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Abstract
We consider the Liénard differential systems

ẋ = y + F(x), ẏ = x, (1)

in C
2 where F(x) is an analytic function satisfying F(0) = 0 and F ′(0) �= 0. Then these

systems have a strong saddle at the origin of coordinates. It has been conjecture that if such
systems have an analytic first integral defined in a neighborhood of the origin, then the
function F(x) is linear, i.e. F(x) = ax . Here we prove this conjecture, and show that when
F(x) is linear and system (1) has an analytic first integral, this is a polynomial.
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1 Introduction and statement of themain results

One of the main problems about the differential systems in C
2, and in particular for the

Liénard differential systems
ẋ = y + F(x), ẏ = x, (2)
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with the function F(x) analytic, is to know when they are integrable or not. If the function
F satisfies F(0) = F ′(0) = 0, then the eigenvalues of the linear part of system (2) at the
singular point located at the origin of coordinates are ±1, and consequently the origin is a
weak saddle. Recall that a saddle is weak if its eigenvalues are ±λ with 0 �= λ ∈ R, and a
saddle is strong when its eigenvalues are λ1, λ2 ∈ R, λ1 < 0 < λ2 and λ2 �= −λ1.

The vector field associated to the Liénard differential system (2) is

X = (y + F(x))
∂

∂x
+ x

∂

∂ y
.

We recall that the function H = H(x, y) is a first integral of system (2) in an open subsetU
or C2 if

XH = (y + F(x))
∂H

∂x
+ x

∂H

∂ y
= 0 on the points of U . (3)

From Theorem 1 of Gasull and Giné [4] it follows the next result.

Theorem 1 The Liénard analytic differential system

ẋ = y + F(x), ẏ = b x, with 0 �= b ∈ C, (4)

and F(x) = ∑
j≥2 a j x j , is locally integrable at the origin if and only if F(x) is an even

polynomial (i.e. F(−x) = F(x)) .

Note that in Theorem 1 as already noticed by the authors the origin is a weak saddle.
Theorem 1 extends toC2 and for all non–zero complex number b thewell known results on

the existence of a local first integral in a neighborhood of the origin for a polynomial Liénard
differential (4) inR2 having at the origin a center (i.e. b = −1 obtained by Poincaré [10,11]),
or a weak saddle (i.e. b = 1, see [1,12,16]).

In all the paper Z+ and Q
+ denote the sets of non-negative integer numbers and non-

negative rational numbers, respectively. Consider analytic differential systems in C
2 of the

form
u̇ = λ u + · · · , v̇ = −μv + · · · , (5)

where λ and μ are non–zero complex numbers. In (5) the dots · · · denotes nonlinear terms.
From Poincaré [10,11] and Furta [3] we know that a necessary condition for the existence of
an analytic first integral in a neighborhood of the origin of system (2) is that λ/μ = p/q ∈
Q

+ \ {0} with gcd(p, q) = 1. When λ and μ satisfies this condition we say that the origin is
in [p : −q] resonance.

A [p : −q] resonant differential system (5) after a scaling of time if necessary can be
written as

u̇ = p u + · · · , v̇ = −q v + · · · , (6)

with p, q ∈ Z
+ \ {0}. The next result follows from Theorem 4 of [5].

Theorem 2 The Liénard analytic differential system (2) with a strong saddle at the origin
can be transformed into a system with a [p : −q] resonant saddle at the origin.

The study of the existence or not of a first integral in a neighborhood of a [p : −q] resonant
saddle is a difficult problem, see for instance [2,7,8,13–15] and the references quoted there.
HenceTheorem2 says that the study of the existence or not of a first integral in a neighborhood
of a strong saddle for the Liénard differential system (2) is also difficult.

When a planar differential system has a (local) first integral we say that it is (locally)
integrable. In [4] the authors left open the following problem (see the last sentence of their
paper):
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Open Theorem We do not know if there are nonlinear integrable cases in systems (2).

Later on in [5] appears explicitly the following:

Conjecture The unique integrable case of the Liénard system (2) is the linear one.

We remark that this conjecture is made for Liénard analytic differential systems having a
strong saddle at the origin.

The objective of this note is to prove the previous conjecture restricted to polynomial first
integrals and restricted to Liénard polynomial differential systems (2), i.e. the function F(x)
is polynomial. Thus our first main result is:

Theorem 3 If a Liénard analytic differential system (2) has a local analytic first integral
defined in a neighborhood of the origin, then

a = F ′(0) = ±k1 − k2√
k1k2

, (7)

where a �= 0 and k1 and k2 are coprime positive integers.

The proof of Theorem 3 is given in Sect. 2. Note that since we are interested in systems
that are integrable, we must have a satisfying (7).

When a = F ′(0) does not satisfy (7) the analytical integrability of the Liénard analytic
differential system has been studied in [9].

Theorem 4 If a Liénard analytic differential system (2) with a as in (7) has a polynomial
first integral, then the degree of the polynomial F(x) must be one, i.e, F(x) = ax, and the
polynomial first integral H is

H =
{

(
√
k2x − √

k1y)k1(
√
k1x + √

k2y)k2 if a = (k1 − k2)/
√
k1k2,

(
√
k2x + √

k1y)k1(
√
k1x − √

k2y)k2 if a = (k2 − k1)/
√
k1k2.

