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Abstract In this manuscript the notion of S-operators is introduced and as a result a new
characterization of Meir–Keeler contractions is presented. Also it is shown that the set of
S-operators includes the set of continuous R-contractions, and by providing an example it
is justified that this inclusion is proper. Then Edelstein’s theorem for contractive mappings
on compact metric spaces is generalized to S0-operators. Finally the set of S-operators is
extended to the set of orbitally S-operators that includes Matkowski contractions.
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1 Introduction

Throughout this context (X, d) is a complete metric space, N0 = {0, 1, 2, . . .} and R stand
for the set of nonnegative integers and the field of Real numbers respectively.

Banach contraction principle is a powerful classical result in nonlinear analysis that has
been extended in many directions [1]. As there have been given lots of generalizations for
Banach contraction principle, therefore unifying different generalizations of this result has
been really very important. Recently Khojasteh et al. [10] introduced the notion of simulation
functions to study different kinds of contractions in a unified way and defined the set of Z-
contractions. Then Gavruta et al. [7] showed that eachZ-contraction is indeed aMeir–Keeler
contraction. Therefore finding a true generalization of Meir–Keeler contraction motivated
De Hierro et al. [12] to introduce the set of R-contractions. They proved that the set of
R-contractions not only includes the set of Meir–Keeler contractions but contains a large

B Hassan Khandani
khandani.hassan@yahoo.com; khandani@iau-mahabad.ac.ir

1 Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12215-017-0312-z&domain=pdf
http://orcid.org/0000-0002-7744-8335


252 H. Khandani

family of contractions such as Geraghty contractions and contractions defined by simulation
or manageable functions [4,8,10]. The main obstacle to verify a particular operator as a Z-
contraction (or an R-contraction) is to define so-called a simulation function or an auxiliary
function on which these notions are depended on. It is worth mentioning that in comparison
with Z-contractions or R-contractions [10,12] the notion of S-operator is dependent upon
no simulation or auxiliary function which was the main motivation for doing this research.
In this paper at first the set of S-operators along with the set of S1 and S0 operators are
introduced. Then it is verified that each of these sets of operators contains the next one
respectively and by some examples it is confirmed that all of these inclusions are proper.
Then a characterization for Edelstein contractions via S0-operators is presented (Theorem 11)
which shows that S0-operators are the extension of Edelstein contractions on compact metric
spaces (Remark 4). Then imposing a simple condition on S-operators, a characterization
for Meir–Keeler contractions is provided. This enables us to see if a given contraction is
Meir–Keeler or not and extend some earlier results (Sect. 3; Theorems 15 and 16). For other
characterizations of Meir–Keeler or Meir–Keeler type results [9,11]. Then it is shown that
the set of S-operators contains the set of continuous R-contractions and by an example it is
verified that this inclusion is proper. Finally the set of orbitally S-operators is introduced.
Meir–Keeler and Matkowski contractions are among the most important generalizations of
Banach contractions and it is proved that these sets of contractions are included in the set of
orbitally S-operators properly.

For the sake of completeness we present here some basic definitions and results that will
be needed in the sequel.

Definition 1 Let (X, d) be a metric space and T : X → X be a mapping. For x0 ∈ X the
Picard sequence of T based at the point x0 is defined by xn+1 = T (xn) for all n ≥ 1 and
is denoted by O{T, x0}. An arbitrary sequence {xn} ⊆ X is called asymptotically regular
if d(xn+1, xn) → 0 as n → ∞. T is called weakly Picard operator if for each x0 ∈ X the
Picard sequence of T based at x0 be convergent to a fixed point of T . Moreover T is called a
Picard operator if T is weakly Picard operator and has a unique fixed point [12]. T is called
a Banach contraction if there exists k ∈ [0, 1) such that:

d(T (x), T (y)) ≤ kd(x, y) for all x, y ∈ X, (1)

T is called a nonexpansive mapping if

d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ X, (2)

T is called a contractive mapping if

d(T (x), T (y)) < d(x, y) for all x, y ∈ X with x �= y. (3)

Theorem 1 (Banach contraction principle [1]) Every Banach contraction on a complete
metric space has a unique fixed point.

Theorem 2 (Edelstein [6]) Let (X, d) be a complete metric space and T : X → X be a
contractive self mapping and

{ f n(i)x} ⊆ { f (n)x} for some x ∈ X with z = lim
i→∞ f n(i)x ∈ X. (4)

Then z is a unique fixed point of T .

When X is compact, then Eq. (4) hold and the following theorem is deduced.
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Theorem 3 (Edelstein [6]) Let (X, d) be a compact metric space and T : X → X be a
contractive self mapping, then T has a unique fixed point.

Theorem 4 (Meir and Keeler [13]) Let (X, d) be a metric space and T : X → X be a self
mapping. T is a Meir–Keeler contraction if for each ε > 0 there exists δ > 0 such that if
x, y ∈ X and ε ≤ d(x, y) < ε + δ, then d(T (x), T (y)) < ε.
Every Meir–Keeler contraction T : X → X is contractive and has a unique fixed point.

Theorem 5 (Geraghty [8]) Let (X, d) be a complete metric space, let T : X → X, and
suppose that for each x, y ∈ X:

d(T (x), T (y)) ≤ α(d(x, y))d(x, y).

