

On the dynamics of rational maps with two free critical points

HyeGyong Jang1 · Norbert Steinmetz²

Received: 16 September 2016 / Accepted: 4 May 2017 / Published online: 11 May 2017 © Springer-Verlag Italia 2017

Abstract In this paper we discuss the dynamical structure of the rational family (f_t) given by

$$
f_t(z) = tz^m \left(\frac{1-z}{1+z}\right)^n \quad (m \ge 2, \ n \in \mathbb{N}, \ t \in \mathbb{C}\backslash\{0\}).
$$

Each map f_t has super-attracting immediate basins \mathscr{A}_t and \mathscr{B}_t about $z = 0$ and $z = \infty$, respectively, and two free critical points. We prove that \mathscr{A}_t (for $0 < |t| \leq 1$) and \mathscr{B}_t (for $|t| \geq 1$) are completely invariant, and at least one of the free critical points is inactive. Based on this separation we draw a detailed picture of the structure of the dynamical and the parameter plane.

Keywords Julia set · Bifurcation locus · Escape locus · Basin of attraction · Mandelbrot set · Hyperbolic component

Mathematics Subject Classification 37F10 · 37F45

1 Introduction

Non-trivial rational families (*ft*) normally contain specific maps of different character with most interesting and unexpected Julia sets:

– totally disconnected Julia sets (Cantor sets) occur in any family $z \mapsto z^d + t$;

This paper was written during a visit of the CAS supported by the TWA-UNESCO Associateship Scheme.

B Norbert Steinmetz stein@math.tu-dortmund.de http://www.mathematik.uni-dortmund.de/steinmetz/

¹ Faculty of Mathematics, University of Science Pyongyang, Pyongyang, Democratic People's Republic of Korea

² Fakultät Für Mathematik, TU Dortmund, Dortmund, Germany

- Julia sets consisting of uncountably many (a Cantor set of) quasi-circles occur in the McMullen family $z \mapsto z^m + t/z^n$, which was introduced in [\[8\]](#page-9-0). The number of papers on various features of this family is legion; [\[3](#page-9-1)] marks the preliminary end of a long list of papers.
- $-$ Julia sets that are Sierpinski curves (Milnor and Tan Lei [\[12](#page-9-2)] were the first to construct examples with this property) occur again in the McMullen family [\[16\]](#page-9-3), the Morosawa-Pilgrim family $z \mapsto t \left(1 + \frac{(4/27)z^3}{1-z}\right)$ $\int [4,17]$ $\int [4,17]$ $\int [4,17]$ $\int [4,17]$, and the family $t \mapsto -\frac{t}{4} \frac{(z^2-2)^2}{z^2-1}$ [\[7](#page-9-6)].
- In any reasonable family, copies of the Mandelbrot sets of the families $z \mapsto z^d + t$ are dense in the bifurcation locus—the Mandelbrot set is universal [\[10](#page-9-7)].

Each of these families has just one *free* critical point (or several free critical points which have the same dynamical behaviour, this happens, for example, in the McMullen family; the quasi-conjugated family $F_t(z) = z^m(1 + t/z)^d$ has just one free critical point). In contrast to this the rational maps

$$
f_t(z) = tz^m \left(\frac{1-z}{1+z}\right)^n \quad (m \ge 2, \ n \in \mathbb{N}, \ d = m+n, \ t \ne 0)
$$
 (1)

in the family under consideration have two free critical points. In this paper we will give a complete description of the parameter plane and the various dynamical planes. For basic notations and results the reader is referred to the texts [\[1](#page-9-8)[,2,](#page-9-9)[9,](#page-9-10)[11](#page-9-11)[,15\]](#page-9-12).

2 Notation

The rational map (1) has

– two super-attracting fixed points 0 and ∞ with corresponding basins \mathcal{A}_t and \mathcal{B}_t , respectively. Then \mathcal{A}_t , say, either is completely invariant or else has a single pre-image \mathcal{A}_t^* that is mapped in a $(n:1)$ -manner onto \mathcal{A}_t , which will be written as

$$
\mathcal{A}_t^* \stackrel{n:1}{\longrightarrow} \mathcal{A}_t;
$$

– two free critical points

$$
\alpha = -\frac{n}{m} + \sqrt{1 + \left(\frac{n}{m}\right)^2}
$$
 and $\beta = -\frac{n}{m} - \sqrt{1 + \left(\frac{n}{m}\right)^2}$

and critical values

$$
v_t^{\alpha} = f_t(\alpha) = tv_1^{\alpha}
$$
 and $v_t^{\beta} = f_t(\beta) = tv_1^{\beta}$;

- two *escape loci* Ω^{α} and Ω^{β} , with *t* ∈ Ω^{α} and *t* ∈ Ω^{β} if and only if $f_t^k(\alpha) \to 0$ and $f_t^k(\beta) \to \infty$, respectively, as $k \to \infty$;
- *–* two *residual sets* Ω_{res}^{α} and Ω_{res}^{β} , with *t* ∈ Ω_{res}^{α} and *t* ∈ Ω_{res}^{β} if and only if v_t^{β} ∈ \mathcal{A}_t and $v_t^{\alpha} \in \mathcal{B}_t$, respectively.