Note that Theorem 4 proves the conjecture restricted to polynomial first integrals.
The next result proves the conjecture.

Theorem 5 If a Liénard analytic differential system (2) with a as in (7) has an analytic first
integral defined in a neighborhood of the origin, then the degree of the polynomial F(x)must
be one, i.e, F(x) = ax, and the polynomial first integral H is the one given in Theorem 4.

Theorem 4 is proved in Sect. 3, while Theorem 5 is proved in Sect. 4.

2 Proof of Theorem 3

Before proving Theorem 3 we recall the following result whose proof can be found in [3,6,
10,11].

Theorem 6 Assume that the eigenvalues λ1 and λ2 of the Jacobian matrix of system (2) at
the singular point (0, 0) do not satisfy the condition

k1λ1 + k2λ2 = 0, k1, k2 ∈ Z
+, k1 + k2 > 0,

then system (2) has no local analytic first integral defined in a neighborhood of the origin.
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We first note that the origin is the unique singular point of system (2) and that the eigen-
values of the Jacobian matrix at this point satisfy

λ2 − aλ − 1 = 0, that is λ1 = a + √
a2 + 4

2
> 0, λ2 = a − √

a2 + 4

2
< 0.

So we have that λ1λ2 = −1, yielding λ2 = −1/λ1. Moreover, since by assumptions the
system has a local analytic first integral in a neighborhood of the origin, in view of Theorem 6
we must have that

0 = k1λ1 + k2λ2 = k1λ1 − k2
λ1

= k1λ21 − k2
λ1

,

with k1, k2 ∈ Z
+ such that k1 + k2 > 0. So,

λ1 =
√
k2
k1

, λ2 = −
√
k1
k2

.

Note that k1, k2 ∈ Z
+ \ {0} because λ1 and λ2 are not zero. Therefore

a + √
a2 + 4

2
=

√
k2
k1

,
a − √

a2 + 4

2
= −

√
k1
k2

,

or equivalently

a2 + a2 + 4 + 2a
√
a2 + 4

4
= k2

k1
,

a2 + a2 + 4 − 2a
√
a2 + 4

4
= k1

k2
.

Hence,

k1
k2

= k2
k1

− a
√
a2 + 4,

that is

a
√
a2 + 4 = k22 − k21

k1k2
.

Hence

a = ±k1 − k2√
k1k2

, k1, k2 ∈ Z
+ \ {0}.

Moreover, k1 and k2 are different, otherwise a = 0 which is not possible because the origin
would be a weak saddle. Finally, we observe that k1 and k2 are coprime. Otherwise setting
k1 = g.c.d{k1, k2}k̂1 and k2 = g.c.d{k1, k2}k̂2 we get

a = ±g.c.d{k1, k2}(k̂1 − k̂2)
√

(g.c.d{k1, k2})2k̂1k̂2
= ± k̂1 − k̂2

√

k̂1k̂2

.

This completes the proof of Theorem 3.
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3 Proof of Theorem 4

Without loss of generality we may write the polynomial first integral H = H(x, y) as

H = g0(x)y
n + g1(x)y

n−1 + · · · + gn−1(x)y + gn(x),

where the gi (x) for i = 0, . . . , d are polynomials, and g0(x) is not the zero polynomial.
Substituting H into (3) we get

Xh = (y + F(x))
(
g′
0y

n + g′
1y

n−1 + · · · + g′
n−1y + g′

n

)

+x
(
ng0y

n−1 + (n − 1)g1y
n−2 + · · · + 2gn−2y + gn−1

)
= 0,

where the prime denotes derivativewith respect to the variable x . Nowwe rewrite this equality
as

g′
0y

n+1 + (g′
0F + g′

1)y
n + (g′

1F + g′
2 + ng0x)yn−1 + · · ·

+(g′
n−1 + g′

n−2F + 3gn−3x)y2

+(g′
n + g′

n−1F + 2gn−2x)y + (g′
n F + gn−1x) = 0.

Since all coefficients of the previous polynomial in the variable y must be zero, we get the
following system of differential equations

g′
0 = 0, g′

1 = 0,

g0 = − g′
2

nx
, g1 = −Fg′

2 − g′
3

(n − 1)x
,

g2 = −Fg′
3 − g′

4

(n − 2)x
, g3 = −Fg′

4 − g′
5

(n − 3)x
,

...
...

gn−2 = −Fg′
n−1 − g′

n

2x
, gn−1 = −Fg′

n

x
.

(8)

From the first two equations of (8) we get that g0 and g1 are constants, and additionally
by assumptions we have that g0 �= 0. From the third equation of (8) we obtain that g2(x) is
a polynomial of degree 2.

From the fourth equation, since g1, g2 and g3 are polynomials we get that F must be a
polynomial. Assume that the degree of the polynomial F is d ≥ 1, then from the fourth
equation of (8) it follows that the degree of the polynomial g3 is d + 2. Now from the fifth
equation of (8) we get that the degree of the polynomial g4 is 2d + 2, and from the sixth we
obtain that the degree of the polynomial g5 is 3d + 2.

