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Abstract Let B(X) be the algebra of all bounded operators acting on an infinite dimensional
complex Banach space X. We say that an operator T € B(X) satisfies the problem of descent
spectrum equality, if the descent spectrum of 7 as an operator coincides with the descent
spectrum of T as an element of the algebra of all bounded linear operators on X. In this paper
we are interested in the problem of descent spectrum equality. Specifically, the problem is to
consider the following question: let 7 € B(X) such that o (7T") has non empty interior, under
which condition on 7" does 0ge5:(T) = 0gese (T, B(X))?
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1 Introduction

In this paper, X denotes a complex Banach space and 5(X) denotes the Banach algebra of
all bounded linear operators on X. Let T € B(X), we denote by R(T'), N(T), p(T), o(T),
0p(T), 04p(T) and oy, (T') respectively the range, the kernel, the resolvent set, the spectrum,
the point spectrum, the approximate point spectrum and the surjectivity spectrum of 7'. It is
well known that o (T) = 0, (T) U0, (T) = 0y, (T) Uog,(T). The ascent of T is defined by
a(T) = min{p : N(T?) = N(TP*)}, if no such p exists, we let a(T) = oo. Similarly, the
descent of T is d(T) = min{q : R(T?) = R(T7t1H}, if no such q exists, we let d(T) = oo
[1,4] and [6]. It is well known that if both a(T) and d(T') are finite then a(T) = d(T) and
we have the decomposition X = R(T?) @ N(T?) where p = a(T) = d(T). The descent
and ascent spectrum are defined by:
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Odesc(T) ={A € C:d(A —T) = o0}
0asc(T) ={AeC:a(h—T) = oo}

A will denote a complex Banach algebra with unit. For every a € A, the left multiplication
operator L, is given by L,(x) = ax for all x € A. By definition the descent of an element
a € Aisd(a) := d(L,), and the descent spectrum of a is the set ogesc(a) := {2 € C :
d(a — ) = 00}.

In general 6405 (T) C 0405¢(T, B(X)), and we say that an operator T satisfies the descent
spectrum equality whenever, the descent spectrum of 7' as an operator coincides with the
descent spectrum of T as an element of the algebra of all bounded linear operators on X.

The operator T € B(X) is said to have the single-valued extension property at Ao € C,
abbreviated 7" has the SVEP at A, if for every neighbourhood U/ of A the only analytic func-
tion f : U — X which satisfies the equation (A/ — T') f (1) = 0 is the constant function f =
0. For an arbitrary operator T € B(X) let S(T) = {* € C : T does not have the SVEP at A}.
Note that S(T') is open and is contained in the interior of the point spectrum o, (7).
The operator T is said to have the SVEP if S(T') is empty. According to [3] we have
o(T) =045, (T)US(T).

For an operator 7 € B(X) we shall denote by «(T") the dimension of the kernel N(T),
and by B(T) the codimension of the range R(7). We recall that an operator T € B(X) is
called upper semi-Fredholm if «(7") < oo and R(T) is closed, while 7 € B(X) is called
lower semi-Fredholm if (7T) < oo. Let @, (X) and ®_(X) denote the class of all upper
semi-Fredholm operators and the class of all lower semi-Fredholm operators, respectively.
The class of all semi-Fredholm operators is defined by & (X) := & (X) U &_(X), while
the class of all Fredholm operators is defined by ®(X) := &, (X)NP_(X). If T € &1 (X),
the index of T is defined by ind(T) := «(T) — B(T). The class of all upper semi-Browder
operators is defined by By (X) := {T € &4 (X) : a(T) < oo}, the upper semi-Browder
spectrum of 7' € B(X) is defined by 0,,(T) :={A € C: A — T ¢ B, (X)}. The class of all
upper semi-Weyl operators is defined by W (X) :={T € ®,(X) : ind(T) < 0}, the upper
semi-Weyl spectrum is defined by 0,,,(T) :={A € C: Al — T ¢ W, (X)}.