Then T has a unique fixed point z ∈ X, and {T n(x)} converges to z, for each x ∈ X. Where
α : R+ → [0, 1) is a function such that α(tn) → 1 implies that tn → 0, for each sequence
{tn} ⊂ [0,+∞).

The following contraction is introduced by Matkowski which generalizes the Banach con-
tractions [1].

Theorem 6 Let (X, d) be a metric space and T : X → X be a self mapping such that:

d(T (x), T (y)) ≤ ψ(d(x, y)) for all x, y ∈ X, (5)

whereψ : (0,∞) → (0,∞) ismonotonenondecreasingmapping such that limn→∞ψn(t) =
0 for all t > 0. Then T has a unique fixed point.

Definition 2 (Khojasteh et al. [10]) Let ζ : [0,∞) × [0,∞) → R be a mapping, then ζ is
called a simulation function provided the following conditions hold:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s − t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.

Definition 3 (Khojasteh et al. [10]) Let (X, d) be a metric space and T : X → X be a
mapping. T is a Z-contraction if there exists a simulation function ζ such that:

ζ(d(T (x), T (y)), d(x, y)) > 0 for all x, y ∈ X such that x �= y. (6)

Definition 4 (López De Hierro and Shahzad [12]) Let A be a nonempty subset of R and
ρ : A × A → R be a function such that:

(ρ1) If {an} ⊂ A ∩ [0,∞) be a sequence such that ρ(an+1, an) > 0 for all n ∈ N0, then
an → 0.

(ρ2) For any two sequences {an}, {bn} ⊂ (0,∞) ∩ A converging to the same limit L ≥ 0
with L < an and ρ(an, bn) > 0 for all n ∈ N0, then L=0.

Then ρ is called R-function which is simply denoted by ρ ∈ RA.

In some cases the following condition is also considered for an R-function:

(ρ3) For any two sequences {an}, {bn} ⊂ (0,∞) ∩ A, if bn → 0 and ρ(an, bn) > 0 for all
n ∈ N0, then an → 0.
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Definition 5 (López DeHierro and Shahzad [12]) Let (X, d) be ametric space and T : X →
X be a mapping. Then T is an R-contraction if there exists an R-function ρ : A × A → R

that d(x, y) ∈ A for all x, y ∈ X and

ρ(d(T (x), T (y)), d(x, y)) > 0 for all x, y ∈ X such that x �= y. (7)

Theorem 7 (López De Hierro and Shahzad [12]) Let (X, d) be a complete metric space and
T : X → X be an R-contraction with respect to ρ ∈ RA. Assume that one of the following
conditions holds.

(a) T is continuous.
(b) The function ρ satisfies the condition (ρ3).
(c) ρ(t, s) ≤ s − t for all t, s ∈ A ∩ (0,∞).

Then T is a Picard operator. In particular, It has a unique fixed point.

2 Main results

In this section we introduce the set of S-operators. Then a characterization for Edelstein
contractions on compact metric spaces is provided and we also characterize Meir–Keeler
contractions via S1-operators. As the final result of this section we show that the set of
S-operators contains the set of continuous R-contractions.

Definition 6 Let (X, d) be ametric space. T : X → X is called an S-operator if the following
conditions hold:

s(i) there exists x0 ∈ X such that the Picard sequence of T based at x0 is asymptotically
regular;

s(ii) for any sequences {xn} and {yn}, if d(xn, yn) and d(T (xn), T (yn)) converge to the
same limit L ≥ 0 with d(T (xn), T (yn)) > L for all n ∈ N0, then L=0;

s(iii) T is continuous.

Theorem 8 Let (X, d) be a complete metric space. Then each S-operator T : X → X has
a fixed point in X.

Proof Suppose that x0 ∈ X and {xn} be the Picard sequence of T based at x0, which by
assumption is asymptotically regular. Assume {xn} is not a Cauchy sequence. Then using
exactly the same argument as given in [12] there exists ε0 > 0 and two sequences {n(k)} and
{m(k)} of nonnegative integers with k ≤ n(k) < m(k) for each k ∈ N0 and

d(xn(k), xm(k)−1) ≤ ε0 < d(xn(k), xm(k)),

we have

d(xn(k)−1, xm(k)−1) ≤ d(xn(k)−1, xn(k)) + d(xn(k), xm(k)−1) ≤ ε0 + d(xn(k)−1, xn(k)), (8)

and

ε0 < d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)−1) + d(xm(k)−1, xm(k)), (9)

but {xn} is an asymptotically regular sequence, consequently we get:

lim
k→∞ d(xn(k), xm(k)) = lim

k→∞ d(xn(k)−1, xm(k)−1) = ε0.
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Now condition s(i i) implies that ε0 = 0, this contradiction shows that {xn} is a Cauchy
sequence and since (X, d) is complete, it converges to some point z ∈ X . As T is continuous,
we get:

d(z, T (z)) = lim
n→∞ d(xn+1, T (z)) = lim

n→∞ d(T (xn), T (z)) = 0, (10)

and this shows that z is a fixed point of T which completes the proof.

Replacing the condition d(T (xn), T (yn)) > L with d(T (xn), T (yn)) ≥ L in the condition
s(ii) of Definition 6 or remove it, the S1-operators and S0-operators are defined as follow.

