

Problem of descent spectrum equality

Abdelaziz Tajmouati¹ · Hamid Boua¹

Received: 21 July 2017 / Accepted: 16 April 2018 / Published online: 21 April 2018 © Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Abstract Let $\mathcal{B}(X)$ be the algebra of all bounded operators acting on an infinite dimensional complex Banach space *X*. We say that an operator $T \in \mathcal{B}(X)$ satisfies the problem of descent spectrum equality, if the descent spectrum of *T* as an operator coincides with the descent spectrum of *T* as an element of the algebra of all bounded linear operators on *X*. In this paper we are interested in the problem of descent spectrum equality. Specifically, the problem is to consider the following question: let $T \in \mathcal{B}(X)$ such that $\sigma(T)$ has non empty interior, under which condition on *T* does $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$?

Keywords Descend · Pole · Resolvent · Spectrum

Mathematics Subject Classification 47A10 · 47A11

1 Introduction

In this paper, X denotes a complex Banach space and $\mathcal{B}(X)$ denotes the Banach algebra of all bounded linear operators on X. Let $T \in \mathcal{B}(X)$, we denote by R(T), N(T), $\rho(T)$, $\sigma(T)$, $\sigma_p(T)$, $\sigma_{ap}(T)$ and $\sigma_{su}(T)$ respectively the range, the kernel, the resolvent set, the spectrum, the point spectrum the approximate point spectrum and the surjectivity spectrum of T. It is well known that $\sigma(T) = \sigma_{su}(T) \cup \sigma_p(T) = \sigma_{su}(T) \cup \sigma_{ap}(T)$. The ascent of T is defined by $a(T) = \min\{p : N(T^p) = N(T^{p+1})\}$, if no such p exists, we let $a(T) = \infty$. Similarly, the descent of T is $d(T) = \min\{q : R(T^q) = R(T^{q+1})\}$, if no such q exists, we let $d(T) = \infty$ [1,4] and [6]. It is well known that if both a(T) and d(T) are finite then a(T) = d(T) and we have the decomposition $X = R(T^p) \oplus N(T^p)$ where p = a(T) = d(T). The descent and ascent spectrum are defined by:

 Abdelaziz Tajmouati abdelaziz.tajmouati@usmba.ac.ma Hamid Boua

hamid12boua@yahoo.com

¹ Laboratory of Mathematical Analysis and Applications, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco

$$\sigma_{desc}(T) = \{\lambda \in \mathbb{C} : d(\lambda - T) = \infty\}$$

$$\sigma_{asc}(T) = \{\lambda \in \mathbb{C} : a(\lambda - T) = \infty\}$$

 \mathcal{A} will denote a complex Banach algebra with unit. For every $a \in \mathcal{A}$, the left multiplication operator L_a is given by $L_a(x) = ax$ for all $x \in \mathcal{A}$. By definition the descent of an element $a \in \mathcal{A}$ is $d(a) := d(L_a)$, and the descent spectrum of a is the set $\sigma_{desc}(a) := \{\lambda \in \mathbb{C} : d(a - \lambda) = \infty\}$.

In general $\sigma_{desc}(T) \subseteq \sigma_{desc}(T, \mathcal{B}(X))$, and we say that an operator T satisfies the descent spectrum equality whenever, the descent spectrum of T as an operator coincides with the descent spectrum of T as an element of the algebra of all bounded linear operators on X.

The operator $T \in \mathcal{B}(X)$ is said to have the single-valued extension property at $\lambda_0 \in \mathbb{C}$, abbreviated *T* has the SVEP at λ_0 , if for every neighbourhood \mathcal{U} of λ_0 the only analytic function $f : \mathcal{U} \to X$ which satisfies the equation $(\lambda I - T) f(\lambda) = 0$ is the constant function $f \equiv$ 0. For an arbitrary operator $T \in \mathcal{B}(X)$ let $\mathcal{S}(T) = \{\lambda \in \mathbb{C} : T \text{ does not have the SVEP at }\lambda\}$. Note that $\mathcal{S}(T)$ is open and is contained in the interior of the point spectrum $\sigma_p(T)$. The operator *T* is said to have the SVEP if $\mathcal{S}(T)$ is empty. According to [3] we have $\sigma(T) = \sigma_{su}(T) \cup \mathcal{S}(T)$.

