
Rend. Circ. Mat. Palermo, II. Ser (2019) 68:123–127
https://doi.org/10.1007/s12215-018-0346-x

Problem of descent spectrum equality

Abdelaziz Tajmouati1 · Hamid Boua1

Received: 21 July 2017 / Accepted: 16 April 2018 / Published online: 21 April 2018
© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Abstract Let B(X) be the algebra of all bounded operators acting on an infinite dimensional
complex Banach space X . We say that an operator T ∈ B(X) satisfies the problem of descent
spectrum equality, if the descent spectrum of T as an operator coincides with the descent
spectrum of T as an element of the algebra of all bounded linear operators on X . In this paper
we are interested in the problem of descent spectrum equality. Specifically, the problem is to
consider the following question: let T ∈ B(X) such that σ(T ) has non empty interior, under
which condition on T does σdesc(T ) = σdesc(T,B(X))?
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1 Introduction

In this paper, X denotes a complex Banach space and B(X) denotes the Banach algebra of
all bounded linear operators on X . Let T ∈ B(X), we denote by R(T ), N (T ), ρ(T ), σ(T ),
σp(T ), σap(T ) and σsu(T ) respectively the range, the kernel, the resolvent set, the spectrum,
the point spectrum, the approximate point spectrum and the surjectivity spectrum of T . It is
well known that σ(T ) = σsu(T )∪ σp(T ) = σsu(T ) ∪ σap(T ). The ascent of T is defined by
a(T ) = min{p : N (T p) = N (T p+1)}, if no such p exists, we let a(T ) = ∞. Similarly, the
descent of T is d(T ) = min{q : R(T q) = R(T q+1)}, if no such q exists, we let d(T ) = ∞
[1,4] and [6]. It is well known that if both a(T ) and d(T ) are finite then a(T ) = d(T ) and
we have the decomposition X = R(T p) ⊕ N (T p) where p = a(T ) = d(T ). The descent
and ascent spectrum are defined by:

B Abdelaziz Tajmouati
abdelaziz.tajmouati@usmba.ac.ma

Hamid Boua
hamid12boua@yahoo.com

1 Laboratory of Mathematical Analysis and Applications, Faculty of Sciences Dhar El Mahraz, Sidi
Mohamed Ben Abdellah University, Fez, Morocco

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12215-018-0346-x&domain=pdf


124 A. Tajmouati, H. Boua

σdesc(T ) = {λ ∈ C : d(λ − T ) = ∞}
σasc(T ) = {λ ∈ C : a(λ − T ) = ∞}

A will denote a complex Banach algebra with unit. For every a ∈ A, the left multiplication
operator La is given by La(x) = ax for all x ∈ A. By definition the descent of an element
a ∈ A is d(a) := d(La), and the descent spectrum of a is the set σdesc(a) := {λ ∈ C :
d(a − λ) = ∞}.

In general σdesc(T ) ⊆ σdesc(T,B(X)), and we say that an operator T satisfies the descent
spectrum equality whenever, the descent spectrum of T as an operator coincides with the
descent spectrum of T as an element of the algebra of all bounded linear operators on X .

The operator T ∈ B(X) is said to have the single-valued extension property at λ0 ∈ C,
abbreviated T has the SVEP at λ0, if for every neighbourhood U of λ0 the only analytic func-
tion f : U → X which satisfies the equation (λI −T ) f (λ) = 0 is the constant function f ≡
0. For an arbitrary operator T ∈ B(X) let S(T ) = {λ ∈ C : T does not have the SVEP at λ}.
Note that S(T ) is open and is contained in the interior of the point spectrum σp(T ).
The operator T is said to have the SVEP if S(T ) is empty. According to [3] we have
σ(T ) = σsu(T ) ∪ S(T ).

For an operator T ∈ B(X) we shall denote by α(T ) the dimension of the kernel N (T ),
and by β(T ) the codimension of the range R(T ). We recall that an operator T ∈ B(X) is
called upper semi-Fredholm if α(T ) < ∞ and R(T ) is closed, while T ∈ B(X) is called
lower semi-Fredholm if β(T ) < ∞. Let �+(X) and �−(X) denote the class of all upper
semi-Fredholm operators and the class of all lower semi-Fredholm operators, respectively.
The class of all semi-Fredholm operators is defined by �±(X) := �+(X) ∪ �−(X), while
the class of all Fredholm operators is defined by �(X) := �+(X)∩�−(X). If T ∈ �±(X),
the index of T is defined by ind(T ) := α(T ) − β(T ). The class of all upper semi-Browder
operators is defined by B+(X) := {T ∈ �+(X) : a(T ) < ∞}, the upper semi-Browder
spectrum of T ∈ B(X) is defined by σub(T ) := {λ ∈ C : λI − T /∈ B+(X)}. The class of all
upper semi-Weyl operators is defined by W+(X) := {T ∈ �+(X) : ind(T ) ≤ 0}, the upper
semi-Weyl spectrum is defined by σuw(T ) := {λ ∈ C : λI − T /∈ W+(X)}.