Definition 7 Let (X, d) be a metric space. T : X → X is called an S1-operator if the
following conditions hold:

s(i) there exists x0 ∈ X that the Picard sequence of T based at x0 is asymptotically regular;
s(ii) for any two sequences {xn} and {yn}, if d(xn, yn) and d(T (xn), T (yn)) converge to the

same limit L ≥ 0 with d(T (xn), T (yn)) ≥ L for all n ∈ N0, then L=0;
s(iii) T is continuous.

Definition 8 Let (X, d) be a metric space. T : X → X is called an S0-operator if the
following conditions hold:

s(i) there exists x0 ∈ X that the Picard sequence of T based on x0 is asymptotically regular;
s(ii) for any two sequences {xn} and {yn}, if d(xn, yn) and d(T (xn), T (yn)) converge to the

same limit L ≥ 0, then L=0;
s(iii) T is continuous.

Corollary 1 Every S1-operator on a complete metric space is an S-operator. Furthermore
every S1-operator has a unique fixed point.

Proof The first part is clear. To justify the uniqueness of fixed points, suppose that x, y be
fixed points of T . Let xn = x, yn = y for all nonnegative integers n. Then d(xn, yn) and
d(T (xn), T (yn)) converge to L = d(x, y) and d(T (xn), T (yn)) ≥ L for all n ∈ N0, and by
condition s(i i) in Definition 7 we get d(x, y) = 0. Hence x = y and this shows that T has
a unique fixed point.

Remark 1 See Example 1 for an S-operator that has two fixed points. Therefore the set of
S-operators includes the set of S1-operators properly.

Corollary 2 Let (X, d) be a complete metric space, then every S0-operator on X is an S1-
operator (and thus has a unique fixed point). The converse is also true when (X, d) is a
compact metric space.

Proof The first part is clear. To prove the second part suppose that (X, d) be a compact metric
space and T : X → X is an S1-operator. Let {xn} and {yn} be two sequences in X such that
d(xn, yn) and d(T (xn), T (yn)) converge to the same L ≥ 0. Since X is compact, without
loss of generality we may suppose that {xn} and {yn} converge to x, y ∈ X respectively.
Using the continuity of T we get:

d(x, y) = d(T (x), T (y)), (11)

now define xn = x and yn = y for all n ∈ N0 and put L = d(x, y). Then we have:

d(xn, yn), d(T (xn), T (yn)) → L and d(T (xn), T (yn)) ≥ L for all n ∈ N0, (12)

since T is an S1-operator, L = 0, and the proof is complete.
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Remark 2 See Example 2 for an S1-operator which is not an S0-operator. Therefore the set
of S1-operators contains the set of So-operators properly.

The following theorem shows that the set of S0-operators is big enough to include all Banach
contractions.

Theorem 9 Let (X, d) be complete metric space, then every Banach contraction mapping
T : X → X is an S0-operator.

Proof T is continuous and has a fixed point, then the conditions s(i), s(i i i) in Definition 8
hold. To verify that T satisfies the condition s(i i), let T : X → X be a Banach contraction
such that d(T (x), T (y)) ≤ kd(x, y) for all x, y ∈ X , where k ∈ (0, 1) is a constant number.
Now suppose that {xn}, {yn} are two sequences such that d(xn, yn) and d(T (xn), T (yn))
converge to some L ≥ 0. Then

d(T (xn), T (yn)) ≤ kd(xn, yn) for all n ∈ N0, (13)

taking limit as k → ∞we get L ≤ kL . Since L > 0, this shows that L = 0 which completes
the proof.

See Example 4 for an S0-operator which is not a Banach contraction. The following theorem
shows that in Definition 8, condition s(i i) implies s(i) for nonexpansive mappings. By
Example 3 we see that the converse is not true when T is not nonexpansive.

Theorem 10 Every nonexpansive mapping on a complete metric space satisfying the con-
dition s(i i) of Definition 8 is an S0-operator and hence has a unique fixed point.

Proof First suppose that T is a nonexpansive mapping. Let x0 ∈ X and {xn} be the Picard
sequence based at x0. Then

d(xn+2, xn+1) = d(T (xn+1), T (xn)) ≤ d(xn+1, xn) for all n ∈ N0. (14)

Then {d(xn+1, xn)} is a decreasing sequence of nonnegative real numbers, so converges to
some L ≥ 0.Nowput yn = xn+1 for alln ∈ N0.Weget thatd(T (yn), T (xn)), d(yn, xn) → L
as n → ∞. Since T satisfies the condition s(i i) of Definition 8, then L = 0.
Therefore {xn} is asymptotically regular. Since T is continuous, T is an S0-operator and by
Corollary 2 has a unique fixed point.

Lemma 1 Let (X, d) be a compact metric space and T : X → X be a continuous mapping.

(i) If
d(T (x), T (y)) �= d(x, y) for all x, y ∈ X with x �= y, (15)

then T satisfies the condition s(i i) of Definition 8,
(ii) suppose that

d(T (x), T (y)) > d(x, y) for all x, y ∈ X with x �= y, (16)

then T is an S0-operator.