The notation of the residual sets indicates that $\Omega_{\text{res}}^{\alpha}$ is related to Ω^{α} rather than Ω^{β} . The open sets Ω^{α} and Ω^{β} are in a natural way sub-divided into

$$
- \Omega_0^{\alpha} \text{ resp. } \Omega_0^{\beta} : v_t^{\alpha} \in \mathcal{A}_t \text{ resp. } v_t^{\beta} \in \mathcal{B}_t, \text{ and}
$$

- $\Omega_k^{\alpha} \text{ resp. } \Omega_k^{\beta} : f_t^k (v_t^{\alpha}) \in \mathcal{A}_t, \text{ but } f_t^{k-1} (v_t^{\alpha}) \notin \mathcal{A}_t \text{ resp.}$

$$
f_t^k (v_t^{\beta}) \in \mathcal{B}_t, \text{ but } f_t^{k-1} (v_t^{\beta}) \notin \mathcal{B}_t (k \ge 1).
$$

Hitherto, f_t is hyperbolic and the Fatou set of f_t consists of the basins \mathscr{A}_t and \mathscr{B}_t , and their pre-images, if any. However, there may and will be also other hyperbolic components. By \mathbf{W}_{k}^{α} and \mathbf{W}_{k}^{β} we denote the open sets such that α and β belongs to some (super-)attracting cycle of Fatou domains U_1, \ldots, U_k , respectively, not containing 0 and ∞ .

The *bifurcation* locus **B** of the family $(f_t)_{0 \leq |t| \leq \infty}$ is the set of *t* such that the Julia set \mathcal{J}_t does not move continuously over any neighbourhood of *t*, see McMullen [\[9](#page-9-10)]. In order that $t \in$ **B** it is necessary and sufficient that at least one of the free critical points is *active*. Thus **B** = **B**^α ∪ **B**^β, where $t \in \mathbf{B}^{\alpha}$ resp. $t \in \mathbf{B}^{\beta}$ means that α resp. β is active. It is *a priori* not excluded that \mathbf{B}^{α} and \mathbf{B}^{β} overlap. Although there is just one parameter plane, each point of this plane carries at least two pieces of information, so one could also speak of the v_t^{α} - and v_t^{β} -plane.

We also set

$$
Q_0(t) = v_t^{\alpha} = tv_1^{\alpha}
$$
 and $Q_k(t) = f_t^k(v_t^{\alpha}) = f_t(Q_{k-1}(t))$ $(k \ge 1)$

and note that Q_k is a rational function of degree $1 + d + \cdots + d^k = \frac{d^{k+1}-1}{d-1}$ with a zero of order $\frac{m^{k+1}-1}{m-1}$ at the origin.

From

$$
-1/f_t(-1/z) = f_{(-1)^{d+1}/t}(z) \quad (d = m+n)
$$

it follows that f_t is conjugated to $f_{1/t}$ if *d* is odd, and to $f_{-1/t}$ if *d* is even, hence $t \in \Omega^\alpha$ if and only if $(-1)^{d+1}/t \in \Omega^{\beta}$, and this is also true for Ω^{α}_{k} and Ω^{β}_{k} , Ω^{α}_{res} and Ω^{β}_{res} , \mathbf{W}^{α}_{k} and W_k^{β} , and B^{α} and B^{β} . This also indicates that the circle $|t| = 1$ plays a distinguished role with strong impact on what follows.

Lemma 1 *For every m* ≥ 2 , $n \geq 1$ *there exists some r* > 0 *, such that for* $0 < |t| \leq 1$ *the* $disc \triangle_{r|t|}$: $|z| < r|t|$ *contains* $f_t(\overline{\triangle}_{r|t|} \cup [0, 1])$ *, but does not contain* v_t^{β} *.*

Proof We will first consider f_1 and show that there exists some disc $\Delta_r : |z| < r$ such that $f_1(\overline{\Delta}_r \cup [0, 1]) \subset \Delta_r$ holds. This is easy to show if $n < m$ for $r = \frac{1}{3}$:

$$
|f_1(z)| \le 3^{-m} 2^n < \frac{1}{3}
$$

holds if $|z| \leq \frac{1}{3}$ and $m > n \geq 1$, and from

$$
0 \le f_1(x) \le x^2 \frac{1-x}{1+x} \le \frac{1}{2} \left(5\sqrt{5} - 11 \right) < \frac{1}{10} \quad (0 \le x \le 1)
$$

the assertion follows.

We now consider the case $n \geq m$. Then $f_1(\overline{\Delta}_r) \subset \Delta_r$ holds as long as

$$
g(r) = r^{m-1} \left(\frac{1+r}{1-r}\right)^n < 1,
$$

and f_1 maps [0, 1] into Δ_r provided

$$
v_1^{\alpha} = \max_{0 \le x \le 1} x^m \left(\frac{1-x}{1+x}\right)^n < r.
$$

Since *g* is increasing this may be achieved if $g(v_1^{\alpha}) < 1$ holds. To prove this we note that $\sqrt{1+\tau}-1=\frac{\tau}{2\sqrt{1+\theta\tau}}$ $(0<\theta<1, \tau=\frac{m^2}{n^2}\leq 1)$ implies $\frac{m}{2\sqrt{2}n}<\alpha<\frac{m}{2n}$, while from

 $\circled{2}$ Springer

log $\frac{1-x}{1+x}$ < −2*x* (0 < *x* < 1) it follows that

$$
v_1^{\alpha} < \left(\frac{m}{2n}\right)^m e^{-2\frac{m}{2\sqrt{2}}} = \left(\frac{m}{2e^{\frac{1}{\sqrt{2}}}n}\right)^m < \left(\frac{m}{4n}\right)^m = \mu^m.
$$