For an operator $T \in \mathcal{B}(X)$ we shall denote by $\alpha(T)$ the dimension of the kernel N(T), and by $\beta(T)$ the codimension of the range R(T). We recall that an operator $T \in \mathcal{B}(X)$ is called upper semi-Fredholm if $\alpha(T) < \infty$ and R(T) is closed, while $T \in \mathcal{B}(X)$ is called lower semi-Fredholm if $\beta(T) < \infty$. Let $\Phi_+(X)$ and $\Phi_-(X)$ denote the class of all upper semi-Fredholm operators and the class of all lower semi-Fredholm operators, respectively. The class of all semi-Fredholm operators is defined by $\Phi_{\pm}(X) := \Phi_{\pm}(X) \cup \Phi_{-}(X)$, while the class of all Fredholm operators is defined by $\Phi(X) := \Phi_+(X) \cap \Phi_-(X)$. If $T \in \Phi_{\pm}(X)$, the index of T is defined by $ind(T) := \alpha(T) - \beta(T)$. The class of all upper semi-Browder operators is defined by $B_{+}(X) := \{T \in \Phi_{+}(X) : a(T) < \infty\}$, the upper semi-Browder spectrum of $T \in \mathcal{B}(X)$ is defined by $\sigma_{ub}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \notin B_{+}(X)\}$. The class of all upper semi-Weyl operators is defined by $\sigma_{uw}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \notin W_{+}(X)\}$.

Recently, Haily et al. [2] have studied and characterized the Banach spaces verifying property descent spectrum equality, (Banach spaces which are isomorphic to $\ell^1(I)$ or $\ell^2(I)$ for some set I, or the Banach spaces which are not isomorphic to any of its proper quotients...). On the other hand, they have shown that if $T \in \mathcal{B}(X)$ with a spectrum $\sigma(T)$ of empty interior, then $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$.

It is easy to construct an operator T satisfying the descent spectrum equality such that the interior of the point spectrum $\sigma(T)$ is nonempty. For example, let T the unilateral right shift on the Hilbert space $\ell^2(\mathbb{N})$, so that $T(x_n)_n = (0, x_0, x_1, ...)$ for all $(x_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})$. It is easily seen that $\sigma(T) = \overline{\mathbb{D}}$ closed unit disk. Since $\ell^2(\mathbb{N})$ is a Hilbert space, then $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$. Motivated by the previous Example, our goal is to study the following question:

Question 1 Let $T \in \mathcal{B}(X)$. If $\sigma(T)$ has non empty interior, under which condition on T does $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$?

2 Main results

We start by the following lemmas.

Lemma 1 [2] Let T be in $\mathcal{B}(X)$ with finite descent d = d(T). Then there exists $\delta > 0$ such that, for every $\mu \in \mathbb{K}$ with $0 < |\mu| < \delta$, we have:

1. $T - \mu$ is surjective,

2. $dimN(T - \mu) = dim(N(T) \cap R(T^d)).$

Lemma 2 [2] Let X, Y and Z be Banach spaces, and let $F : X \to Z$ and $G : Y \to Z$ be bounded linear operators such that N(G) is complemented in Y, and $R(F) \subseteq R(G)$. Then there exists a bounded linear operator $S : X \to Y$ satisfying F = GS.

We have the following theorem.

Theorem 1 Let $T \in \mathcal{B}(X)$ and $D \subseteq \mathbb{C}$ be a closed subset such that $\sigma(T) = \sigma_{su}(T) \cup D$, then

$$\sigma_{desc}(T) \cup int(D) = \sigma_{desc}(T, \mathcal{B}(X)) \cup int(D)$$

Proof Let λ be a complex number such that $T - \lambda$ has finite descent d and $\lambda \notin int(D)$. According to lemma 1, there is $\delta > 0$ such that, for every $\mu \in \mathbb{C}$ with $0 < |\lambda - \mu| < \delta$, the operator $T - \mu$ is surjective and dim $N(T - \mu) = \dim N(T - \lambda) \cap R(T - \lambda)^d$. Let $D^*(\lambda, \delta) = \{\mu \in \mathbb{C} : 0 < |\lambda - \mu| < \delta\}$. Since $\lambda \notin int(D)$, then $D(\lambda, \delta) \setminus D \neq \emptyset$ is nonempty open subset of \mathbb{C} . Let $\lambda_0 \in D^*(\lambda, \delta) \setminus D$, then $T - \lambda_0$ is invertible, hence the continuity of the index ensures that $ind(T - \mu) = 0$ for all $\mu \in D^*(\lambda, \delta)$. But for $\mu \in D^*(\lambda, \delta), T - \mu$ is surjective, so it follows that $T - \mu$ is invertible. Therefore, λ is isolated in $\sigma(T)$. By [1, Theorem 3.81], we have λ is a pole of the resolvent of T. Using [4, Theorem V.10.1], we obtain $T - \lambda$ has a finite descent and a finite ascent and $X = N((T - \lambda)^d) \oplus R((T - \lambda)^d)$. It follows that $N((T - \lambda)^d)$ is complemented in X. Applying lemma 2, there exists $S \in \mathcal{B}(X)$ satisfying $(T - \lambda)^d = (T - \lambda)^{d+1}S$, which forces that $\lambda \notin \sigma_{desc}(T, \mathcal{B}(X)) \cup int(D)$.