Recently, Haily et al. [2] have studied and characterized the Banach spaces verifying

property descent spectrum equality, (Banach spaces which are isomorphic to ¢! (1) or £2(I) for
some set 1, or the Banach spaces which are not isomorphic to any of its proper quotients. . .).
On the other hand, they have shown thatif 7 € B(X) with a spectrum o (7') of empty interior,
then Gdesc(T) = Udesc(T’ B(X))
It is easy to construct an operator 7 satisfying the descent spectrum equality such that the
interior of the point spectrum o (7) is nonempty. For example, let T the unilateral right
shift on the Hilbert space 2(N), so that T (xp), = (0, xg, x1, ...) for all (xp)nen € £2(N).
It is easily seen that o(T) = D closed unit disk. Since £2(N) is a Hilbert space, then
Odesc(T) = 04es¢(T, B(X)). Motivated by the previous Example, our goal is to study the
following question:

Question 1 Let T € B(X). If o (T) has non empty interior, under which condition on T does
Odesc(T) = 0desc(T, B(X))?

2 Main results

We start by the following lemmas.
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Lemma 1 [2] Let T be in B(X) with finite descent d = d(T). Then there exists § > 0 such
that, for every u € K with 0 < || < 6, we have:

1. T — u is surjective,
2. dimN(T — p) = dim(N(T) N R(TY)).

Lemma 2 [2] Let X, Y and Z be Banach spaces, and let F : X — Z and G : Y — Z be
bounded linear operators such that N(G) is complemented in Y, and R(F) € R(G). Then
there exists a bounded linear operator S : X — Y satisfying F = GS.

We have the following theorem.

Theorem 1 Let T € B(X) and D C C be a closed subset such that o (T) = oy, (T) U D,
then

Odesc(T) U int(D) = 0gesc (T, B(X)) U int(D)

Proof Let A be a complex number such that 7 — A has finite descent d and A ¢ int (D).
According to lemma 1, there is § > 0 such that, for every © € C with 0 < |A — u| < §,
the operator T — u is surjective and dim N(T — p) = dim N(T — X)) N R(T — 24, Let
D*(1,8) ={u e C:0 < |r—pu| <8} Since A ¢ int(D), then D(A, §)\D # @ is non-
empty open subset of C. Let Ag € D*(%, §)\ D, then T — X is invertible, hence the continuity
of the index ensures that ind(7 — w) = 0 for all © € D*(A, 8). Butfor u € D*(A,68), T —
is surjective, so it follows that 7 — w is invertible. Therefore, A is isolated in o (T'). By [1,
Theorem 3.81], we have A is a pole of the resolvent of 7. Using [4, Theorem V.10.1], we
obtain 7' — A has a finite descent and a finite ascentand X = N (T — )% & R((T —1)9). It
follows that N((T — 2)?) is complemented in X. Applying lemma 2, there exists S € B(X)
satisfying (T — 1)? = (T — 1)4*LS, which forces that A & 6yesc(T, B(X)) Uint(D). O

Corollary 1 Let T € B(X). If T satisfies any of the conditions following:

1. o(T) = o5, (T),
2. int(o.p(T)) =0,
3. int(o,(T)) =0,
4. int(ogs.(T)) = 0,
5. int(oyp(T)) =0,
6. int(oyy,(T)) =0,
7. S(T) =0.

Then

Odesc(T) = 0gese (T, B(X))

Proof The assertions 1, 2, 3, and 7 are obvious.

4. Note that, 0 (T) = 05, (T) U 045.(T). Indeed, let A ¢ o4, (T) U 045(T), then T — X
is surjective and 7 — A has finite ascent, therefore a(7 — A) = d(T — 1) = 0, and hence
A ¢ o(T). Ifint(ogs.(T)) = 0, by Theorem 1, we have 6405:(T) = 0gesc (T, B(X)).

5. If int(o,,(T)) = @, then int(o,5.(T)) = @, therefore oyeo5:(T) = 0gesc(T, B(X)).

6. Note that, 0 (T) = 05, (T) U 0, (T). Indeed, let & ¢ 0, (T) U 0y, (T), then T — A
is surjective and ind(7T — A) < 0, therefore ind(7 — 1) = dim N(T — A) = 0, and hence
A ¢ o(T). If int(oy,, (T)) = @, by Theorem 1, we have 04050 (T) = 0gesc (T, B(X)). O
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Example 1 We consider the Césaro operator C,, defined on the classical Hardy space H, (D),
D the open unit disc and 1 < p < oo. The operator C, is defined by (C, f)(1) =

