

On the dynamics of rational maps with two free critical points

HyeGyong Jang¹ · Norbert Steinmetz²

Received: 16 September 2016 / Accepted: 4 May 2017 / Published online: 11 May 2017 © Springer-Verlag Italia 2017

Abstract In this paper we discuss the dynamical structure of the rational family (f_t) given by

$$f_t(z) = t z^m \left(\frac{1-z}{1+z}\right)^n \quad (m \ge 2, \ n \in \mathbb{N}, \ t \in \mathbb{C} \setminus \{0\}).$$

Each map f_t has super-attracting immediate basins \mathscr{A}_t and \mathscr{B}_t about z = 0 and $z = \infty$, respectively, and two free critical points. We prove that \mathscr{A}_t (for $0 < |t| \le 1$) and \mathscr{B}_t (for $|t| \ge 1$) are completely invariant, and at least one of the free critical points is inactive. Based on this separation we draw a detailed picture of the structure of the dynamical and the parameter plane.

Keywords Julia set \cdot Bifurcation locus \cdot Escape locus \cdot Basin of attraction \cdot Mandelbrot set \cdot Hyperbolic component

Mathematics Subject Classification 37F10 · 37F45

1 Introduction

Non-trivial rational families (f_t) normally contain specific maps of different character with most interesting and unexpected Julia sets:

- totally disconnected Julia sets (Cantor sets) occur in any family $z \mapsto z^d + t$;

This paper was written during a visit of the CAS supported by the TWA-UNESCO Associateship Scheme.

Norbert Steinmetz stein@math.tu-dortmund.de http://www.mathematik.uni-dortmund.de/steinmetz/

¹ Faculty of Mathematics, University of Science Pyongyang, Pyongyang, Democratic People's Republic of Korea

² Fakultät Für Mathematik, TU Dortmund, Dortmund, Germany

- Julia sets consisting of uncountably many (a Cantor set of) quasi-circles occur in the McMullen family $z \mapsto z^m + t/z^n$, which was introduced in [8]. The number of papers on various features of this family is legion; [3] marks the preliminary end of a long list of papers.
- Julia sets that are Sierpiński curves (Milnor and Tan Lei [12] were the first to construct examples with this property) occur again in the McMullen family [16], the Morosawa-Pilgrim family $z \mapsto t \left(1 + \frac{(4/27)z^3}{1-z}\right)$ [4,17], and the family $t \mapsto -\frac{t}{4} \frac{(z^2-2)^2}{z^2-1}$ [7].
- In any reasonable family, copies of the Mandelbrot sets of the families $z \mapsto z^d + t$ are dense in the bifurcation locus—the Mandelbrot set is universal [10].

Each of these families has just one *free* critical point (or several free critical points which have the same dynamical behaviour, this happens, for example, in the McMullen family; the quasi-conjugated family $F_t(z) = z^m (1 + t/z)^d$ has just one free critical point). In contrast to this the rational maps

$$f_t(z) = t z^m \left(\frac{1-z}{1+z}\right)^n \quad (m \ge 2, \ n \in \mathbb{N}, \ d = m+n, \ t \ne 0)$$
(1)

in the family under consideration have two free critical points. In this paper we will give a complete description of the parameter plane and the various dynamical planes. For basic notations and results the reader is referred to the texts [1,2,9,11,15].

2 Notation

The rational map (1) has

- two super-attracting fixed points 0 and ∞ with corresponding basins \mathscr{A}_t and \mathscr{B}_t , respectively. Then \mathscr{A}_t , say, either is completely invariant or else has a single pre-image \mathscr{A}_t^* that is mapped in a (n:1)-manner onto \mathscr{A}_t , which will be written as

$$\mathscr{A}_t^* \xrightarrow{n:1} \mathscr{A}_t;$$

- two free critical points

$$\alpha = -\frac{n}{m} + \sqrt{1 + \left(\frac{n}{m}\right)^2}$$
 and $\beta = -\frac{n}{m} - \sqrt{1 + \left(\frac{n}{m}\right)^2}$

and critical values

$$v_t^{\alpha} = f_t(\alpha) = t v_1^{\alpha}$$
 and $v_t^{\beta} = f_t(\beta) = t v_1^{\beta};$

