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Abstract In this paper, we obtain a new upper bound for the first eigenvalue λJ
1 of the

stability operator J of a closed constant mean curvature hypersurface in a Riemannian space
form, in terms of the mean curvature and the length of the total umbilicity operator of �n .
When the ambient space is the Euclidean sphere, through the calculus of λJ

1 of the Clifford
torus, we also show that our estimate is optimal and that it is a refinement of a previous
one due to Alías et al. in Am Math Soc 133:875–884, 2004. As an application, we derive
a nonexistence result concerning strongly stable closed hypersurfaces. Furthermore, from
the values of λJ

1 of the hyperbolic cylinders, we conclude that our estimate does not hold in
general for complete noncompact hypersurfaces with two distinct principal curvatures in the
hyperbolic space.
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1 Introduction and statements of the results

Let us denote byQn+1
c the standardmodel of an (n+1)-dimensional Rieamannian space form

with constant sectional curvature c, with c ∈ {0, 1,−1}. That is,Qn+1
c denotes the Euclidean
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space Rn+1 when c = 0, the Euclidean sphere Sn+1 when c = 1, and the hyperbolic space
Hn+1 when c = −1. Along this paper, we will deal with closed orientable constant mean
curvature hypersurfaces ψ : �n → Qn+1

c immersed intoQn+1
c . In this setting, we denote by

d� the volume element with respect to the metric induced by ψ .
It is well known that minimal hypersurfaces are characterized as critical points of the area

functional A = ∫
�
d�, for every variation of �n with compact support and fixed boundary.

Whereas any hypersurface �n with constant mean curvature H (shortly, H-hypersufcace) is
a critical point ofA for volume-preservation variations, by meaning that the variations under
consideration preserve a certain volume function (for more details, see [6]).

For these critical points, Proposition 2.5 of [6] asserts that the stability of the corresponding
variational problem is given by the second variation of the area functional

δ2fA = d2A
dt2

(0) = −
∫

�

f J f d�

with f ∈ C∞(�) satisfying
∫
�

f d� = 0 and

J = � + |A|2 + nc,

where � stands for the Laplacian operator on �n and |A| denotes the length of the shape
operator A of �n with respect to N . In this setting, we recall that an H -hypersurface �n is
said to be strongly stable if δ2fA ≥ 0 for every f ∈ C∞(�) and J is called the Jacobi or
stability operator of �n . We note that J belongs to a class of operators which are usually
referred to as Schrödinger operators, that is, operators of the form � + q , where q is any
continuous function on �n . The first stability eigenvalue λJ

1 (�) of �n is defined as been the
smallest real number λ which satisfies

J f + λ f = 0 in �n,

for some nonzero smooth function f ∈ C∞(�). As is well known, λJ
1 (�) has the following

min-max characterization

λJ
1 (�) = min

{− ∫
�

f J f d�
∫
�

f 2 d�
: f ∈ C∞(�) , f �= 0

}

. (1.1)

We observe that, in terms of the first stability eigenvalue, a closed H -hypersurface �n is
strongly stable if and only if λJ

1 (�) ≥ 0.
To carry out the study of the first stability eigenvalue λJ

1 (�) of a closed H -hypersurface
�n is more convenient to rewrite the Jacobi operator J in terms of the traceless second
fundamental form �, which is defined by � = A − nH , where I denotes the identity
operator onX(�). We note that |�|2 = |A|2 −nH2, with |�| ≡ 0 if and only if �n is totally
umbilical. For this reason � is also called the total umbilicity operator of �n . From here we
get

J = � + |�|2 + n(H2 + c). (1.2)

In his seminalwork [10], Simons studied the first stability eigenvalue of aminimal compact
hypersurface �n immersed in the Euclidean sphere Sn+1. In this setting, he proved that
either λJ