Recently, Haily et al. [2] have studied and characterized the Banach spaces verifying
property descent spectrumequality, (Banach spaceswhich are isomorphic to�1(I )or �2(I ) for
some set I , or the Banach spaces which are not isomorphic to any of its proper quotients. . .).
On the other hand, they have shown that if T ∈ B(X)with a spectrum σ(T ) of empty interior,
then σdesc(T ) = σdesc(T,B(X)).
It is easy to construct an operator T satisfying the descent spectrum equality such that the
interior of the point spectrum σ(T ) is nonempty. For example, let T the unilateral right
shift on the Hilbert space �2(N), so that T (xn)n = (0, x0, x1, . . .) for all (xn)n∈N ∈ �2(N).
It is easily seen that σ(T ) = D closed unit disk. Since �2(N) is a Hilbert space, then
σdesc(T ) = σdesc(T,B(X)). Motivated by the previous Example, our goal is to study the
following question:

Question 1 Let T ∈ B(X). If σ(T ) has non empty interior, under which condition on T does
σdesc(T ) = σdesc(T,B(X))?

2 Main results

We start by the following lemmas.
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Lemma 1 [2] Let T be in B(X) with finite descent d = d(T ). Then there exists δ > 0 such
that, for every μ ∈ K with 0 < |μ| < δ, we have:

1. T − μ is surjective,
2. dimN (T − μ) = dim(N (T ) ∩ R(T d)).

Lemma 2 [2] Let X, Y and Z be Banach spaces, and let F : X → Z and G : Y → Z be
bounded linear operators such that N (G) is complemented in Y , and R(F) ⊆ R(G). Then
there exists a bounded linear operator S : X → Y satisfying F = GS.

We have the following theorem.

Theorem 1 Let T ∈ B(X) and D ⊆ C be a closed subset such that σ(T ) = σsu(T ) ∪ D,
then

σdesc(T ) ∪ int(D) = σdesc(T,B(X)) ∪ int(D)

Proof Let λ be a complex number such that T − λ has finite descent d and λ /∈ int (D).
According to lemma 1, there is δ > 0 such that, for every μ ∈ C with 0 < |λ − μ| < δ,
the operator T − μ is surjective and dim N (T − μ) = dim N (T − λ) ∩ R(T − λ)d . Let
D∗(λ, δ) = {μ ∈ C : 0 < |λ − μ| < δ}. Since λ /∈ int (D), then D(λ, δ)\D �= ∅ is non-
empty open subset ofC. Let λ0 ∈ D∗(λ, δ)\D, then T −λ0 is invertible, hence the continuity
of the index ensures that ind(T −μ) = 0 for all μ ∈ D∗(λ, δ). But for μ ∈ D∗(λ, δ), T −μ

is surjective, so it follows that T − μ is invertible. Therefore, λ is isolated in σ(T ). By [1,
Theorem 3.81], we have λ is a pole of the resolvent of T . Using [4, Theorem V.10.1], we
obtain T −λ has a finite descent and a finite ascent and X = N ((T −λ)d)⊕ R((T −λ)d). It
follows that N ((T − λ)d) is complemented in X . Applying lemma 2, there exists S ∈ B(X)

satisfying (T − λ)d = (T − λ)d+1S, which forces that λ /∈ σdesc(T,B(X)) ∪ int (D). ��

Corollary 1 Let T ∈ B(X). If T satisfies any of the conditions following:

1. σ(T ) = σsu(T ),
2. int(σap(T )) = ∅,
3. int(σp(T )) = ∅,
4. int(σasc(T )) = ∅,
5. int(σub(T )) = ∅,
6. int(σuw(T )) = ∅,
7. S(T ) = ∅.
Then

σdesc(T ) = σdesc(T,B(X))

Proof The assertions 1, 2, 3, and 7 are obvious.
4. Note that, σ(T ) = σsu(T ) ∪ σasc(T ). Indeed, let λ /∈ σsu(T ) ∪ σasc(T ), then T − λ

is surjective and T − λ has finite ascent, therefore a(T − λ) = d(T − λ) = 0, and hence
λ /∈ σ(T ). If int(σasc(T )) = ∅, by Theorem 1, we have σdesc(T ) = σdesc(T,B(X)).

5. If int(σub(T )) = ∅, then int(σasc(T )) = ∅, therefore σdesc(T ) = σdesc(T,B(X)).
6. Note that, σ(T ) = σsu(T ) ∪ σuw(T ). Indeed, let λ /∈ σsu(T ) ∪ σuw(T ), then T − λ

is surjective and ind(T − λ) ≤ 0, therefore ind(T − λ) = dim N (T − λ) = 0, and hence
λ /∈ σ(T ). If int(σuw(T )) = ∅, by Theorem 1, we have σdesc(T ) = σdesc(T,B(X)). ��
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Example 1 We consider the Césaro operatorCp defined on the classical Hardy spaceHp(D),
D the open unit disc and 1 < p < ∞. The operator Cp is defined by (Cp f )(λ) :=
1
λ

∫ λ

0
f (μ)
1−μ

dμ or all f ∈ Hp(D) and λ ∈ D. As noted by Miller et al. [5], the spectrum
of the operatorCp is the entire closed disc 
p , centered at p/2 with radius p/2, and σap(Cp)

is the boundary ∂
p , then int(σap(Cp))=int(σp(Cp)) = ∅. By applying corollary 1, then
σdesc(Cp) = σdesc(Cp,B(Hp(D))).