- two escape loci Ω^{α} and Ω^{β} , with $t \in \Omega^{\alpha}$ and $t \in \Omega^{\beta}$ if and only if $f_t^k(\alpha) \to 0$ and $f_t^k(\beta) \to \infty$, respectively, as $k \to \infty$;
- two residual sets $\Omega_{\text{res}}^{\alpha}$ and $\Omega_{\text{res}}^{\beta}$, with $t \in \Omega_{\text{res}}^{\alpha}$ and $t \in \Omega_{\text{res}}^{\beta}$ if and only if $v_t^{\beta} \in \mathscr{A}_t$ and $v_t^{\alpha} \in \mathscr{B}_t$, respectively.

The notation of the residual sets indicates that Ω_{res}^{α} is related to Ω^{α} rather than Ω^{β} . The open sets Ω^{α} and Ω^{β} are in a natural way sub-divided into

$$- \Omega_{0}^{\alpha} \operatorname{resp.} \Omega_{0}^{\beta} : v_{t}^{\alpha} \in \mathscr{A}_{t} \operatorname{resp.} v_{t}^{\beta} \in \mathscr{B}_{t}, \text{ and} - \Omega_{k}^{\alpha} \operatorname{resp.} \Omega_{k}^{\beta} : f_{t}^{k} \left(v_{t}^{\alpha} \right) \in \mathscr{A}_{t}, \text{ but } f_{t}^{k-1} \left(v_{t}^{\alpha} \right) \notin \mathscr{A}_{t} \operatorname{resp.} f_{t}^{k} \left(v_{t}^{\beta} \right) \in \mathscr{B}_{t}, \text{ but } f_{t}^{k-1} \left(v_{t}^{\beta} \right) \notin \mathscr{B}_{t} \ (k \geq 1).$$

Hitherto, f_t is hyperbolic and the Fatou set of f_t consists of the basins \mathscr{A}_t and \mathscr{B}_t , and their pre-images, if any. However, there may and will be also other hyperbolic components. By \mathbf{W}_k^{α} and \mathbf{W}_k^{β} we denote the open sets such that α and β belongs to some (super-)attracting cycle of Fatou domains U_1, \ldots, U_k , respectively, not containing 0 and ∞ .

The *bifurcation* locus **B** of the family $(f_t)_{0 < |t| < \infty}$ is the set of *t* such that the Julia set \mathcal{J}_t does not move continuously over any neighbourhood of *t*, see McMullen [9]. In order that $t \in \mathbf{B}$ it is necessary and sufficient that at least one of the free critical points is *active*. Thus $\mathbf{B} = \mathbf{B}^{\alpha} \cup \mathbf{B}^{\beta}$, where $t \in \mathbf{B}^{\alpha}$ resp. $t \in \mathbf{B}^{\beta}$ means that α resp. β is active. It is *a priori* not excluded that \mathbf{B}^{α} and \mathbf{B}^{β} overlap. Although there is just one parameter plane, each point of this plane carries at least two pieces of information, so one could also speak of the v_t^{α} - and v_t^{β} -plane.

We also set

$$Q_0(t) = v_t^{\alpha} = t v_1^{\alpha}$$
 and $Q_k(t) = f_t^k(v_t^{\alpha}) = f_t(Q_{k-1}(t))$ $(k \ge 1)$

and note that Q_k is a rational function of degree $1 + d + \dots + d^k = \frac{d^{k+1}-1}{d-1}$ with a zero of order $\frac{m^{k+1}-1}{m-1}$ at the origin.