1 (�) = −n, and �n is a totally geodesic sphere Sn ↪→ Sn+1, or λJ
1 (�) ≤ −2n,

otherwise. Later on, Wu in [11] characterized the equality λJ
1 (�) = −2n by showing that

it holds only for the minimal Clifford torus of the form Sp(
√
p/n ) × Sn−p(

√
(n − p)/n ),

with p ∈ {1, . . . , n − 1}. Shortly thereafter, Perdomo [9] provides a new proof of this
spectral characterization by the first stability eigenvalue. Afterwards, Alías, Barros and Brasil
Jr. [1] extended these results to the case of H -hypersurfaces in Sn+1, characterizing some
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Clifford torus of the form S1(r)×S1(
√
1 − r2 ), r ∈ (0,

√
1/2 )

⋃
(
√
1/2, 1), and Sn−1(r)×

S1(
√
1 − r2 ), with r ∈ (0,

√
(n − 1)/n ), via the value of their first stability eigenvalue.More

recently, the second author jointly with Aquino, dos Santos and Velásquez [5] obtained upper
bounds for λJ

1 (�) of a closed H -hypersurface �n immersed either in the Euclidean space
Rn+1 or in the hyperbolic space Hn+1 in terms of H and |�|. As application, they derived a
nonexistence result concerning strong stable hypersurfaces in these ambient spaces.

Here, we will deal with closed hypersurfaces which satisfy the following Okumura type
inequality, introduced by Meléndez in [7],

|tr(�3)| ≤ C(n, p)|�|3, (1.3)

where C(n, p) = (n − 2p)√
np(n − p)

for a given integer 1 ≤ p ≤ n/2. In this setting, we proceed

with the picture described above establishing the following result:

Theorem 1 Let �n be a closed H-hypersurface immersed in Qn+1
c , with n ≥ 2, and let

λJ
1 (�) stand for the first stability eigenvalue of�n. If its total umbilicity operator� satisfies

(1.3) for some integer 1 ≤ p ≤ n/2, then

(i) either λ1 = −n(H2 + c), and �n is a totally umbilical hypersurface,
(ii) or

λJ
1 (�) ≤ −2n(H2 + c) + nC(n, p)|H |max

�
|�|. (1.4)

Moreover, when c = 1 the equality in (1.4) is attained if and only if�n is either aminimal
Clifford torus or a product of the form Sn−p(r) × Sp(

√
1 − r2), with r2 < 1 − p/n if

H �= 0; when c ∈ {−1, 0}, the inequality in (1.4) is strict.

We observe that, taking into account the classical lemma of Okumura [8], inequality
(1.3) is automatically true when p = 1. Furthermore, when 1 < p < n

2 we claim that to
suppose that inequality (1.3) holds is weaker than to assume the geometric condition of the
hypersurface has two distinct principal curvatures with multiplicities p and n − p. Indeed,
in this latter case � also has two distinct eigenvalues, said μ and ν, with multiplicity p and
n − p, respectively. In particular, we get μ = − n−p

p ν and |�|2 = pμ2 + (n − p)ν2, which
implies that

tr(�3) = pμ3 + (n − p)ν3 = ±C(n, p)|�|3,
proving our claim.

The proof of Theorem 1 is given in Sect. 2. In Sect. 3, we discuss on the first stability
eigenvalue of circular and hyperbolic cylinders. In particular, we conclude that estimate (1.4)
does not hold in general for complete noncompact hypersurfaces satisfying (1.3) in Hn+1.
We also point out that, since C(n, p) is a decreasing function on p, in the case c = 1, our
estimate (1.4) is a refinement of that in Theorem 2.2 of [1] and, in the case c ∈ {0,−1}, our
result also generalizes Theorem 1 of [5].