Moreover, from

$$
\log\frac{1+x}{1-x} = 2x\left(1 + \frac{1}{3}x^2 + \frac{1}{5}x^4 + \cdots\right) \le 2x\left(1 + \frac{x^2}{3}\frac{1}{1-x^2}\right) \le 2x\left(1 + \frac{1}{45}\right),
$$

which holds for $x = \left(\frac{m}{4n}\right)^{m-1} \le \frac{1}{4}$, we obtain

$$
\left(\frac{1+\mu^m}{1-\mu^m}\right)^n = \left(\frac{1+\frac{m}{4}\frac{\mu^{m-1}}{n}}{1-\frac{m}{4}\frac{\mu^{m-1}}{n}}\right)^n \leq e^{\frac{23}{45}m\mu^{m-1}} < \left(e^{(\frac{m}{4n})^{m-1}}\right)^m.
$$

Thus $g(v_1^{\alpha}) < 1$ follows from $\left(\frac{m}{4n}\right)^{m-1} e^{(\frac{m}{4n})^{m-1}} \leq \frac{1}{4} e^{\frac{1}{4}} < 1$.

With this choice of $r \in (0, 1)$ it is clear that v_t^{β} belongs to Δ_r if $|t|$ is small. For individual $0 < |t| \leq 1$, $f_t(z) = tf_1(z)$ maps $\overline{\Delta}_{r|t|} \cup [0, 1]$ into $\Delta_{r|t|}$, while $v_t^{\beta} \notin \Delta_{r|t|}$ follows from $|v_t^{\beta}| = |t|/v_1^{\alpha} > |t| > r|t|.$

3 The escape loci

The purpose of Lemma [1](#page-2-0) is twofold. First of all it shows that the critical points α and β cannot be simultaneously active, and the bifurcation sets \mathbf{B}^{α} and \mathbf{B}^{β} are separated by the unit circle $|t| = 1$. Secondly, the condition $v_t^{\beta} \notin \Delta_{r|t|}$ (0 < $|t| \le 1$) ensures that in an exhaustion (D_k) of \mathscr{A}_t starting with $D_0 = \Delta_{r|t|}$, D_k is simply connected as long as $\beta \notin D_k$, and f_t : $D_k \xrightarrow{d:1} D_{k-1}$ has degree $d = m + n$. In particular, for $t \in \Omega_{\text{res}_o}^{\alpha}$ there exists some simply connected and forward invariant domain $D_k \subset \mathcal{A}_t$ that contains v_t^{β} (Figs. [1,](#page-4-0) [2\)](#page-4-1).

We note some more simple consequences of Lemma [1;](#page-2-0) our focus is on the critical point α and the α -sets.

 $-$ {*t* : 0 < |*t*| ≤ 1} ⊂ Ω₀^α; $\overline{\Omega_{\text{res}}^{\alpha}} \subset \mathbb{D};$ α is inactive on $0 < |t| \leq 1$; $-\frac{1}{\sqrt{k} \geq 1} (\Omega_k^{\alpha} \cup \mathbf{W}_k^{\alpha}) \subset \{t : 1 < |t| < T\}$ for some *T* = *T_{mn}* > 1; $-$ **B**^{α} \subset {*t* : 1 < |*t*| < *T*} for some $T = T_{mn} > 1$.

The consequences for the dynamical planes are as follows.

Theorem 1 *For t* $\in \Omega_0^{\alpha}$, the basin \mathcal{A}_t is completely invariant, and any other Fatou component *is simply connected. Moreover,*

- $−$ *for t* ∈ $\Omega_0^{\alpha} \cap \Omega_0^{\beta}$ *also* \mathcal{B}_t *is completely invariant, the Julia set* $\mathcal{J}_t = \partial \mathcal{A}_t = \partial \mathcal{B}_t$ *is a quasi-circle, and* f_t *<i>is quasi-conformally conjugated to* $z \mapsto z^d$;
- $-$ *for* $t \in \Omega_{res}^{\alpha}$, \mathcal{A}_t *is infinitely connected and the Fatou set consists of* \mathcal{A}_t , \mathcal{B}_t , and the *predecessors of B^t of any order.*

Proof To prove complete invariance of \mathcal{A}_t we first assume $0 < |t| \leq 1$. Then \mathcal{A}_t contains the interval [0, 1] by Lemma [1,](#page-2-0) hence is completely invariant. If, however, $|t| > 1$, then

Fig. 1 *Left* the α -parameter plane for $f_t(z) = tz^2 \frac{1-z}{1+z}$ displaying the *unit circle*, Ω^{α} (*gray*), Ω^{α}_{res} and Ω^{β}_{res} (*white* in and autide the *unit simele*) and **W**^{(*klask*)</sub> *Right* a prich have} (*white*, in and outside the *unit circle*), and W^{α} (*black*). *Right* a neighbourhood of the origin displaying $\Omega^{\alpha}_{\text{res}}$ (*gray*) surrounded by points of Ω_0^{α} (*white*), Ω_k^{β} ($k \ge 1$, *white*, small), and \mathbf{W}^{β} (*black*)

Fig. 2 *Left* the parameter plane of $P_c(z) = cz^2(z + 1)$. The escape region for P_c (*gray*), the *white* region with slit, and the *black* regions correspond to $\Omega_{\text{res}}^{\alpha}, \Omega^{\beta} \cap \mathbb{D}$, and \mathbf{W}^{β} , in case of $m = 2, n = 1$, respectively. The punctured disc 0 < [|]*t*[|] < 1 corresponds to ^C\[−2, ⁰] in the *^c*-plane. *Right* the parameter plane of *P*[−]¹₂(*t*+2+¹_{*t*})</sub>(*z*) in −0.2 < Re *t* < 0.25, −0.25 < Im *t* < 0.25 (see also Fig. 1 *right*)