Proof (i) Suppose that {xn}, {yn} are two sequences such thatd(xn, yn) andd(T (xn), T (yn))
converge to some L ≥ 0. Assume that L > 0. Since X is compact, there exists a
subsequence {n(k)} ⊆ N0 such that the sequences {xn(k)}, {yn(k)} converge to some
points x, y ∈ X respectively. As T is continuous, we have:

d(x, y) = d(T (x), T (y))) = L . (17)

Since L > 0, this follows that x �= y. Therefore d(T (x), T (y)) �= d(x, y) by (15), which
contradicts with (17), this contradiction shows that L = 0.
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(ii) By part (i) the mapping T satisfies the condition s(i i) in Definition 8. Let {xn} be the
Picard sequence based at x0 ∈ X . Then sequence {d(xn+1, xn)} is increasing. Since X
is compact and T is continuous, this sequence is also bounded and converges to some
L ≥ 0. Now as the proof of Theorem 10 L = 0. Hence T is an S0-operator and has a
unique fixed point.

Remark 3 Example 3 show that there are operators that satisfy condition (i) of Lemma 1
and still have no fixed points.

The following theorem characterizes Edelstein’s contractions on compact metric spaces.

Theorem 11 Let (X, d) be a compact metric space and T : X → X be a nonexpansive
mapping. Then T is a contractive mapping iff T is an S0-operator.

Proof First suppose that T is a contractive mapping. By part (i) of Lemma 1, T satisfies the
condition s(i i) of Definition 8. Now T is an S0-operator by Theorem 10.
Conversely, suppose that T is nonexpansive S0-operator. Suppose that x, y ∈ X and
d(T (x), T (y)) = d(x, y) = L with x �= y. Let xn = x, yn = y for all n ∈ N0, then
d(T (xn), T (yn)), d(xn, yn) → L and L > 0 which is a contradiction. Therefore T is con-
tractive mapping and the proof is complete.

Remark 4 Notice that each compact metric space is complete and by Theorem 11 every
contractive operator on a compact metric space is an S0-operator, therefore Theorem 11
shows that S0-operators are the generalization of Edelstein contractions on compact metric
spaces (see Theorem 3).

Now we characterize the Meir–Keeler contractions via S1-operators as follow.

Theorem 12 Let (X, d) be a complete metric space and T : X → X be a self mapping.
Then T is a Meir–Keeler contraction iff T is an S1-operator and

d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ X. (18)

Proof Suppose that T be a Meir–Keeler contraction. T is a contractive mapping, that is:
d(T (x), T (y)) < d(x, y) for all x, y ∈ X with x �= y (see Theorem 4). Therefore
d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ X . Now in three steps we show that T is an S1-
operator.

(i) Let x0 ∈ X and {xn} be the Picard sequence of T based at x0. It is known that {xn} is
an asymptotically regular sequence [13], but for the sake of completeness we write the
proof:
For all n ∈ N0, d(xn+2, xn+1) = d(T (xn+1), T (xn)) ≤ d(xn+1, xn), hence the
sequence dn = d(T (xn+1), T (xn)) is a nonincreasing sequence of nonnegative real
numbers, so converges to some ε0 ≥ 0. Suppose that ε0 > 0. Since T is a Meir–Keeler
contraction and ε0 > 0, there is δ > 0 such that

x, y ∈ X and ε0 ≤ d(T (x), T (y)) < ε0 + δ implies d(T (x), T (y)) < ε0. (19)

Since d(xn+1, xn) ↓ ε0, there exists a negative integer m such that d(xm+1, xm) <

ε0 + δ. Now by (19) we deduce that d(xm+2, xm+1) = d(T (xm+1), T (xm) < ε0, a
contradiction. Therefore {xn} is an asymptotically regular sequence.
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(ii) Now suppose that {xn}, {yn} are two sequences in X such that d(xn, yn) and
d(T (xn), T (yn)) converge to some L ≥ 0. Assume L > 0. So there exists δ > 0
such that:

L ≤ d(x, y) < L + δ → d(T (x), T (y)) < L for all x,y ∈ X. (20)

Since d(xn, yn) ≥ d(T (xn), T (yn)) ≥ L , there exists n ∈ N0 such that L ≤
d(xn, yn) < L + δ. Consequently d(T (xn), T (yn)) < L .This contradiction shows
that L = 0.

(iii) every Meir–Keeler contraction is continuous, therefore T satisfies the condition s(i i i)
in Definition 7.

Therefore T is an S1-operator.
Conversely let T be a nonexpansive S1-operator. Suppose that T is not a Meir–Keeler con-
traction. There exists ε0 > such that for each δ > 0 there are x, y ∈ X such that:

ε0 ≤ d(x, y) < ε0 + δ, and d(T (x), T (y)) ≥ ε0. (21)

Then for each δ = 1
n where 0 �= n ∈ N0, there exist xn, yn ∈ X such that:

ε0 ≤ d(xn, yn) < ε0 + 1

n
and d(T (xn), T (yn)) ≥ ε0. (22)

And since T is nonexpansive we get:

ε0 ≤ d(T (xn), T (yn)) ≤ d(xn, yn) < ε0 + 1

n
, for all n ∈ N0, (23)

this follows that:

d(T (xn), T (yn)), d(xn, yn) → ε0 as n → ∞, and d(T (xn), T (yn)) ≥ ε0 for all n ∈ N0.

(24)
Since T is an S1-operator, this implies that ε0 = 0. This contradiction completes the proof.