From

$$-1/f_t(-1/z) = f_{(-1)^{d+1}/t}(z)$$
 $(d = m + n)$

it follows that f_t is conjugated to $f_{1/t}$ if d is odd, and to $f_{-1/t}$ if d is even, hence $t \in \Omega^{\alpha}$ if and only if $(-1)^{d+1}/t \in \Omega^{\beta}$, and this is also true for Ω_k^{α} and Ω_k^{β} , Ω_{res}^{α} and Ω_{res}^{β} , \mathbf{W}_k^{α} and \mathbf{W}_k^{β} , and \mathbf{B}^{α} and \mathbf{B}^{β} . This also indicates that the circle |t| = 1 plays a distinguished role with strong impact on what follows.

Lemma 1 For every $m \ge 2$, $n \ge 1$ there exists some r > 0, such that for $0 < |t| \le 1$ the disc $\Delta_{r|t|} : |z| < r|t|$ contains $f_t(\overline{\Delta}_{r|t|} \cup [0, 1])$, but does not contain v_t^{β} .

Proof We will first consider f_1 and show that there exists some disc $\Delta_r : |z| < r$ such that $f_1(\overline{\Delta_r} \cup [0, 1]) \subset \Delta_r$ holds. This is easy to show if n < m for $r = \frac{1}{3}$:

$$|f_1(z)| \le 3^{-m} 2^n < \frac{1}{3}$$

holds if $|z| \le \frac{1}{3}$ and $m > n \ge 1$, and from

$$0 \le f_1(x) \le x^2 \frac{1-x}{1+x} \le \frac{1}{2} \left(5\sqrt{5} - 11 \right) < \frac{1}{10} \quad (0 \le x \le 1)$$

the assertion follows.

We now consider the case $n \ge m$. Then $f_1(\overline{\Delta}_r) \subset \Delta_r$ holds as long as

$$g(r) = r^{m-1} \left(\frac{1+r}{1-r}\right)^n < 1,$$

and f_1 maps [0, 1] into \triangle_r provided

$$v_1^{\alpha} = \max_{0 \le x \le 1} x^m \left(\frac{1-x}{1+x}\right)^n < r.$$

Since g is increasing this may be achieved if $g(v_1^{\alpha}) < 1$ holds. To prove this we note that $\sqrt{1+\tau} - 1 = \frac{\tau}{2\sqrt{1+\theta\tau}}$ ($0 < \theta < 1$, $\tau = \frac{m^2}{n^2} \le 1$) implies $\frac{m}{2\sqrt{2n}} < \alpha < \frac{m}{2n}$, while from

Deringer

 $\log \frac{1-x}{1+x} < -2x \ (0 < x < 1) \text{ it follows that}$

$$v_1^{\alpha} < \left(\frac{m}{2n}\right)^m e^{-2\frac{m}{2\sqrt{2}}} = \left(\frac{m}{2e^{\frac{1}{\sqrt{2}}}n}\right)^m < \left(\frac{m}{4n}\right)^m = \mu^m.$$

Moreover, from

$$\log \frac{1+x}{1-x} = 2x \left(1 + \frac{1}{3}x^2 + \frac{1}{5}x^4 + \dots \right) \le 2x \left(1 + \frac{x^2}{3}\frac{1}{1-x^2} \right) \le 2x \left(1 + \frac{1}{45} \right),$$

which holds for $x = \left(\frac{m}{4n}\right)^{m-1} \le \frac{1}{4}$, we obtain

$$\left(\frac{1+\mu^m}{1-\mu^m}\right)^n = \left(\frac{1+\frac{m}{4}\frac{\mu^{m-1}}{n}}{1-\frac{m}{4}\frac{\mu^{m-1}}{n}}\right)^n \le e^{\frac{23}{45}m\mu^{m-1}} < \left(e^{\left(\frac{m}{4n}\right)^{m-1}}\right)^m.$$

Thus $g(v_1^{\alpha}) < 1$ follows from $\left(\frac{m}{4n}\right)^{m-1} e^{\left(\frac{m}{4n}\right)^{m-1}} \leq \frac{1}{4}e^{\frac{1}{4}} < 1$.