 \mathcal{B}_t is completely invariant, and any other Fatou component is simply connected. Assuming $1 \notin \mathcal{A}_t$ ($t \in \Omega_0^{\alpha}$, $|t| > 1$) we obtain either $f_t : \mathcal{A}_t^* \xrightarrow{n:1} \mathcal{A}_t$ with $n = (n-1) + 1$ critical points if $\alpha \in \mathcal{A}_t^*$ or else $f_t : \mathcal{A}_t \xrightarrow{m:1} \mathcal{A}_t$ with $m = (m-1) + 1$ critical points if $\alpha \in \mathcal{A}_t$, this contradicting simple connectivity of both domains \mathscr{A}_t and \mathscr{A}_t^* by the Riemann–Hurwitz formula.

The first assertion is obvious since \mathcal{B}_t shares the properties of \mathcal{A}_t and f_t is hyperbolic.

The second assertion follows from the Riemann-Hurwitz formula, since $f_t : \mathcal{A}_t \xrightarrow{d:1} \mathcal{A}_t$ has degree *d* and *r* = (*m* − 1) + (*n* − 1) + 1 + 1 = *d* critical points 0, 1 (if *n* > 1), α, and β. β .

Theorem 2 $\Omega_0^{\alpha} \cup \{0\}$, $\Omega_{res}^{\alpha} \cup \{0\}$, and the connected components of Ω_k^{α} ($k \geq 1$) are simply *connected domains. Riemann maps onto* D *are given by any branch of* $\sqrt[m]{E_0(t)}$, $\sqrt[m]{E_{\text{res}}(t)}$, *and* $\sqrt[n]{E_k(t)}$ *, respectively.*

For the proof we need two auxiliary results on the maps

$$
E_0(t) = t \left(\Phi_t(v_t^{\alpha})\right)^{m-1} \quad (t \in \Omega_0^{\alpha}),
$$

\n
$$
E_{\text{res}}(t) = t \left(\Phi_t(v_t^{\beta})\right)^{m-1} \quad (t \in \Omega_{\text{res}}^{\alpha}), \text{ and}
$$

\n
$$
E_k(t) = t^{\frac{1}{m-1}} \Phi_t\left(f^k(v_t^{\alpha})\right) \left(t \in \Omega_k^{\alpha}, k \ge 1\right),
$$
\n(2)

where Φ_t denotes the Böttcher function to the fixed point $z = 0$. In the first step (Lemma [2\)](#page-5-0) of the proof of Theorem [2](#page-4-2) we will show that the functions [\(2\)](#page-4-3) provide proper maps on $\mathbb{D}\setminus\{0\}$ and D , respectively, which are only ramified over the origin. In the second step (Lemma [3\)](#page-7-0) this will be used to show that the corresponding domains (with 0 included, if necessary) are simply connected.

The solution to Böttcher's functional equation

$$
\Phi_t(f_t(z)) = t \Phi_t(z)^m \quad (\Phi_t(z) \sim z \text{ as } z \to 0)
$$
\n(3)

is locally given by

$$
\Phi_t(z) = \lim_{k \to \infty} \sqrt[m]{f_t^k(z)/t^{1+m+\dots+m^{k-1}}}\ = t^{-\frac{1}{m-1}} \lim_{k \to \infty} \sqrt[m]{f_t^k(z)};
$$

it conjugates f_t to $\zeta \mapsto \zeta^m$. This conjugation holds throughout \mathscr{A}_t in the third case, when Φ_t maps \mathscr{A}_t conformally onto the disc $|z| < |t|^{-\frac{1}{m-1}}$; the maps E_k are analytic and well-defined on the components of $\Omega_k^{\alpha}, k \geq 1$.

In the first case the conjugation holds on some simply connected neighbourhood of $z = 0$ that contains $z = 0$ and $z = v_t^{\alpha}$, but does not contain $z = 1$. The analytic continuation of Φ_t causes singularities at $z = 1$ and its preimages under f_t^k , nevertheless $|\Phi_t(z)|$ is well-defined on \mathscr{A}_t and $|\Phi_t(z)| \to |t|^{-\frac{1}{m-1}}$ as $z \to \partial \mathscr{A}_t$ holds anyway. Thus $E_0(t) = t \Phi_t(v_t^{\alpha})^{m-1}$ is holomorphic on Ω_0^{α} and zero-free, with $E_0(t) \sim t(v_t^{\alpha})^{m-1} = f_1(\alpha)^{m-1}t^m$ as $t \to 0$.

In the second case we construct an exhaustion (D_k) of \mathscr{A}_t such that $f_t : D_k \stackrel{d:1}{\longrightarrow} D_{k-1}$ has degree *d* and D_k is simply connected for $\kappa \leq \kappa_0$ with $v_t^{\beta} \in D_{\kappa_0}$ and $\beta \in D_{\kappa_0+1} \setminus D_{\kappa_0}$. This is possible by Lemma [1,](#page-2-0) and the procedure applied to $t^{-\frac{1}{m-1}}\Phi_t(v_t^{\alpha})$ on Ω_0^{α} also applies to $t^{-\frac{1}{m-1}} \Phi_t(v_t^{\beta})$ on $\Omega_{\text{res}}^{\alpha}$.