Lemma 2 Every R-contraction with respect to an R-function ρ satisfying the condition (ρ3)

of Definition 4 is a continuous function.

Proof Let T be an operator that satisfies the condition (ρ3) in Definition 4. To show that
T is continuous, let {xn} be a sequence in X which converges to the point x ∈ X . Define
bn = d(xn, x) and an = d(T (xn), T (x)) for each n ∈ N0. If xn = x , T (xn) = T (x). So
without loss of generality suppose that xn �= x for all n ∈ N0. Let A = {n ∈ N0 : an �= 0}.
If A be a finite set, then T (xn) → T (x) as n → ∞. Therefore suppose that A is infinite.
Notice that there exists a subsequence {n(k)} of N0 such that A = {n(k)}. Now we have
an(i), bn(i) ∈ (0,+∞) for all i ∈ N0 and

ρ(an(i), bn(i)) = ρ(d(T (xn(i)), T (x)), d(xn(i), x) > 0 for all i ∈ N0, (25)

now by condition (ρ3), an(i) → 0 as i → 0. Consequently an → 0 as n → 0 which
completes the proof.

Remark 5 In Theorem 7, (c) implies (b) (see Proposition 14 in [12]), and above lemma
shows that the condition (b) implies the condition (a). Therefore in this theorem conditions
(a) which is the continuity of T is weaker than the other conditions.

Theorem 13 Every continuous R-contraction is an S-operator.
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Proof Let ρ be an R-function as in Definition 4 and

ρ(d(T (x), T (y)), d(x, y)) > 0 for all x, y ∈ X such that x �= y. (26)

In three steps we show that T is an S-operator.

(i) To verify that T satisfies the condition s(i) in Definition 6, Let x0 ∈ X and {xn} be
the Picard sequence of T based at x0. If xn+1 = xn for some n ∈ N0, then {xn}
is asymptotically regular. Therefore suppose that xn+1 �= xn for all n ∈ N0, define
an = d(xn+1, xn) for all n ∈ N0. Now an ∈ (0,∞) for each n ∈ N0 and

ρ(an+1, an) = ρ(d(T (xn+1), T (xn)), d(xn+1, xn)) > 0 for all n ∈ N0, (27)

now by condition (ρ1) in Definition 4, an → 0 as n → 0. This shows that the sequence
{xn} is asymptotically regular.

(ii) Nowwe show that T satisfies the condition s(i i) of Definition 6. To do this suppose that
{xn}, {yn} are two sequences in X such that d(xn, yn) and d(T (xn), T (yn)) converge
to some L ≥ 0 and d(T (xn), T (yn)) > L for all n ∈ N0. Suppose that L > 0. Since
d(xn, yn) converges to L and L > 0, there exists k ∈ N0 such that d(xn, yn) > 0 for all
n ≥ k. Put an = d(T (xn+k), T (yn+k)) and bn = d(xn+k, yn+k) for all n ∈ N0. Since
T is a R-contraction with respect to ρ, we have:

ρ(an, bn) = ρ(d(T (xn+k), T (yn+k)), d(xn+k, yn+k)) > 0 (n ∈ N0). (28)

Now we have:
ρ(an, bn) > 0 and an > L for all n ∈ N0. (29)

Consequently by condition (ρ2) inDefinition 4wededuce that L = 0.This contradiction
completes the proof of this part.

(iii) By assumption T is continuous.

3 Applications

In this section we apply our method to some fixed point results. In this way we see that how
this method can be used as a criteria to confirm that if a given contraction is a Meir–Keeler
one or not. Some earlier results are also extended in the sequel.

Theorem 14 Every Geraghty contraction (see Theorem 5) is a Meir–Keeler contraction.

Proof Let T be a Geraghty contraction as in Theorem 5. Suppose that, for the two sequences
{xn} and {yn} in X , d(xn, yn) and d(T (xn), T (yn)) converge to the same limit L ≥ 0. We
confirm that L = 0.
Notice that:

d(T (xn), T (yn)) ≤ α(d(xn, yn))d(xn, yn),

for all positive integer n. Taking liminf of above inequality implies that:

L ≤ lim inf
n→∞ α(d(xn, yn))L .

Suppose that L > 0 which follows that lim infn→∞ α(d(xn, yn)) ≥ 1. On the other hand by
definition of α, lim supn→∞ α(d(xn, yn)) ≤ 1. Therefore limn→∞ α(d(xn, yn)) = 1. Using
definition of α again follows that

L = lim
n→∞ d(xn, yn)) = 0,
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a contradiction. Therefore T satisfies the condition s(i i) of S0-operators and since T is
a nonexpansive mapping, T is an S0-operator by Theorem 10. Now T is a Meir–Keeler
contraction by Corollary 2 and Theorem 12.

Corollary 3 is inspired by Mizoguchi and Takahashi [14]. At first we prove the following
theorem and then deduce Corollary 3 as a result.

Theorem 15 Let (X, d) be complete metric space and T : X → X be a map with the
following property:

d(T (x), T (y)) ≤ α(d(x, y))d(x, y) for all x, y ∈ X, (30)

where α : (0,∞) → [0, 1) is a mapping such that:

lim
t→r+ α(t) = a, r > 0 → a < 1. (31)

Where t → r+ means that t tends to r from the right. Then T is a Meir–Keeler contraction.