With this choice of $r \in (0, 1)$ it is clear that v_t^{β} belongs to Δ_r if |t| is small. For individual $0 < |t| \le 1$, $f_t(z) = tf_1(z)$ maps $\overline{\Delta}_{r|t|} \cup [0, 1]$ into $\Delta_{r|t|}$, while $v_t^{\beta} \notin \Delta_{r|t|}$ follows from $|v_t^{\beta}| = |t|/v_1^{\alpha} > |t| > r|t|$.

3 The escape loci

The purpose of Lemma 1 is twofold. First of all it shows that the critical points α and β cannot be simultaneously active, and the bifurcation sets \mathbf{B}^{α} and \mathbf{B}^{β} are separated by the unit circle |t| = 1. Secondly, the condition $v_t^{\beta} \notin \Delta_{r|t|}$ ($0 < |t| \le 1$) ensures that in an exhaustion (D_{κ}) of \mathscr{A}_t starting with $D_0 = \Delta_{r|t|}$, D_{κ} is simply connected as long as $\beta \notin D_{\kappa}$, and $f_t : D_{\kappa} \xrightarrow{d:1} D_{\kappa-1}$ has degree d = m + n. In particular, for $t \in \Omega_{\text{res}}^{\alpha}$ there exists some simply connected and forward invariant domain $D_{\kappa} \subset \mathscr{A}_t$ that contains v_t^{β} (Figs. 1, 2).

We note some more simple consequences of Lemma 1; our focus is on the critical point α and the $^{\alpha}$ -sets.

 $\begin{array}{l} - \{t: 0 < |t| \leq 1\} \subset \Omega_0^{\alpha}; \\ - \overline{\Omega_{\text{res}}^{\alpha}} \subset \mathbb{D}; \\ - \alpha \text{ is inactive on } 0 < |t| \leq 1; \\ - \overline{\bigcup_{k \geq 1} (\Omega_k^{\alpha} \cup \mathbf{W}_k^{\alpha})} \subset \{t: 1 < |t| < T\} \text{ for some } T = T_{mn} > 1; \\ - \mathbf{B}^{\alpha} \subset \{t: 1 < |t| < T\} \text{ for some } T = T_{mn} > 1. \end{array}$

The consequences for the dynamical planes are as follows.

Theorem 1 For $t \in \Omega_0^{\alpha}$, the basin \mathcal{A}_t is completely invariant, and any other Fatou component is simply connected. Moreover,

- for $t \in \Omega_0^{\alpha} \cap \Omega_0^{\beta}$ also \mathscr{B}_t is completely invariant, the Julia set $\mathscr{J}_t = \partial \mathscr{A}_t = \partial \mathscr{B}_t$ is a quasi-circle, and f_t is quasi-conformally conjugated to $z \mapsto z^d$;
- for $t \in \Omega_{res}^{\alpha}$, \mathcal{A}_t is infinitely connected and the Fatou set consists of \mathcal{A}_t , \mathcal{B}_t , and the predecessors of \mathcal{B}_t of any order.

Proof To prove complete invariance of \mathscr{A}_t we first assume $0 < |t| \le 1$. Then \mathscr{A}_t contains the interval [0, 1] by Lemma 1, hence is completely invariant. If, however, |t| > 1, then

Fig. 1 Left the α -parameter plane for $f_t(z) = tz^2 \frac{1-z}{1+z}$ displaying the unit circle, Ω^{α} (gray), $\Omega^{\alpha}_{\text{res}}$ and $\Omega^{\beta}_{\text{res}}$ (white, in and outside the unit circle), and \mathbf{W}^{α} (black). Right a neighbourhood of the origin displaying $\Omega^{\alpha}_{\text{res}}$ (gray) surrounded by points of Ω^{α}_{0} (white), Ω^{β}_{k} ($k \ge 1$, white, small), and \mathbf{W}^{β} (black)