Lemma 2 *The functions in* [\(2\)](#page-4-3) *are well-defined and provide proper maps from* $\Omega_0^{\alpha} \cup \{0\}$ *,* $\Omega_{\text{res}}^{\alpha} \cup$ {0}*, and the connected components of* Ω_{k}^{α} *with k* \geq 1*, respectively, onto the unit disc* D*.*

Proof To prove that $|E_0(t)| \to 1$ as $t \in \Omega_0^{\alpha}$ tends to $\partial \Omega_0^{\alpha} \setminus \{0\}$ we choose any disc $\Delta_r : |z| < r$ that is invariant under f_t for every $t \in \Omega_0^{\alpha}$. This is possible since Ω_0^{α} is contained in some disc $|t| < T$, hence we may choose $r < 1$ such that $Tr^{m-1} \left(\frac{1+r}{1-r} \right)^n = 1$ holds. By $k = k(t)$ we denote the largest integer such that $f_t^k(v_t^{\alpha}) \notin \Delta_r$. Then $k(t) \to \infty$ as $t \to \partial \Omega_0^{\alpha} \setminus \{0\}$, and $|f_t^{k(t)}(v_t^{\alpha})| \ge r$ implies

$$
\liminf_{t\to\Omega_0^{\alpha}\setminus\{0\}}|\Phi_t(v_t^{\alpha})|\geq \lim_{t\to\Omega_0^{\alpha}\setminus\{0\}}|t|^{-\frac{1}{m-1}m^{k(t)}}\sqrt[r]{r}=|t|^{-\frac{1}{m-1}},
$$

while $|\Phi_t(z)| < |t|^{-\frac{1}{m-1}}$ is always true. Thus E_0 maps each connected component of Ω_0^{α} properly onto $\mathbb{D}\setminus\{0\}$. It follows that the origin is removable for (a zero of) E_0 , and $\Omega_0^{\alpha} \cup \{0\}$ is a domain which is mapped by E_0 properly with degree *m* onto the unit disc D .

If $t \in \Omega_k^{\alpha}$ for some $k \ge 1$, then again $|E_k(t)|$ tends to 1 as $t \to \partial \Omega$, where Ω is any component of Ω_k^{α} . Thus E_k is a proper map of Ω onto \mathbb{D} . We will prove that E_k is ramified only over zero even for $k \ge 0$, that is $E'_k(t) = 0$ implies $E_k(t) = 0$. This is a well-known procedure, the idea of which is due to Roesch [\[13](#page-9-13)], and outlined in detail for the Morosawa-Pilgrim family $z \mapsto t \left(1 + \frac{(4/27)z^3}{1-z}\right)$) in $[17,$ $[17,$ Lemma [2\]](#page-5-0).

We take any $t_0 \in \Omega_k^{\alpha}$ and choose $\varepsilon > 0$ such that for *t* sufficiently close to t_0 , the closed disc $\Delta_{3\epsilon}$: $|w - v_{t_0}^{\alpha}| \leq 3\varepsilon$ belongs to the Fatou component D_{t_0} of f_{t_0} containing

 $v_{t_0}^{\alpha}$ (D_{t_0} is a predecessor of \mathscr{A}_{t_0} of order $\ell \geq 0$). Furthermore let $\eta_t : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be any diffeomorphism such that $\eta_t(w)$ depends analytically on t , $\eta_t(w) = w$ holds on $|w - v_{t_0}^{\alpha}| \geq 3\varepsilon$ and $\eta_t(w) = w + (v_t^{\alpha} - v_{t_0}^{\alpha})$ on $|w - v_{t_0}^{\alpha}| < \varepsilon$. Then $g_t = \eta_t \circ f_{t_0} : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ is a quasi-regular map which equals f_{t_0} on $\widehat{\mathbb{C}} \backslash f_{t_0}^{-1}(\Delta_{3\epsilon})$, and is analytic on $\widehat{\mathbb{C}} \backslash f_{t_0}^{-1}(A)$ with $A = \{w : \varepsilon \le |w - v_{t_0}^{\alpha}| \le 3\varepsilon\}$. To apply Shishikura's qc-lemma [\[14](#page-9-14)] we need to know that g_t is uniformly *K*-quasi-regular, that is, all iterates g_t^p are *K*-quasi-regular with one and the same *K*. This is obviously true if the sets $f_{t_0}^{-p}(A)$ ($p = 1, 2, ...$) are visited at most once by any iterate of *g_t*. This is trivial if $k \ge 1$: the sets $f_{t_0}^{-p}(A)$ belong to different Fatou components, namely predecessors of D_{t_0} of order *p*. If $k = 0$ the argument is different. Let Δ_0 : $|z| < \delta$ be such that $f_{t_0}(\overline{\Delta}_0) \subset \Delta_0$ and set $\Delta_\nu = f_{t_0}^{-1}(\Delta_{\nu-1})$. Then choosing $\epsilon > 0$ sufficiently small we have $A \subset \Delta_{\ell} \setminus \overline{\Delta_{\ell-1}}$ for some ℓ and $f_{t_0}^{-p}(A) \subset \Delta_{\ell+p} \setminus \overline{\Delta_{\ell+p-1}}$. By the above mentioned qc-lemma, *gt* is quasi-conformally conjugated to some rational function