Proof Toverify that T satisfies the condition s(i i)ofDefinition 7 suppose that {xn}, {yn} ⊂ X
and d(xn, yn) and d(T (xn), T (yn)) converge to the same limit L ≥ 0with d(T (xn), T (yn)) ≥
L for all n ∈ N0. We show that L = 0. We have:

d(T (xn), T (yn)) ≤ α(d(xn, yn))d(xn, yn),

for all positive integer n. Taking liminf of above inequality we get:

L ≤ lim inf
n→∞ α(d(xn, yn))L . (32)

Suppose that L > 0. Dividing both sides of above inequality by L implies that 1 ≤
lim infn→∞(α(d(xn, yn))) and by definition of α we get that:

lim sup
n→∞

(α(d(xn, yn))) ≤ 1, (33)

hence

lim
n→∞(α(d(xn, yn))) = 1,

since d(xn, yn) ≥ d(T (xn), T (yn)) ≥ L for all n ∈ N0, we deduce that

lim
n→+∞(α(tn))) = 1,

where tn = d(xn, yn) for all n ∈ N0. By condition 31 this is a contradiction, which proves
our claim. It is easy to see that T is contractive. Therefore by the same argument as given in
the proof of Theorem 14, we deduce that T is a Meir–Keeler contraction.

Corollary 3 Let (X, d) be complete metric space and T : X → X be a map with the
following property:

d(T (x), T (y)) ≤ α(d(x, y))d(x, y) for all x, y ∈ X, (34)

where α : (0,∞) → [0, 1) is a mapping such that satisfies one of the following conditions:

(a) lim supt→r+ α(t) < 1, for all r > 0.
(b) lim inf t→r+ α(t) < 1, for all r > 0.

Then T is a Meir–Keeler contraction.
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Proof Both of these conditions imply that if r > 0 and limt→r+ α(t) = a, then a < 1. Now
by Theorem 15 the proof is complete.

Now we extend Theorem 5 of [7] as follow.

Theorem 16 Let (X, d) be a complete metric space and T : X → X be a nonexpansive
map such that:

ψ(d(T (x), T (y))) ≤ α(d(x, y)) − β(d(x, y)) for all x, y ∈ X, (35)

where α, β : [0,∞) → [0,∞) are continuous, lower-semicontinuous maps respectively
and ψ : [0,∞) → [0,∞) is a lower-semicontinuous map on the right (that is ψ(r) ≤
lim inf t→r+ ψ(t) for all r ≥ 0) and

ψ(t) − α(t) + β(t) > 0 for all t > 0, (36)

then T is a Meir–Keeler contraction.

Proof Suppose that for the two sequences {xn}, {yn} ⊂ X , d(xn, yn) and d(T (xn), T (yn))
converge to the same limit L ≥ 0 and d(T (xn), T (yn)) ≥ L for all n ∈ N0. We show that
L = 0. We have:

ψ(d(T (xn), T (yn))) ≤ α(d(xn, yn)) − β(d(xn, yn)) for all n ∈ X, (37)

and taking limsup as n → ∞ we get:

ψ(L)) ≤ lim inf
n→∞ ψ(d(T (xn), T (yn))) ≤ lim sup

n→∞
ψ(d(T (xn), T (yn)))

≤ lim sup
n→∞

α(d(xn, yn)) − lim inf
n→∞ β(d(xn, yn))

≤ α(L) − β(L),

(38)
and using condition (36) implies that L = 0. But T is nonexpansive, consequently by the
same argument as given in the proof of Theorem 14, we deduce that T is a Meir–Keeler
contraction.

Now we deduce Theorem 5 of [7] as the following corollary. It is worth mentioning that
Gavruta et al. [7] provided this theorem as an extension of some results in [5,15], see also
[2].

Corollary 4 (Gavruta et al. [7, Theorem 5]) Let (X, d) be a complete metric space and
T : X → X be a nonexpansive map such that:

ψ(d(T (x), T (y))) ≤ α(d(x, y)) − β(d(x, y)) for all x, y ∈ X, (39)

whereψ, α, β : [0,∞) → [0,∞) are nondecreasing, continuous and lower-semicontinuous
maps respectively and

ψ(t) − α(t) + β(t) > 0 for all t > 0, (40)

then T is a Meir–Keeler contraction.

Proof Conditions (39) and (40) when ψ is a nondecreasing map follow that T is nonexpan-
sive, since otherwise there exist x, y ∈ X with x �= y such that:

ψ(d(x, y)) ≤ ψ(d(T (x), T (y))) ≤ α(d(x, y)) − β(d(x, y)) for all x, y ∈ X. (41)

Now put L = d(x, y) > 0 and using (40) we have a contradiction. It is easy to see that
every nondecreasing mapping is lower-semicontinuous on the right. Therefore T satisfies the
conditions of Theorem 16 and hence is a Meir–Keeler contraction.

123



262 H. Khandani

In 1971, Ćirić [3] introduced orbitally continuous maps on metric spaces as follow.

Definition 9 Let (X, d) be a metric space. A mapping T on X is orbitally continuous if
limi→∞ T ni (x) = u implies limi→∞ T T ni (x) = T (u) for each x ∈ X .

Now the set of orbitally S-operators is defined as follow and as we see in the sequel, this set
of operators includes the set of S-operators properly (see Theorem 17 ).