Fig. 2 Left the parameter plane of $P_c(z) = cz^2(z+1)$. The escape region for $P_c(gray)$, the white region with slit, and the black regions correspond to $\Omega_{\text{res}}^{\alpha}$, $\Omega^{\beta} \cap \mathbb{D}$, and \mathbf{W}^{β} , in case of m = 2, n = 1, respectively. The punctured disc 0 < |t| < 1 corresponds to $\mathbb{C} \setminus [-2, 0]$ in the *c*-plane. Right the parameter plane of $P_{-\frac{1}{2}(t+2+\frac{1}{2})}(z)$ in -0.2 < Re t < 0.25, -0.25 < Im t < 0.25 (see also Fig. 1 right)

 \mathscr{B}_t is completely invariant, and any other Fatou component is simply connected. Assuming $1 \notin \mathscr{A}_t$ $(t \in \Omega_0^{\alpha}, |t| > 1)$ we obtain either $f_t : \mathscr{A}_t^* \xrightarrow{n:1} \mathscr{A}_t$ with n = (n - 1) + 1 critical points if $\alpha \in \mathscr{A}_t^*$ or else $f_t : \mathscr{A}_t \xrightarrow{m:1} \mathscr{A}_t$ with m = (m - 1) + 1 critical points if $\alpha \in \mathscr{A}_t$, this contradicting simple connectivity of both domains \mathscr{A}_t and \mathscr{A}_t^* by the Riemann–Hurwitz formula.

The first assertion is obvious since \mathscr{B}_t shares the properties of \mathscr{A}_t and f_t is hyperbolic.

The second assertion follows from the Riemann-Hurwitz formula, since $f_t : \mathscr{A}_t \xrightarrow{d:1} \mathscr{A}_t$ has degree d and r = (m - 1) + (n - 1) + 1 + 1 = d critical points 0, 1 (if n > 1), α , and β .

Theorem 2 $\Omega_0^{\alpha} \cup \{0\}, \ \Omega_{\text{res}}^{\alpha} \cup \{0\}, \ and \ the \ connected \ components \ of \ \Omega_k^{\alpha} \ (k \ge 1) \ are \ simply \ connected \ domains. Riemann \ maps \ onto \ \mathbb{D} \ are \ given \ by \ any \ branch \ of \ \sqrt[m]{E_0(t)}, \ \sqrt[m]{E_{\text{res}}(t)}, \ and \ \sqrt[m]{E_k(t)}, \ respectively.$

For the proof we need two auxiliary results on the maps

$$E_{0}(t) = t \left(\Phi_{t}(v_{t}^{\alpha}) \right)^{m-1} \quad \left(t \in \Omega_{0}^{\alpha} \right),$$

$$E_{\text{res}}(t) = t \left(\Phi_{t}(v_{t}^{\beta}) \right)^{m-1} \quad \left(t \in \Omega_{\text{res}}^{\alpha} \right), \text{ and}$$

$$E_{k}(t) = t^{\frac{1}{m-1}} \Phi_{t} \left(f^{k}(v_{t}^{\alpha}) \right) \left(t \in \Omega_{k}^{\alpha}, \ k \ge 1 \right),$$
(2)

where Φ_t denotes the Böttcher function to the fixed point z = 0. In the first step (Lemma 2) of the proof of Theorem 2 we will show that the functions (2) provide proper maps on $\mathbb{D}\setminus\{0\}$ and \mathbb{D} , respectively, which are only ramified over the origin. In the second step (Lemma 3) this will be used to show that the corresponding domains (with 0 included, if necessary) are simply connected.