Corollary 1 Let $T \in \mathcal{B}(X)$. If T satisfies any of the conditions following:

1. $\sigma(T) = \sigma_{su}(T)$, 2. $int(\sigma_{ap}(T)) = \emptyset$, 3. $int(\sigma_p(T)) = \emptyset$, 4. $int(\sigma_{asc}(T)) = \emptyset$, 5. $int(\sigma_{ub}(T)) = \emptyset$, 6. $int(\sigma_{uw}(T)) = \emptyset$, 7. $S(T) = \emptyset$.

Then

$$\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$$

Proof The assertions 1, 2, 3, and 7 are obvious.

4. Note that, $\sigma(T) = \sigma_{su}(T) \cup \sigma_{asc}(T)$. Indeed, let $\lambda \notin \sigma_{su}(T) \cup \sigma_{asc}(T)$, then $T - \lambda$ is surjective and $T - \lambda$ has finite ascent, therefore $a(T - \lambda) = d(T - \lambda) = 0$, and hence $\lambda \notin \sigma(T)$. If $int(\sigma_{asc}(T)) = \emptyset$, by Theorem 1, we have $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$.

5. If $int(\sigma_{ub}(T)) = \emptyset$, then $int(\sigma_{asc}(T)) = \emptyset$, therefore $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$.

6. Note that, $\sigma(T) = \sigma_{su}(T) \cup \sigma_{uw}(T)$. Indeed, let $\lambda \notin \sigma_{su}(T) \cup \sigma_{uw}(T)$, then $T - \lambda$ is surjective and $\operatorname{ind}(T - \lambda) \leq 0$, therefore $\operatorname{ind}(T - \lambda) = \dim N(T - \lambda) = 0$, and hence $\lambda \notin \sigma(T)$. If $\operatorname{int}(\sigma_{uw}(T)) = \emptyset$, by Theorem 1, we have $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$.

Example 1 We consider the Césaro operator C_p defined on the classical Hardy space $\mathbb{H}_p(\mathbb{D})$, \mathbb{D} the open unit disc and $1 . The operator <math>C_p$ is defined by $(C_p f)(\lambda) := \frac{1}{\lambda} \int_0^{\lambda} \frac{f(\mu)}{1-\mu} d\mu$ or all $f \in \mathbb{H}_p(\mathbb{D})$ and $\lambda \in \mathbb{D}$. As noted by Miller et al. [5], the spectrum of the operator C_p is the entire closed disc Γ_p , centered at p/2 with radius p/2, and $\sigma_{ap}(C_p)$ is the boundary $\partial \Gamma_p$, then $\operatorname{int}(\sigma_{ap}(C_p))=\operatorname{int}(\sigma_p(C_p)) = \emptyset$. By applying corollary 1, then $\sigma_{desc}(C_p) = \sigma_{desc}(C_p, \mathcal{B}(\mathbb{H}_p(\mathbb{D}))).$

Example 2 Suppose that *T* is an unilateral weighted right shift on $\ell^p(\mathbb{N})$, $1 \le p < \infty$, with weight sequence $(\omega_n)_{n\in\mathbb{N}}$, *T* is the operator defined by: $Tx := \sum_{n=1}^{\infty} \omega_n x_n e_{n+1}$ for all $x := (x_n)_{n\in\mathbb{N}} \in \ell^p(\mathbb{N})$. If $c(T) = \lim_{n \to +\infty} \inf(\omega_1 \dots \omega_n)^{1/n} = 0$, by [1, Corollary 3.118], we have *T* has SVEP. By applying corollary 1, then $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$.

A mapping $T : A \to A$ on a commutative complex Banach algebra A is said to be a multiplier if:

$$u(Tv) = (Tu)v$$
 for all $u, v \in \mathcal{A}$.

Any element $a \in A$ provides an example, since, if $L_a : A \to A$ denotes the mapping given by $L_a(u) := au$ for all $u \in A$, then the multiplication operator La is clearly a multiplier on A. The set of all multipliers of A is denoted by M(A). We recall that an algebra A is said to be semi-prime if {0} is the only two-sided ideal J for which $J^2 = 0$.

Corollary 2 Let $T \in M(A)$ be a multiplier on a semi-prime commutative Banach algebra A then:

$$\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$$

Proof If $T \in M(\mathcal{A})$, from [1, Proposition 4.2.1], we have $\sigma(T) = \sigma_{su}(T)$. By applying corollary 1, then: $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$.

