∈ �∞
(r+2,l+1) such

that ∂Y1 = 0 and T f Y1 = ∂Ỹ . Then since � is a L∞-pseudoconvex domain there exists
Y2 ∈ �∞

(r+2,l) such that ∂Y2 = Y1. Then

∂T f Y2 = T f ∂Y2 = T f Y1 = ∂Ỹ .

We define Y = Ỹ − T f Y2 ∈ �∞
(r+1,l). Then the equality above implies that ∂Y = ∂Ỹ −

∂T f Y2 = 0 and

T f Y = T f Ỹ − T f T f Y2 = W.

Hence the proof of Proposition 1 is complete. ��
As a corollary to the previous proposition (with W = 1 and r = s = 0) we get the

following Corona type result. We refer the reader to [17] and the references therein for more
information about Corona problem on domains in C

n .

Corollary 3 Let � be a bounded L∞-pseudoconvex domain in C
n and f j ∈ H∞(�) for

j = 1, . . . ,m such that
∑m

j=1 | f j |2 > ε on � for some ε > 0 and ∂ f j ∈ L∞
(1,0)(�) for

j = 1, . . . ,m. Then there exists gi ∈ H∞(�) for j = 1, . . . ,m such that
∑m

j=1 f j g j = 1.

Proofs of results

The proofs of the theorems are mainly inspired by the proof in Christopher Bishop’s paper
[6].
Proofs of Theorems 1 and 2 The proofs of both theorems are very similar. So we will present
the proof of Theorem 1 and comment on how the proof of Theorem 2 differs as we go along.

Let ε > 0 and λ ∈ C
m . Since g ∈ C(�) and g|b�∪� f = 0, there exist gλ ∈ C∞(�) such

that
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244 S. Şahutoğlu, A. Tikaradze

i. sup{|g(z) − gλ(z)| : z ∈ �} < ε,
ii supp(∂gλ) ∩ (b� ∪ f −1(λ)) = ∅.

In the proof Theorem 2 the second condition above is replaced by supp(∂gλ)∩ f −1(λ) = ∅.
This can be seen as follows: We choose an open set Uε in C

n containing f −1(λ) and gε ∈
A∞(Uε ∩ �) such that |g − gε| < ε/2 on f −1(λ). Then we choose χε ∈ C∞

0 (Uε) such that,
0 ≤ χε ≤ 1, χε = 1 on a neighborhood of f −1(λ), and

supp(χε) ∩ � ⊂ {
z ∈ Uε ∩ � : |g(z) − gε(z)| < ε

}
.

Then we define gλ = (1 − χε)g + χεgε . Since gλ is holomorphic on a neighborhood
of f −1(λ) we have ∂gλ = 0 on the same neighborhood. Furthermore, |gλ(z) − g(z)| =
χε(z)|gε(z) − g(z)| < ε for all z ∈ �.

Using Lemma 3 with r = 0, s = 1, and W = ∂gλ we get Y = ∑m
l=1 el ⊗ Hl ∈ �∞

(1,0)
such that

∂gλ = T f −λ∂Y =
m∑

l=1

( fl − λl)∂H
λ
l . (1)

The above equality implies that

Gλ = gλ −
m∑

l=1

( fl − λl)H
λ
l

is a bounded holomorphic function.
In the proof of Theorem 2, we use Lemma 4 and get Hλ

l ∈ C∞(�) for l = 1, . . . ,m in
the equation (1) and Gλ is smooth up to the boundary. Therefore, for z ∈ � we have

|Gλ(z) − gλ(z)| ≤
m∑

l=1

| fl(z) − λl |
m∑

s=1

|Hλ
s (z)|.

Then the above inequality implies that for Mλ = ∑m
s=1 ‖Hλ

s ‖L∞(�) < ∞ we have

|Gλ(z) − gλ(z)| ≤ Mλ| f (z) − λ| (2)

for z ∈ �.
Compactness of f (�) implies that we can choose a finite collection of points {λ j }kj=1 ⊂

f (�) such that {B(λ j , εM−1
λ j )}kj=1 forms a finite open cover for f (�). Let {χ j }kj=1 be

a smooth partition of unity on f (�) such that 0 ≤ χ j ≤ 1 and supp(χ j ) ⊂ Uj .
Then { f −1(B(λ j , εM−1