The solution to Böttcher's functional equation

$$\Phi_t(f_t(z)) = t \Phi_t(z)^m \quad (\Phi_t(z) \sim z \text{ as } z \to 0)$$
(3)

is locally given by

$$\Phi_t(z) = \lim_{k \to \infty} \sqrt[m^k]{f_t^k(z)/t^{1+m+\dots+m^{k-1}}} = t^{-\frac{1}{m-1}} \lim_{k \to \infty} \sqrt[m^k]{f_t^k(z)};$$

it conjugates f_t to $\zeta \mapsto \zeta^m$. This conjugation holds throughout \mathscr{A}_t in the third case, when Φ_t maps \mathscr{A}_t conformally onto the disc $|z| < |t|^{-\frac{1}{m-1}}$; the maps E_k are analytic and well-defined on the components of Ω_k^{α} , $k \ge 1$.

In the first case the conjugation holds on some simply connected neighbourhood of z = 0that contains z = 0 and $z = v_t^{\alpha}$, but does not contain z = 1. The analytic continuation of Φ_t causes singularities at z = 1 and its preimages under f_t^k , nevertheless $|\Phi_t(z)|$ is well-defined on \mathscr{A}_t and $|\Phi_t(z)| \to |t|^{-\frac{1}{m-1}}$ as $z \to \partial \mathscr{A}_t$ holds anyway. Thus $E_0(t) = t \Phi_t(v_t^{\alpha})^{m-1}$ is holomorphic on Ω_0^{α} and zero-free, with $E_0(t) \sim t(v_t^{\alpha})^{m-1} = f_1(\alpha)^{m-1}t^m$ as $t \to 0$.

In the second case we construct an exhaustion (D_{κ}) of \mathscr{A}_{t} such that $f_{t} : D_{\kappa} \xrightarrow{d:1} D_{\kappa-1}$ has degree d and D_{κ} is simply connected for $\kappa \leq \kappa_{0}$ with $v_{t}^{\beta} \in D_{\kappa_{0}}$ and $\beta \in D_{\kappa_{0}+1} \setminus D_{\kappa_{0}}$. This is possible by Lemma 1, and the procedure applied to $t^{-\frac{1}{m-1}} \Phi_{t}(v_{t}^{\alpha})$ on Ω_{0}^{α} also applies to $t^{-\frac{1}{m-1}} \Phi_{t}(v_{t}^{\beta})$ on Ω_{rec}^{α} .

Lemma 2 The functions in (2) are well-defined and provide proper maps from $\Omega_0^{\alpha} \cup \{0\}$, $\Omega_{\text{res}}^{\alpha} \cup \{0\}$, and the connected components of Ω_k^{α} with $k \ge 1$, respectively, onto the unit disc \mathbb{D} .

Proof To prove that $|E_0(t)| \to 1$ as $t \in \Omega_0^{\alpha}$ tends to $\partial \Omega_0^{\alpha} \setminus \{0\}$ we choose any disc $\Delta_r : |z| < r$ that is invariant under f_t for every $t \in \Omega_0^{\alpha}$. This is possible since Ω_0^{α} is contained in some disc |t| < T, hence we may choose r < 1 such that $Tr^{m-1} \left(\frac{1+r}{1-r}\right)^n = 1$ holds. By k = k(t) we denote the largest integer such that $f_t^k(v_t^{\alpha}) \notin \Delta_r$. Then $k(t) \to \infty$ as $t \to \partial \Omega_0^{\alpha} \setminus \{0\}$, and $|f_t^{k(t)}(v_t^{\alpha})| \ge r$ implies

$$\liminf_{t\to\Omega_0^{\alpha}\setminus\{0\}} |\Phi_t(v_t^{\alpha})| \geq \lim_{t\to\Omega_0^{\alpha}\setminus\{0\}} |t|^{-\frac{1}{m-1}} \sqrt[m^{k(t)}]{r} = |t|^{-\frac{1}{m-1}},$$

while $|\Phi_t(z)| < |t|^{-\frac{1}{m-1}}$ is always true. Thus E_0 maps each connected component of Ω_0^{α} properly onto $\mathbb{D}\setminus\{0\}$. It follows that the origin is removable for (a zero of) E_0 , and $\Omega_0^{\alpha} \cup \{0\}$ is a domain which is mapped by E_0 properly with degree *m* onto the unit disc \mathbb{D} .