Theorem 2 Let $T \in \mathcal{B}(X)$. If for every connected component G of $\rho_{desc}(T)$ we have that $G \cap \rho(T) \neq \emptyset$, then

$$\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$$

Proof Let λ be a complex number such that $T - \lambda$ has finite descent d. According to lemma 1, there is $\delta > 0$ such that, for every $\mu \in \mathbb{C}$ with $0 < |\lambda - \mu| < \delta$, the operator $T - \mu$ is surjective and dim $N(T - \mu) = \dim N(T - \lambda) \cap R(T - \lambda)^d$. $D^*(\lambda, \delta) = \{\mu \in \mathbb{C} : 0 < |\lambda - \mu| < \delta\}$ is a connected subset of $\rho_{desc}(T)$, then there exists a connected component G of $\rho_{desc}(T)$ contains $D^*(\lambda, \delta)$. Since $G \cap \rho(T)$ is non-empty hence the continuity of the index ensures that $\operatorname{ind}(T - \mu) = 0$ for all $\mu \in D^*(\lambda, \delta)$. But for $\mu \in G$, $T - \mu$ is surjective, so it follows that $T - \mu$ is invertible. Thus $G \subseteq \rho(T)$, therefore, λ is isolated in $\sigma(T)$. Consequently $\lambda \notin \sigma_{desc}(T, \mathcal{B}(X))$, which completes the proof.

Remark 1 We recall that an operator $R \in \mathcal{B}(X)$ is said to be Riesz if $R - \lambda$ is Fredholm for every non-zero complex number λ . From [4], $\sigma_{desc}(R) = \{0\}$, then for every connected component *G* of $\rho_{desc}(R)$, we have that $G \cap \rho(R) \neq \emptyset$. Consequently $\sigma_{desc}(R, \mathcal{B}(X)) = \{0\}$

Example 3 Consider the unilateral right shift operator T on the space $X := \ell^p$ for some $1 \le p \le \infty$. Because $\sigma(T) = \sigma_{desc}(T)$, then for every G is a connected component of $\rho_{desc}(T)$ we have that $G \cap \rho(T) \ne \emptyset$. Consequently $\sigma_{desc}(T, \mathcal{B}(X)) = \overline{\mathbb{D}}$ closed unit disk.

Theorem 3 Let $T \in \mathcal{B}(X)$. If for every connected component G of $\rho_{su}(T)$ we have that $G \cap \rho_p(T) \neq \emptyset$, then:

$$\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$$

Proof Let λ be a complex number such that $T - \lambda$ has finite descent d. According to lemma 1, there is $\delta > 0$ such that, for every $\mu \in \mathbb{C}$ with $0 < |\lambda - \mu| < \delta$, the operator $T - \mu$ is surjective and dim $N(T - \mu) = \dim N(T - \lambda) \cap R(T - \lambda)^d$. Therefore $D^*(\lambda, \delta) = \{\mu \in \mathbb{C} : 0 < |\lambda - \mu| < \delta\}$ is a connected subset of $\rho_{su}(T)$, then there exists a connected component G of $\rho_{su}(T)$ contains $D^*(\lambda, \delta)$. Since $G \cap \rho_p(T)$ is non-empty hence the continuity of the index ensures that $\operatorname{ind}(T - \mu) = 0$ for all $\mu \in D^*(\lambda, \delta)$. But for $\mu \in G, T - \mu$ is surjective, so it follows that $T - \mu$ is invertible, therefore, λ is isolated in $\sigma(T)$. Consequently $\lambda \notin \sigma_{desc}(T, \mathcal{B}(X))$.

Remark 2 Let $T \in \mathcal{B}(X)$ an operator such that $\sigma(T) = \sigma_{su}(T)$, then for every connected component G of $\rho_{su}(T)$, we have $G \cap \rho_p(T) \neq \emptyset$. Using Theorem 3, we obtain $\sigma_{desc}(T) = \sigma_{desc}(T, \mathcal{B}(X))$.

Acknowledgements We wish to thank the referee for his valuable comments and suggestions.

References

- Aiena, P.: Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer Academic Press, Dordrecht (2004)
- Haïly, A., Kaidi, A., Rodríguez Palacios, A.: Algebra descent spectrum of operators. Isr. J. Math. 177, 349–368 (2010)
- 3. Laursen, K.B., Neumann, M.M.: Introduction to Local Spectral Theory. Clarendon Press, Oxford (2000)
- 4. Lay, D.C.: Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184, 197–214 (1970)
- Miller, T.L., Miller, V.G., Smith, R.C.: Bishop's property (β) and the Césaro operator. J. Lond. Math. Soc. (2) 58, 197–207 (1998)
- Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Operator Theory Advances and Applications, vol. 139, 2nd edn. Birkhäuser, Basel (2007)