Thus recursively we have that the degree of the polynomial gk for k = 2, . . . , n is (k −
2)d + 2. From the last equation of (8) we obtain that the degree 1 + (n − 3)d + 2 of the
polynomial xgn−1 must be equal to the degree d + (n − 2)d + 1 of the polynomial Fg′

n , but
this equality is only possible if d = 1.

It is easy to check that the Liénard analytic differential system (2) of degree 1, i.e.

ẋ = y + ax, ẏ = x,

with a as in (7) has the polynomial first integral H as in the statement of the theorem. This
completes the proof of Theorem 4.
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4 Proof of Theorem 5

Consider system (2) with one of the conditions given by Theorem 3, namely the coefficient a
of x in F(x) is equal to (k1 − k2)/

√
k1k2 (the case in which a = −(k1 − k2)/

√
k1k2 follows

in the same way). Then

F(x) = k1 − k2√
k1k2

x +
∞∑

j=2

a j x
j .

If a j = 0 for j ≥ 2 it follows from Theorem 4 that system (2) has a polynomial first integral.
Therefore we assume, first that a j �= 0 for some j ≥ 2, and second that system (2) has
an analytic first integral H defined in a neighborhood of the origin, and we will reach a
contradiction.

Under the assumptions on F we have

ẋ = y + k1 − k2√
k1k2

x +
∞∑

j=2

a j x
j ,

ẏ = x .

(9)

Making the change of variables

u = √
k1 x + √

k2 y, v = √
k2 x − √

k1 y, (10)

with inverse change

x =
√
k1 u + √

k2 v

k1 + k2
, y =

√
k2 u − √

k1 v

k1 + k2

and the rescaling of the time t = √
k1k2 T , we have that system (9) becomes

u′ = k1u + k1
√
k2

∞∑

j=2

a j

(√
k1 u + √

k2 v

k1 + k2

) j
,

v′ = −k2v + k2
√
k1

∞∑

j=2

a j

(√
k1 u + √

k2 v

k1 + k2

) j
,

(11)

where the prime denotes derivative in the new variable T .
If k1 > k2 (and so k1 > 1), we change from the variables (u, v) to the variables (u, z)

where z = uk2vk1 and so v = z1/k1u−k2/k1 .
If k2 > k1 (and so k2 > 1), we change from the variables (u, v) to (z, v)where z = uk2vk1

and so u = z1/k2v−k1/k2 .
From now on we assume that k1 > k2 because the other case is done in a similar manner.

Hence we take
z = uk2vk1 that is v = z1/k1u−k2/k1 . (12)
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Then from (11) we have

u′ = k1u + k1
√
k2

∞∑

j=2

a j

(√
k1u + √

k2z1/k1u−k2/k1

k1 + k2

) j
,

z′ = k1k2u
(k2−k1)/k1 z(k1−1)/k1(

√
k1u + √

k2z
1/k1u−k2/k1)

·
∞∑

j=2

a j

(√
k1u + √

k2z1/k1u−k2/k1

k1 + k2

) j
.

(13)

Wewrite H(x, y) as a formal first integral of system (9). Then Ĥ(u, v) = H(x, y) is a formal
first integral of system (11) and H̃(u, z) = Ĥ(u, v) is a formal first integral of system (13).
Writing Ĥ(u, v) = ∑

j≥0 Hj (u)v j with Hj a formal series in u, we can write H̃(u, z) as

H̃ = H̃(u, z) =
∑

j≥0

H̃ j (u)z j/k1 ,

where H̃ j (u) = Hj (u)u− jk2/k1 . Since H̃ is a first integral we can assume that it has no
constant term. Note that H̃ satisfies

u′ ∂ H̃
∂u

+ z′ ∂ H̃
∂z

= 0, (14)

with (u′, z′) as in (13). We will show by induction that

H̃ j (u) = 0 for j ≥ 0. (15)

Note that to conclude the proof of the theorem it is enough to show that (15) holds, because
in this case we reach to a contradiction.

First note that Eq. (14) restricted to z = 0 becomes

(

k1u + k1
√
k2

∞∑

j=2

a j

( √
k1u

k1 + k2

) j
)

H̃ ′
0(u) = 0,

where the prime denotes derivative with respect to the variable u. Thus H̃0 is a constant.
Since H̃0 has no constant terms we get H̃0 = 0. This proves (15) for j = 0.

We assume that (15) is satisfied for j = 0, . . . , n − 1 with n ≥ 1 and we shall prove it
for j = n. By the induction hypothesis we have that

H̃ =
∑

j≥0

H̃ j+n(u)z( j+n)/k1 = zn/k1g(u, z),

with g(u, 0) = H̃n(u). Now after simplifying Eq. (14) by zn/k1 , and after restricting to z = 0,
Eq. (14) becomes

(

k1u + k1
√
k2

∞∑

j=2

a j

( √
k1u

k1 + k2

) j
)

H̃ ′
n(u) = 0.

Therefore H̃n(u) = 0. This proves (15) for j = n. In short, the theorem is proved.
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