If $t \in \Omega_k^{\alpha}$ for some $k \ge 1$, then again $|E_k(t)|$ tends to 1 as $t \to \partial \Omega$, where Ω is any component of Ω_k^{α} . Thus E_k is a proper map of Ω onto \mathbb{D} . We will prove that E_k is ramified only over zero even for $k \ge 0$, that is $E'_k(t) = 0$ implies $E_k(t) = 0$. This is a well-known procedure, the idea of which is due to Roesch [13], and outlined in detail for the Morosawa-Pilgrim family $z \mapsto t \left(1 + \frac{(4/27)z^3}{1-z}\right)$ in [17, Lemma 2].

We take any $t_0 \in \Omega_k^{\alpha}$ and choose $\varepsilon > 0$ such that for t sufficiently close to t_0 , the closed disc $\Delta_{3\epsilon} : |w - v_{t_0}^{\alpha}| \le 3\varepsilon$ belongs to the Fatou component D_{t_0} of f_{t_0} containing

 $v_{t_0}^{\alpha}$ $(D_{t_0}$ is a predecessor of \mathscr{A}_{t_0} of order $\ell \geq 0$). Furthermore let $\eta_t : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be any diffeomorphism such that $\eta_t(w)$ depends analytically on $t, \eta_t(w) = w$ holds on $|w - v_{t_0}^{\alpha}| \geq 3\varepsilon$ and $\eta_t(w) = w + (v_t^{\alpha} - v_{t_0}^{\alpha})$ on $|w - v_{t_0}^{\alpha}| < \varepsilon$. Then $g_t = \eta_t \circ f_{t_0} : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ is a quasi-regular map which equals f_{t_0} on $\widehat{\mathbb{C}} \setminus f_{t_0}^{-1}(\Delta_{3\varepsilon})$, and is analytic on $\widehat{\mathbb{C}} \setminus f_{t_0}^{-1}(A)$ with $A = \{w : \varepsilon \leq |w - v_{t_0}^{\alpha}| \leq 3\varepsilon\}$. To apply Shishikura's qc-lemma [14] we need to know that g_t is uniformly K-quasi-regular, that is, all iterates g_t^p are K-quasi-regular with one and the same K. This is obviously true if the sets $f_{t_0}^{-p}(A)$ (p = 1, 2, ...) are visited at most once by any iterate of g_t . This is trivial if $k \geq 1$: the sets $f_{t_0}^{-p}(A)$ belong to different Fatou components, namely predecessors of D_{t_0} of order p. If k = 0 the argument is different. Let $\Delta_0 : |z| < \delta$ be such that $f_{t_0}(\overline{\Delta}_0) \subset \Delta_0$ and set $\Delta_{\nu} = f_{t_0}^{-1}(\Delta_{\nu-1})$. Then choosing $\epsilon > 0$ sufficiently small we have $A \subset \Delta_\ell \setminus \overline{\Delta_{\ell-1}}$ for some ℓ and $f_{t_0}^{-p}(A) \subset \Delta_{\ell+p} \setminus \overline{\Delta_{\ell+p-1}}$. By the above mentioned qc-lemma, g_t is quasi-conformally conjugated to some rational function

$$R_t = h_t \circ g_t \circ h_t^{-1}.$$

The quasi-conformal mapping $h_t : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ is uniquely determined by the normalisation $h_t(z) = z$ for $z = 0, \alpha, 1$, and depends analytically on the parameter *t*. Also h_t is analytic on $\widehat{\mathbb{C}} \setminus \bigcup_{p \ge 0} f_{t_0}^{-p}(A)$, which, in particular, contains the points $0, v_t^{\alpha}$, and $v_{t_0}^{\alpha}$. We set $z_0 = h_t(-1)$ to obtain $R_t(z) = a(t)z^m \left(\frac{1-z}{z-z_0}\right)^n$. Since $h_t(\alpha) = \alpha$, R_t has a critical point at $z = \alpha$, and solving $R'_t(\alpha) = 0$ for z_0 yields $z_0 = -1$, thus