It is well known that there are no strongly stable closed H -hypersurfaces immersed in
Sn+1 (see, for instance, Section 2 of [2]). Taking into account the nonexistence of minimal
closed hypersurfaces in Rn+1 and observing that Lemma 8 of [4] guarantees that H2 > 1
for a closed H -hypersurface in Hn+1, from Theorem 1 we obtain an extension of this result
when the ambient space is either Rn+1 or Hn+1. More precisely,

Corollary 1 There is not exist strongly stable closed H-hypersurface satisfying (1.3) in
Qn+1

c , with c ∈ {0,−1}, n ≥ 3, 1 ≤ p < n/2 and such that its total umbilicity operator �

satisfies
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|�| ≤ 2(H2 + c)

C(n, p)|H | .

In particular, from Theorem 1 we also obtain the following nonexistence result:

Corollary 2 There is not exist strongly stable closed H-surface with two distinct principal
curvatures in Q3

c .

2 Proof of Theorem 1

Let us reason as in the proofs of Theorem 2.2 of [1], if c = 1, and Theorem 1 of [5], if
c ∈ {0,−1}. By taking f = 1, it follows from (1.1) and (1.2) that

λJ
1 (�) ≤ −n(H2 + c) − 1

vol(�)

∫

�

|�|2d� ≤ −n(H2 + c),

with equality λJ
1 (�) = −n(H2 + c) if and only if �n is a totally umbilical hypersurface.

Next, assuming that �n is non-totally umbilical, we can reason as in [1,5] replacing
C(n, 1) by C(n, p) in order to infer estimate (1.4).

Then, when c = 1 and the equality λJ
1 (�) = −2n(H2 + 1) + nC(n, p)|H |max� |�|

holds, the aforementioned ideas give

|�|2 ≡ n

4p(n − p)

(√
n2H2 + 4p(n − p) − (n − 2p)|H |

)2

.

Hence, we can apply Theorem 2 of [3] when n = 2, Theorem 3 of [3] when n ≥ 3 and
p = 1, Theorem 1.4 of [7] when n ≥ 3 and 1 < p < n/2, and reason as in the proof of this
last result when p = n/2 to conclude that �n must be either a minimal Clifford torus or a
product of the form Sn−p(r) × Sp(

√
1 − r2), with r2 < 1 − p/n if H �= 0. Reciprocally,

supposing that �n is one of these torus and replacing 1 by p in [1], we deduce that

λJ
1 (�) = −2n(H2 + 1) + nC(n, p)|H ||�|.

To conclude our proof, we note that the case c ∈ {0,−1} follows in a similar way of the
proof of Theorem 1 in [5], changing C(n, 1) by C(n, p).

3 The first stability eigenvalue of circular and hyperbolic cylinders

Let �n be a complete hypersurface immersed in Qn+1
c . We recall that the first stability

eigenvalue λJ
1 (D) for some bounded open domain in �n is defined as the smallest real

number λ that satisfies

J f + λ f = 0 in D,

for some nonzero smooth function f ∈ C∞(D) with f |∂D= 0. So, the first stability
eigenvalue λJ

1 (�) of �n is defined by

λJ
1 (�) = inf

{
λ1(D) : D ⊂ �n is a bounded open domain

}
.

Let us consider the circular cylinder

Mn(p, r) = Sn−p(r) × Rp ↪→ Rn+1
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and the hyperbolic cylinder

N n(p, r) = Sn−p(r) × Hp
(
−

√
1 + r2

)
↪→ Hn+1,

where 1 ≤ p ≤ n

2
and r > 0.

We can reason as in Section 4 of [5], replacing 1 by p, to conclude that

λJ
1

(Mn(p, r)
) = −2nH2 + nC(n, p)H |�|

and
λJ
1

(N n(p, r)
) ≥ −2n(H2 − 1) + nC(n, p)H |�|.

We note that the last inequality follows from the fact that λ�
1

(
Hp

(
−√

1 + r2
))

=
(p − 1)2

4(1 + r2)
. Moreover, the equality holds if, and only if, p = 1.

As a consequence of this previous digression, while in Rn+1 the estimate (1.4) may be
still extended for complete hypersurfaces, we conclude that it does not hold in general for
complete noncompact hypersurfaces satisfying (1.3) in Hn+1.
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