Definition 10 (orbitally S-operator) Let (X, d) be a complete metric space, the mapping
T : X → X is called orbitally S-operator if the following conditions hold.

s(i) The Picard sequence {xn} based at x0 is asymptotically regular for some x0 ∈ X ,
s(ii) for any two subsequences {xn(k)} and {xm(k)} of {xn} if d(xn(k), xm(k)) converges to

some limit L ≥ 0 and d(xn(k), xm(k)) > L for all k ∈ N0, then L=0. Where {xn} is the
Picard sequence of T based at x0 ∈ X .

s(iii) T is orbitally continuous,

Theorem 17 Every orbitally S-operator on a complete metric space has a fixed point. The
set of orbitally S-operators contains the set of S-operators properly.

Proof The proof of the first part is similar to the proof of Theorem 8, the inclusion is evident.
Example 5 shows that this inclusion is proper.

Theorem 18 Every Matkowski contraction (see Theorem 6) on a complete metric space is
an orbitally S-operator.

Proof Let x0 ∈ X and {xn} be the Picard sequence of T based at x0. If xn+1 = xn for some
n ∈ N0, then {xn} is asymptotically regular. So suppose that xn+1 �= xn for all n ∈ N0. For
each n ≥ 1 we have:

d(xn+1, xn) ≤ ψn(d(x0, T (x0))), (42)

since d(x0, T (x0)) > 0 and ψn(t) → 0 for any t > 0, this follows that the Picard sequence
of T based at any point x0 is asymptotically regular.
Let {xn} the Picard sequence of T based at x0 and {xn(k)} and {xm(k)} be any two subsequences
of it such that

lim
k→∞ d(T n(k)(x0), T

m(k)(x0)) = L ,

we show that L = 0. Let r > 0, since {xn} is asymptotically regular, there existsm0 such that
d(Tm0 x0, Tm0+1x0) < r−ψ(r) and put y0 = Tm0(x0). Therefore d(y0, T (y0)) < r−ψ(r).
Suppose that n ∈ N0 and d(y0, T n(y0)) < r , then

d(y0, T
n+1(y0)) ≤ d(y0, T (y0)) + d(T (y0), T

n+1(y0))

< r − ψ(r) + ψ(d(y0, T
n(y0)))

≤ r − ψ(r) + ψ(r) = r,

(43)

so by induction d(y0, T n(y0)) < r for all n ∈ N0. Let t ∈ N0 with t ≥ 1, choose k ≥ 1 such
that m(k), n(k) > t , consequently

d(T n(k)(y0), T
m(k)(y0)) ≤ ψ t (d(T n(k)−t (y0), T

m(k)−t (y0))

= ψ t (d(T n(k)−t (y0), y0) + d(y0, T
m(k)−t (y0))),

≤ ψ t (2r),

(44)

since ψ t (2r) → 0 as t → ∞, we deduce that L = 0.
As T is contractive, so it is continuous. Therefore T is orbitally S-operator.
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Remark 6 The set of Matkowski and Meir–Keeler contractions are incomparable [9]. By
Theorem 12, Theorem 17 and Theorem 18 the set of orbitally S-operators contains both these
set of contractions. By Example 5 the set of orbitally S-operators contains noncontinuous
operators, therefore these inclusions are proper.

4 Examples

Let the set of S0-operators, S1-operators and S-operators on X be denoted by S0,S1,S

respectively and the set of orbitally S-operators, continuous R-contractions and Banach
contractions on X be denoted by OS, CR and B respectively.
The results of the previous sections can be briefed as follow:

B ⊂ S0 ⊆ S1 ⊆ S and CR ⊆ S ⊆ OS. (45)

In this section some different examples of S-operators are presented to illustrate that all
inclusions in (45) are proper.
The following example is an S-operator that has two fixed points. Therefore it is not an
R-contraction.

Example 1 Let X = {0, 1} and T : X → X defined by

T (x) =
{
0 x = 0
1 x = 1

Proof Suppose that {xn} and {yn} be two sequences in X and d(xn, yn) and d(T (xn), T (yn))
converge to the same limit L ≥ 0 with d(T (xn), T (yn)) > L for all n ∈ N0, then we prove
that L = 0. Since d(xn, yn) = 0 or 1 for all n ∈ N0 and d(xn, yn) → L , we deduce that
L = 0 or 1. Now d(T (xn), T (yn)) = 0 or 1 and d(T (xn), T (yn)) > L for all n ∈ N0. This
follows that L �= 1. Therefore L = 0 and this confirms that T is an S-operator. It is worth
noticing that T is a nonexpansive S-operator which is not a Meir–Keeler contraction, this
shows that Theorem 12 dose not hold for S-operators.

Example 2 Define , x0, x1 = 0 and xn+1 = xn + 2 − 1
n for all n ∈ N0 with n ≥ 1. Put

X = {x0, x1, x2, . . .} and define T : X → X by T (xn) = xn+1 for all n ∈ N0.
Then (X, d) is a complete metric space with Euclidean metric and T : X → X is an
S1-operator which is not an S0-operator.