Example 2 Suppose that T is an unilateral weighted right shift on �p(N), 1 ≤ p < ∞,
with weight sequence (ωn)n∈N, T is the operator defined by: T x := ∑∞

n=1 ωnxnen+1 for all
x := (xn)n∈N ∈ �p(N) . If c(T ) = limn→+∞ inf(ω1 . . . ωn)

1/n = 0, by [1, Corollary 3.118],
we have T has SVEP. By applying corollary 1, then σdesc(T ) = σdesc(T,B(X)).

A mapping T : A → A on a commutative complex Banach algebra A is said to be a
multiplier if:

u(T v) = (Tu)v for all u, v ∈ A.

Any element a ∈ A provides an example, since, if La : A → A denotes the mapping given
by La(u) := au for all u ∈ A, then the multiplication operator La is clearly a multiplier on
A. The set of all multipliers of A is denoted by M(A). We recall that an algebra A is said to
be semi-prime if {0} is the only two-sided ideal J for which J 2 = 0.

Corollary 2 Let T ∈ M(A) be a multiplier on a semi-prime commutative Banach algebra
A then:

σdesc(T ) = σdesc(T,B(X))

Proof If T ∈ M(A), from [1, Proposition 4.2.1], we have σ(T ) = σsu(T ). By applying
corollary 1, then: σdesc(T ) = σdesc(T,B(X)).

Theorem 2 Let T ∈ B(X). If for every connected component G of ρdesc(T ) we have that
G ∩ ρ(T ) �= ∅, then

σdesc(T ) = σdesc(T,B(X))

Proof Let λ be a complex number such that T −λ has finite descent d . According to lemma 1,
there is δ > 0 such that, for everyμ ∈ Cwith 0 < |λ−μ| < δ, the operator T−μ is surjective
and dim N (T − μ) = dim N (T − λ) ∩ R(T − λ)d . D∗(λ, δ) = {μ ∈ C : 0 < |λ − μ| < δ}
is a connected subset of ρdesc(T ), then there exists a connected component G of ρdesc(T )

contains D∗(λ, δ). Since G ∩ ρ(T ) is non-empty hence the continuity of the index ensures
that ind(T − μ) = 0 for all μ ∈ D∗(λ, δ). But for μ ∈ G, T − μ is surjective, so it follows
that T − μ is invertible. Thus G ⊆ ρ(T ), therefore, λ is isolated in σ(T ). Consequently
λ /∈ σdesc(T,B(X)), which completes the proof.

Remark 1 We recall that an operator R ∈ B(X) is said to be Riesz if R − λ is Fredholm
for every non-zero complex number λ. From [4], σdesc(R) = {0}, then for every connected
componentG of ρdesc(R), we have thatG∩ρ(R) �= ∅. Consequently σdesc(R,B(X)) = {0}
Example 3 Consider the unilateral right shift operator T on the space X := �p for some
1 ≤ p ≤ ∞. Because σ(T ) = σdesc(T ), then for every G is a connected component of
ρdesc(T ) we have that G ∩ ρ(T ) �= ∅. Consequently σdesc(T,B(X)) = D closed unit disk.

Theorem 3 Let T ∈ B(X). If for every connected component G of ρsu(T ) we have that
G ∩ ρp(T ) �= ∅, then:
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σdesc(T ) = σdesc(T,B(X))

Proof Let λ be a complex number such that T − λ has finite descent d . According to lemma
1, there is δ > 0 such that, for every μ ∈ C with 0 < |λ − μ| < δ, the operator T − μ is
surjective and dim N (T −μ) = dim N (T −λ)∩ R(T −λ)d . Therefore D∗(λ, δ) = {μ ∈ C :
0 < |λ − μ| < δ} is a connected subset of ρsu(T ), then there exists a connected component
G of ρsu(T ) contains D∗(λ, δ). Since G ∩ ρp(T ) is non-empty hence the continuity of
the index ensures that ind(T − μ) = 0 for all μ ∈ D∗(λ, δ). But for μ ∈ G, T − μ is
surjective, so it follows that T −μ is invertible, therefore, λ is isolated in σ(T ). Consequently
λ /∈ σdesc(T,B(X)).

Remark 2 Let T ∈ B(X) an operator such that σ(T ) = σsu(T ), then for every connected
component G of ρsu(T ), we have G ∩ ρp(T ) �= ∅. Using Theorem 3, we obtain σdesc(T ) =
σdesc(T,B(X)).
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