λ j ))}kj=1 is an cover for � and | f (z) − λ j | < εM−1
λ j for z ∈

f −1(B(λ j , εM−1
λ j )). Then for z ∈ � we have

∣∣∣∣∣∣

k∑

j=1

Gλ j (z)χ j ( f )(z) − g(z)

∣∣∣∣∣∣
≤

k∑

j=1

|Gλ j (z) − g(z)|χ j ( f (z))

≤
k∑

j=1

|Gλ j (z) − gλ j |χ j ( f (z)) +
k∑

j=1

|gλ j
(z) − g(z)|χ j ( f (z))

≤
k∑

j=1

Mλ j | f (z) − λ j |χ j ( f (z)) + ε

k∑

j=1

χ j ( f (z))

≤2ε.
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Finally, the Stone-Weierstrass Theorem implies that χ j ( f ) can be approximated uniformly
on � by elements of C[ f1, . . . , fm, f1, . . . , fm]. Hence the proofs of Theorems 1 and 2 are
complete. ��

Hartogs Extension Theorem together Theorem 2 lead to the following corollary.

Corollary 4 Let � be a bounded L∞-pseudoconvex domain in C
n. Assume that f =

( f1, . . . , fm) : � → C
m be a bounded holomorphic mapping and g ∈ C(�) such that

∂g is supported away from b� and the set of points at which the Jacobian of f has rank
strictly less than n. Then g belongs to the closure of H∞(�)[ f1, . . . , fm] in L∞(�).

Proof Since ∂g vanishes near the boundary of �, Hartogs Extension Theorem implies that
there exists g1 ∈ H∞(�) such that g = g1 near the boundary of�. Then g2 = g−g1 ∈ C(�)

and g2 is compactly supported in �. Furthermore, g2 is holomorphic on a neighborhood of
the set where the Jacobian of f has rank strictly less than n. Therefore, Theorem 2 implies
that g2 can be approximated in the sup-norm by functions in H∞(�)[ f1, . . . , fm]. This
completes the proof of the corollary. ��

Next we provide the proof of Corollary 1.

Proof of Corollary 1 Obviously i. implies ii. So to prove that ii. implies iii., let us assume
that H∞(�)[ f1, . . . , fm] is dense in L p(�) for some 1 ≤ p < ∞. Let B ⊂ � be a ball such
that B ⊂ �. Then, the algebra H∞(B)[ f1, . . . , fm] is dense in L p(B) for some 1 ≤ p < ∞.
Moreover, the algebra generated by {z1, . . . , zn} is dense in H∞(B) and f1, . . . , fm are holo-
morphic on a neighborhood of B.Nextwe adopt [14, Theorem4.2] to our set-up.Namely, [14,
Theorem 4.2] implies that if the algebra generated by {z1, . . . , zn, f 1, . . . , f m} ⊂ C∞(B)

is dense in L p(B) for some 1 ≤ p < ∞ then the real Jacobian of {z1, . . . , zn, f 1, . . . , f m}
is of full rank on a dense open set in B. Hence the rank of J f is n on a dense open subset in
B and (by identity principle) in �. Hence, we have iii.

Finally, to prove iii. implies i. we assume that the rank of J f is n for some z ∈ �.
Then, the set of points at which J f has rank strictly less than n is a closed set of measure 0
(see [21, Theorem 3.7]). One can show that X f , the set of smooth functions with compact
support in � and vanish where J f has rank strictly less than n, is dense in L p(�) for all
0 < p < ∞. On the other hand, Theorem 1 implies that any function in X f is in the closure of
H∞(�)[ f1, . . . , fm] in L∞(�). Therefore, H∞(�)[ f1, . . . , fm] is dense in L p(�). Hence,
we have i. ��

We finally end the paper with the proof of Corollary 2.

Proof of Corollary 2 We will use the fact that Tg can be defined by the following formula

〈Tgφ,ψ〉A2(�) = 〈gφ,ψ〉L2(�)

for all φ,ψ ∈ A2(�). Since Tg commutes with TP( f ), for any holomorphic polynomial P ,
we have

〈gP( f ), ψ〉 = 〈TgTP( f )(1), ψ〉 = 〈P( f )Tg(1), ψ〉
for all ψ ∈ A2(�). Then 〈Tg(1) − g, P( f )ψ〉 = 0 for all ψ ∈ A2(�). Since, by Corollary
1, the subspace generated by {P( f )ψ : ψ ∈ A2(�)} is dense in L2(�), we conclude that
Tg(1) = g. That is, g is holomorphic. ��
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