Proof X is a discrete subset of R and has no limit point and it is evident that (X, d) is a
completemetric space and T is continuous. Suppose that {an} and {bn} be two sequences in X
and d(an, bn) and d(T (an), T (bn)) converge to the same limit L ≥ 0with d(T (an), T (bn)) ≥
L for all n ∈ N0, then we show that L = 0.
Since X = {xn : n ∈ N0}, then {an} = {xn(k)}, and {bn} = {xm(k)} for some subsequence
{n(k)}, {m(k)} ⊂ N0. Put

M = max{| n(k) − m(k) |: k ∈ N0}.
notice that:

xn+i = xn + 2i −
(
1

n
+ 1

n + 1
+ · · · + 1

n + i − 1

)
≥ xn + i. (46)

In other words if m > n, then

d(xm, xn) = xm − xn ≥ m − n, (47)
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now by assumption d(xn(k), xm(k)) → Ł < ∞, which by (47) follows that M < ∞. As
there are finite number of choices for | n(k) − m(k) | for all k ∈ N0, we may assume that
| n(k) − m(k) | is constant for a infinite numbers of k. So suppose that | n(k) − m(k) |= i
for all k ∈ N0 where i is a nonnegative integer. Now by (46) we deduce that:

d(xn(k), xm(k)) → Ł = 2i as k → ∞, (48)

and by our assumption we have:

d(xn(k), xm(k)), d(xn(k)+1, xm(k)+1) → Ł = 2i,

and d(xn(k)+1, xm(k)+1) ≥ 2i for all k ∈ N0,
(49)

without loss of generality we suppose that n(k) < m(k) for all k ∈ N0, thereforemk = nk+i .

xm(k)+1 = xn(k)+1+i

= xn(k)+1 + 2i −
(

1

n(k) + 1
+ 1

n(k) + 2
+ · · · + 1

n(k) + i

)
,

(50)

this follows that L = 2i ≤ d(T (xm(k)), T (xn(k))) = xm(k)+1−xn(k)+1 < 2i , a contradiction.
This contradiction shows that T is an S1-operator.
Now notice that d(xn+1, xn), d(xn+2, xn+1) → 2 as n → ∞, putting an = xn+1, bn = xn
for all n ∈ N0 we have:

d(an, bn), d(T (an), T (bn)) → 2, (51)

which follows that T is not an S0-operator and the proof is complete.

The following example shows that the condition s(i i) of Definition 7 dose not imply the
condition s(i) even when X is compact and T is continuous.

Example 3 Let X = {1, 3, 4} define T : X → X by T (1) = 3, T (3) = 4, T (4) = 1. Then
X is a compact metric space with Euclidean metric and T is continuous map with no fixed
point.

Proof Suppose that {xn} and {yn} be two sequences in X and d(xn, yn) and d(T (xn), T (yn))
converge to the same limit L ≥ 0, thenwe show that L = 0.Since X is finite, sowe can choose
a constant subsequences {xn(k)} of {xn} in X . If {yn(k)} is not a constant sequence, a constant
subsequence {ym(k)} of it can be obtained and the sequences {xn(k)} and {yn(k)} are replaced
with constant subsequences {xm(k)} and {ym(k)} respectively. So without loss of generality we
assume that {xn(k)}, {yn(k)} are constant subsequences in X and therefore xn(k) = r, ym(k) = s
for some positive integers r, s ∈ X . From d(T (xn(k)), T (yn)), d(xn(k), yn(k)) → L as k →
∞, we get:

d(r, s) = d(T (r), T (s)) = L , (52)

the above equation follows that L = 0. Since (X, d) is a discretemetric space, T is continuous.
But for each x0 ∈ X the Picard sequence on x0 is not asymptotically regular.

See the following example for an S0-operator which is not a Banach contraction.

Example 4 Let X = [1,∞) be the metric space with Euclidean metric and T : X → X be
a self mapping defined by T (x) = x2 for all x ∈ X . Then T is an S0-operator.

Proof We show that T is an S0-operator.

(i) X is a Banach space and T (1) = 1, so the Picard sequence based at x0 = 1 is asymp-
totically regular.
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(ii) Suppose that {xn} and {yn} be two sequences in X and d(xn, yn) and d(T (xn), T (yn))
converge to the same L ≥ 0, then we show that L = 0. Suppose that L > 0, then

lim
n→∞ | xn − yn | .(xn + yn) = lim

n→∞ | x2n − y2n |= L . (53)

Since | xn − yn | .(xn + yn) and| xn − yn | converge to L > 0, xn + yn is a convergent
sequence. As xn, yn ≥ 1 for all n ∈ N0, then limn→(xn + yn) = t ≥ 2. Now taking
limit of Eq. (53) we get t.L = L , hence t = 1. This contradiction implies that L = 0.

(iii) It is trivial that T is continuous.

Therefore T is an S0-operator.

Example 5 Let X = [1,∞) be the metric space with Euclidean metric and T : X → X be
a self mapping defined by:

T (x) =
{
x2 x ∈ [1, 2]
5 x ∈ (2,+∞)

Then T is an orbitally S-operators which is not an S-operator.

Proof The Picard sequence of T based at the point x = 2 is asymptotically regular. T is not
continuous at the point x = 2, but it is easy to see that T is an orbitally continuous operator(
see Definition 10). With the same argument given in Example 4 we see that T also satisfies
the condition s(i i) of Definition 10. Therefore T is an orbitally S-operator which is not an
S-operator.
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