%fo)‘ {E—’L)d,u orall f € H,(D) and A € D. As noted by Miller et al. [5], the spectrum
of the operator C), is the entire closed disc I, centered at p/2 with radius p/2, and o, (C )
is the boundary dI",, then int(o,,(C)))=int(c,(C),)) = 9. By applying corollary 1, then

Gdesc(cp) = Udesc(cp’ B(Hp(D)))~

Example 2 Suppose that T is an unilateral weighted right shift on £/ (N), 1 < p < oo,
with weight sequence (wy,)nen, T is the operator defined by: Tx := Z;’lo:] wpXpen41 for all
x 1= (Xp)nen € P (N) . If ¢(T) = lim,,_, 4o inf(@y . ..w,)"/" =0, by [1, Corollary 3.118],
we have 7" has SVEP. By applying corollary 1, then 0e5¢(T) = 04esc (T, B(X)).

A mapping T : A — A on a commutative complex Banach algebra A is said to be a
multiplier if:

u(Tv) = (Tu)v forallu,v € A.

Any element a € A provides an example, since, if L, : A — A denotes the mapping given
by L,(u) := au for all u € A, then the multiplication operator La is clearly a multiplier on
A. The set of all multipliers of A is denoted by M (A). We recall that an algebra A is said to
be semi-prime if {0} is the only two-sided ideal J for which J2 = 0.

Corollary 2 Let T € M(A) be a multiplier on a semi-prime commutative Banach algebra
A then:

Odesc(T) = 0gesc (T, B(X))

Proof If T € M(A), from [1, Proposition 4.2.1], we have o (T) = oy, (T). By applying
corollary 1, then: 64e5c(T) = 0gese (T, B(X)).

Theorem 2 Let T € B(X). If for every connected component G of pgesc(T) we have that
GNp(T) # @, then

Odesc(T) = 0gesc (T, B(X))

Proof Let A be acomplex number such that 7 — A has finite descent d. According to lemma 1,
thereis § > Osuch that, forevery u € Cwith0 < |[A—pu| < §, the operator T — 1t is surjective
and dim N(T — ) = dim N(T =) NR(T — V). D*(A,8) ={u e C:0 < | — u| < 8}
is a connected subset of pges-(T), then there exists a connected component G of pgesc(T)
contains D*(X, §). Since G N p(T) is non-empty hence the continuity of the index ensures
that ind(7 — u) = 0 for all u € D*(A, 8). But for u € G, T — p is surjective, so it follows
that T — p is invertible. Thus G C p(T), therefore, A is isolated in o (7). Consequently
A & 04esc (T, B(X)), which completes the proof.

Remark 1 We recall that an operator R € B(X) is said to be Riesz if R — X is Fredholm
for every non-zero complex number A. From [4], 04.5c(R) = {0}, then for every connected
component G of pgesc(R), we have that G N p(R) # @. Consequently 04,5 (R, B(X)) = {0}

Example 3 Consider the unilateral right shift operator 7' on the space X := £ for some
1 < p < oo. Because 0 (T) = 04e5¢(T), then for every G is a connected component of
pdesc(T) we have that G N p(T') # (. Consequently o4.5(T, B(X)) = D closed unit disk.

Theorem 3 Let T € B(X). If for every connected component G of ps,(T) we have that
G N pp(T) # 0, then:
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Odesc(T) = 0gesc (T, B(X))

Proof Let A be a complex number such that 7 — A has finite descent d. According to lemma
1, there is § > O such that, for every u € C with 0 < |A — u| < 8, the operator T — u is
surjective and dim N(T —u) = dim N(T —A)NR(T — )4 Therefore D*(1,8) = {u € C :
0 < |A — ] < &} is a connected subset of pg, (T), then there exists a connected component
G of py,(T) contains D*(A, §). Since G N p,(T) is non-empty hence the continuity of
the index ensures that ind(7T — w) = O for all u € D*(1,8). Butfor u € G, T — p is
surjective, so it follows that T — u is invertible, therefore, A is isolated in o (T'). Consequently
A & 0desc(T, B(X)).

Remark 2 Let T € B(X) an operator such that o (T) = oy, (T), then for every connected
component G of p5, (T), we have G N p,(T) # §. Using Theorem 3, we obtain 0.5 (T) =
Udesc(Ta B(X))
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