$$
R_t = h_t \circ g_t \circ h_t^{-1}.
$$

The quasi-conformal mapping $h_t : \hat{\mathbb{C}} \longrightarrow \hat{\mathbb{C}}$ is uniquely determined by the normalisation $h_t(z) = z$ for $z = 0$, α , 1, and depends analytically on the parameter *t*. Also h_t is analytic on $\widehat{\mathbb{C}} \setminus \bigcup_{p \geq 0} f_{t_0}^{-p}(A)$, which, in particular, contains the points 0, v_t^{α} , and $v_{t_0}^{\alpha}$. We set $z_0 = h_t(-1)$ to obtain $R_t(z) = a(t)z^m \left(\frac{1-z}{z-z_0}\right)^n$. Since $h_t(\alpha) = \alpha$, R_t has a critical point at $z = \alpha$, and solving $R'_t(\alpha) = 0$ for z_0 yields $z_0 = -1$, thus

$$
R_t(z) = a(t)z^m \left(\frac{1-z}{1+z}\right)^n.
$$

From $R_t = h_t \circ \eta_t \circ f_{t_0}$ and $h_t(\alpha) = \alpha$, however, it follows that

$$
a(t)v_1^{\alpha} = R_t(\alpha) = h_t \circ \eta_t \circ f_{t_0}(\alpha) = h_t \circ \eta_t (v_{t_0}^{\alpha}) = h_t (v_t^{\alpha}),
$$

hence $R_t(z) = f_\tau(z)$ with $\tau = \tau(t) = h_t(v_t^{\alpha})/v_1^{\alpha}$ and $v_\tau^{\alpha} = h_t(v_t^{\alpha})$; in particular, τ depends analytically on *t*. On some neighbourhood of $z = 0$ we have

$$
(t_0/\tau)^{\frac{1}{m-1}}\Phi_{t_0} \circ h_t^{-1} \circ f_\tau = (t_0/\tau)^{\frac{1}{m-1}}\Phi_{t_0} \circ g_t \circ h_t^{-1}
$$

$$
= (t_0/\tau)^{\frac{1}{m-1}}\Phi_{t_0} \circ \eta_t \circ f_{t_0} \circ h_t^{-1}
$$

$$
= (t_0/\tau)^{\frac{1}{m-1}}\Phi_{t_0} \circ f_{t_0} \circ h_t^{-1}
$$

$$
= (t_0/\tau)^{\frac{1}{m-1}}t_0\left(\Phi_{t_0} \circ h_t^{-1}\right)^m
$$

$$
= \tau \left((t_0/\tau)^{\frac{1}{m-1}}\Phi_{t_0} \circ h_t^{-1}\right)^m,
$$

hence $\phi_{\tau} = (t_0/\tau)^{\frac{1}{m-1}} \Phi_{t_0} \circ h_t^{-1}$ solves Böttcher's functional equation

$$
\phi_{\tau} \circ f_{\tau}(z) = \tau (\phi_{\tau}(z))^m.
$$

Since τ and h_t depend analytically on *t*, this is also true for h_t^{-1} , which is not self-evident. Also from $h_t(g_t(z)) = f_\tau(h_t(z)) \sim \tau h_t(z)^m$ and $g_t(z) = f_{t_0}(z) \sim t_0 z^m$ as $z \to 0$ it follows that $h_t(t_0z^m) \sim \tau h_t(z)^m$, hence $h_t(z) \sim \sqrt[m-1]{t_0/\tau}z$, $h_t^{-1}(z) \sim \sqrt[m-1]{\tau/t_0}z$ and $\phi_\tau(z) \sim \lambda z$ as $z \to 0$, with $\lambda^{m-1} = 1$. This implies $\phi_{\tau} = \lambda \Phi_{\tau}$ by uniqueness of the Böttcher coordinate,

 \mathcal{L} Springer

and from $\tau(t_0) = t_0$ and analytic dependence on *t* it follows that $\lambda = 1$ and $\phi_\tau = \Phi_\tau$, hence

$$
E_k(\tau) = \tau^{\frac{1}{m-1}} \Phi_{\tau}(Q_k(\tau)) = \tau^{\frac{1}{m-1}} \Phi_{\tau}(f_{\tau}^k(v_{\tau}^{\alpha}))
$$

\n
$$
= t_0^{\frac{1}{m-1}} \Phi_{t_0} \circ h_t^{-1}(f_{\tau}^k(v_{\tau}^{\alpha})) = t_0^{\frac{1}{m-1}} \Phi_{t_0} \circ f_{t_0}^k \circ h_t^{-1}(v_{\tau}^{\alpha})
$$

\n
$$
= t_0^{\frac{1}{m-1}} \Phi_{t_0}(f_{t_0}^k(v_{\tau}^{\alpha})) \text{ if } k \ge 1, \text{ and}
$$

\n
$$
E_0(\tau) = t_0(\Phi_{t_0}(v_{\tau}^{\alpha}))^m.
$$

Since $t \mapsto \tau$ is locally univalent, E_k is univalent at t_0 if and only if the map $t \mapsto$ $t_0^{\frac{1}{m-1}} \Phi_{t_0}(f_{t_0}^k(v_t^{\alpha}))$ is univalent on some neighbourhood of *t*₀. If $k \geq 1$, Φ_{t_0} is univalent on \mathscr{A}_{t_0} , and $f_{t_0}^k$ is univalent on $|z - v_{t_0}^{\alpha}| < \delta$ provided $Q_k(t_0) = f_{t_0}^k(v_{t_0}^{\alpha}) \neq 0$, while $f_{t_0}^k$ is *n*-valent at $v_{t_0}^{\alpha}$ if $Q_k(t_0) = 0$. In case of $k = 0$ we note that Φ_{t_0} is locally univalent on some forward invariant domain *D* that contains 0 and v_t^{α} , and $v_t^{\alpha} = tv_1^{\alpha} \neq 0$ is trivially univalent. \Box

The proof of Theorem [2](#page-4-2) will be finished by

Lemma 3 *Let h be a proper map of degree m of the domain D onto the unit disc* D*, and assume that h is ramified exactly over zero, that is, h* (*z*) = 0 *implies h*(*z*) = 0*. Then D is simply connected and h has a single zero on D.*

Proof Assume that *h* has zeros with multiplicities m_v ($1 \le v \le n$). Then *h* has degree $d = m_1 + \cdots + m_n$ and $r = d - n$ critical points. The Riemann-Hurwitz formula then yields $#D-2 = -d+r = -n$, hence $#D = 2-n$, which only is possible if $n = 1$ and $#D = 1$.

Remark Each connected component of Ω_k^{α} contains a zero of $Q_k(t) = tf_1(Q_{k-1}(t))$ which is not a zero of Q_{k-1} , hence is a zero of $Q_{k-1}(t) - 1$. Thus Ω_k^{α} consists of at most $\frac{d^k-1}{d-1}$ connected components.

4 The hyperbolic loci

The bifurcation locus \mathbf{B}^{β} is contained in some annulus $\delta < |t| < 1$, and this also holds for \mathbf{W}^{β} . Hence (super-)attracting cycles U_1, \ldots, U_k that contain the critical point β may occur only if δ < $|t|$ < 1.

Theorem 3 *For* $0 < |t| < 1$ *,* f_t *is quasi-conformally conjugated to some polynomial*

$$
P_c(z) = cz^m (z+1)^n \quad (c = c_t \neq 0)
$$

with free critical point $-\frac{m}{m+n}$ *. The basin* \mathscr{A}_t *is completely invariant, and simply connected if* a nd only if $t \notin \Omega_{\textrm{res}}^{\alpha}$. *For* $t \notin \Omega_{0}^{\beta}$ *, the Fatou set consists of* \mathscr{A}_t *, the simply connected basin* \mathscr{B}_t *and its pre-images and, additionally, of some* (*super-*)*attracting cycle of Fatou components and their pre-images if* $t \in \mathbf{W}^{\beta}$; the cycle absorbs the critical point β .

Proof To prove the second assertion we note that by Lemma [1](#page-2-0) the pre-image *D* of the disc $\Delta = \Delta_{r|t|}$ is a simply connected Jordan domain that contains $\overline{\Delta} \cup [0, 1]$, but does not contain v_t^{β} . Then $D_2 = \widehat{\mathbb{C}} \setminus \overline{\Delta}$ is a backward invariant domain, and

$$
f_t: D_1 \xrightarrow{d:1} D_2 \quad (D_1 = f_t^{-1}(D_2))
$$

is a polynomial-like mapping in the sense of [\[6\]](#page-9-15), of degree $d = m + n$, hence is hybrid equivalent to some polynomial *P* of degree *d*. We may assume that the quasi-conformal conjugation ψ_t with

$$
\psi_t \circ f_t = P \circ \psi_t
$$

maps ∞, 0, and −1 onto 0, ∞, and −1, respectively. Thus *P* is given by $P(z) = P_c(z)$ $cz^m(z + 1)^n$, and ψ_t , hence also $c = c_t$ depends analytically on *t*.

Remark We note that $D_2 = D_2(|t|) = \{z : |z| > r|t|\}$ increases if |*t*| decreases, while $D_1 = f_t^{-1}(\widehat{C}\setminus\overline{\Delta}_r|t|) = f_1^{-1}(\widehat{C}\setminus\overline{\Delta}_r)$ is independent of *t*. Thus the conformal modulus $\mu(|t|)$ of $D_2(|t|)\sqrt{D_1}$ satisfies $\mu(1) \leq \mu(|t|) - \log \frac{1}{|t|} \leq \log \frac{\inf_{z \in D_1} |z|}{r}$. The bifurcation locus of P_c corresponds conformally to the bifurcation locus \mathbf{B}^{β} , and the hyperbolic components are just quasi-conformal images of the hyperbolic components of the quadratic family $z \mapsto z^2 + \xi$.

For $t \in W_k$, the multiplier map $t \mapsto \lambda_t$ is an algebraic function of t. This is easily seen by writing the equations $f_t^k(z) = z$ and $\lambda = (f_t^k)'(z)$ as polynomial equations $q_1(z, t) = 0$ and $q_2(z, t, \lambda) = 0$, and computing the resultant $R_f(t, \lambda)$ of q_1 and q_2 with respect to *z*. For example, in case of $k = 1$, $m = 2$, and $n = 1$ we obtain

$$
R_f(t,\lambda) = \left[-2 + 14t - 2t^2\right] + \left[1 - 10t + t^2\right]\lambda + 2t\lambda^2 = 0.
$$

For $P_c(z) = cz^2(z + 1)$ we obtain in the same manner (multiplier μ)

$$
R_P(c, \mu) = 9 + 2c - (c + 6)\mu + \mu^2 = 0.
$$

Since the quasi-conformal conjugation respects multipliers ($\lambda_t = \mu_c$), c_t is an algebraic function of *t* by the identity theorem; in the present case we obtain $(1 + 2t + t^2 + 2tc)^2 = 0$ by computing the resultant of $R_f(t, \lambda)$ and $R_p(c, \lambda)$ with respect to λ , hence

$$
t \mapsto c = c_t = -\frac{1}{2} \left(t + 2 + \frac{1}{t} \right) \quad \left(c = -\frac{9}{2} \leftrightarrow t = \frac{1}{2} \left(\sqrt{49} - \sqrt{45} \right) \right)
$$

maps $0 < |t| < 1$ conformally onto $\mathbb{C}\setminus[-2, 0]$, see Fig. [2.](#page-4-1)

The following result was not explicitly stated but proved in [\[17](#page-9-5)]. The proof is an adaption of the procedure due to Douady [\[5](#page-9-16)], applied to the hyperbolic components of the quadratic family $R_t(z) = z^2 + t$ with one free critical point. The occurrence of several critical points requirers a slightly more sophisticated argument. The present version applies to a wider class of functions like $R_t(z) = z^d + t$, $R_t(z) = z^m + t/z^n$, $R_t(z) = t \left(1 + \frac{((d-1)^{d-1}/d^d)z^d}{1-z}\right)$ λ $(d \ge 3)$, $R_t(z) = -\frac{t}{4} \frac{(z^2 - 2)^2}{z^2 - 1}$, the present family, and many others, to show that the hyperbolic components are simply connected and are mapped properly onto the unit disc by the multiplier map $t \mapsto \lambda_t$.

Theorem 4 *Let* $(R_t)_{t \in T}$ *be any family of rational maps that is analytically parametrised over some domain T. Suppose that each* R_t *has a (super-)attracting cycle* $U_0 \stackrel{m_1:1}{\longrightarrow} U_1 \stackrel{m_2:1}{\longrightarrow}$ \cdots $\stackrel{m_{n-1}:1}{\longrightarrow} U_{n-1} \stackrel{m_n:1}{\longrightarrow} U_n = U_0$, such that R_t^n has a single critical point $c_t \in U_0$ of multiplicity $m-1$, where $m = m_1 \cdots m_n$ is the degree of $R_t^n : U_0 \stackrel{m:1}{\longrightarrow} U_0$. Assume also that the multiplier λ*^t satisfies* |λ*t*| → 1 *as t* → ∂*T . Then the multiplier map t* → λ*^t provides a proper map* $T \stackrel{(m-1):1}{\longrightarrow} \mathbb{D}$ *which is ramified just over* $w = 0$ *, and* T *is simply connected.*

Acknowledgements We would like to thank the referee for valuable comments.

References

- 1. Beardon, A.F.: Iteration of Rational Functions. Springer, Berlin (1991)
- 2. Carleson, L., Gamelin, W.: Complex Dynamics. Springer, Berlin (1993)
- 3. Devaney, R.: Mandelpinski Structures in the Parameter Planes of Rational Maps. [http://math.bu.edu/](http://math.bu.edu/people/bob/papers.htm) [people/bob/papers.htm](http://math.bu.edu/people/bob/papers.htm)
- 4. Devaney, R., Fagella, N., Garijo, A., Jarque, X.: Sierpiński curve Julia sets for quadratic rational maps. Ann. Acad. Sci. Fenn. Math. **39**, 3–22 (2014)
- 5. Douady, A.:L Systèmes dynamiques holomorphes, Séminaire Bourbaki **599** (1982/1983), 39–63
- 6. Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. **18**, 287–344 (1985)
- 7. Jang, H.G., Steinmetz, N.: On the dynamics of the rational family $f_t(z) = -\frac{t}{4} \frac{(z^2-2)^2}{z^2-1}$. Comput. Math. Funct. Theory (CMFT) **12**, 1–17 (2012)
- 8. McMullen, C.: Automorphisms of rational maps. In: Drasin, D., Earle, C., Gehring, F.W., Kra, I., Marden, A. (eds.) Holomorphic Functions and Moduli I, pp. 31–60. Springer, Berlin (1988)
- 9. McMullen, C.: Complex Dynamics and Renormalization. Princeton University Press, Princeton (1994)
- 10. McMullen, C.: The Mandelbrot set is universal. In: Lei, T. (ed) The Mandelbrot set, theme and variations. Lond. Math. Soc. Lect. Note Ser, vol. 274, pp. 1-18. Cambridge University Press, Cambridge (2000)
- 11. Milnor, J.: Dynamics in One Complex Variable. Vieweg, Braunschweig (1999)
- 12. Milnor, J., Lei, Tan: A "Sierpiński carpet" as Julia set, Appendix F in geometry and dynamics of quadratic rational maps. Exp. Math. **2**, 37–83 (1993)
- 13. Roesch, P.: On captures for the family $f_{\lambda}(z) = z^2 + \lambda/z^2$. In: Hjorth, P.G., Petersen, C.L. (eds.) Dynamics on the Riemann Sphere. A Bodil Branner Festschrift. EMS Publishing House (2006)
- 14. Shishikura, M.: On the quasi-conformal surgery of the rational functions. Ann. École Norm. Sup. **20**, 1–29 (1987)
- 15. Steinmetz, N.: Rational Iteration: Complex Analytic Dynamical Systems. W. De Gruyter, Berlin (1993)
- 16. Steinmetz, N.: Sierpiński curve Julia sets of rational maps. Comput. Math. Funct. Theory (CMFT) 6, 317–327 (2006)
- 17. Steinmetz, N.: Sierpiński and non-Sierpiński curve Julia sets in families of rational maps. J. Lond. Math. Soc. **78**, 290–304 (2008)