$$R_t(z) = a(t)z^m \left(\frac{1-z}{1+z}\right)^n.$$

From $R_t = h_t \circ \eta_t \circ f_{t_0}$ and $h_t(\alpha) = \alpha$, however, it follows that

$$a(t)v_1^{\alpha} = R_t(\alpha) = h_t \circ \eta_t \circ f_{t_0}(\alpha) = h_t \circ \eta_t \left(v_{t_0}^{\alpha}\right) = h_t \left(v_t^{\alpha}\right),$$

hence $R_t(z) = f_\tau(z)$ with $\tau = \tau(t) = h_t(v_t^{\alpha})/v_1^{\alpha}$ and $v_{\tau}^{\alpha} = h_t(v_t^{\alpha})$; in particular, τ depends analytically on t. On some neighbourhood of z = 0 we have

$$\begin{aligned} (t_0/\tau)^{\frac{1}{m-1}} \Phi_{t_0} \circ h_t^{-1} \circ f_\tau &= (t_0/\tau)^{\frac{1}{m-1}} \Phi_{t_0} \circ g_t \circ h_t^{-1} \\ &= (t_0/\tau)^{\frac{1}{m-1}} \Phi_{t_0} \circ \eta_t \circ f_{t_0} \circ h_t^{-1} \\ &= (t_0/\tau)^{\frac{1}{m-1}} \Phi_{t_0} \circ f_{t_0} \circ h_t^{-1} \\ &= (t_0/\tau)^{\frac{1}{m-1}} t_0 \left(\Phi_{t_0} \circ h_t^{-1} \right)^m \\ &= \tau \left((t_0/\tau)^{\frac{1}{m-1}} \Phi_{t_0} \circ h_t^{-1} \right)^m , \end{aligned}$$

hence $\phi_{\tau} = (t_0/\tau)^{\frac{1}{m-1}} \Phi_{t_0} \circ h_t^{-1}$ solves Böttcher's functional equation

$$\phi_{\tau} \circ f_{\tau}(z) = \tau (\phi_{\tau}(z))^m$$

Since τ and h_t depend analytically on t, this is also true for h_t^{-1} , which is not self-evident. Also from $h_t(g_t(z)) = f_{\tau}(h_t(z)) \sim \tau h_t(z)^m$ and $g_t(z) = f_{t_0}(z) \sim t_0 z^m$ as $z \to 0$ it follows that $h_t(t_0 z^m) \sim \tau h_t(z)^m$, hence $h_t(z) \sim \sqrt[m-1]{t_0/\tau z}$, $h_t^{-1}(z) \sim \sqrt[m-1]{\tau/t_0}z$ and $\phi_{\tau}(z) \sim \lambda z$ as $z \to 0$, with $\lambda^{m-1} = 1$. This implies $\phi_{\tau} = \lambda \Phi_{\tau}$ by uniqueness of the Böttcher coordinate,

Springer

and from $\tau(t_0) = t_0$ and analytic dependence on t it follows that $\lambda = 1$ and $\phi_{\tau} = \Phi_{\tau}$, hence

$$\begin{split} E_{k}(\tau) &= \tau^{\frac{1}{m-1}} \Phi_{\tau}(Q_{k}(\tau)) = \tau^{\frac{1}{m-1}} \Phi_{\tau}(f_{\tau}^{k}(v_{\tau}^{\alpha})) \\ &= t_{0}^{\frac{1}{m-1}} \Phi_{t_{0}} \circ h_{t}^{-1}(f_{\tau}^{k}(v_{\tau}^{\alpha})) = t_{0}^{\frac{1}{m-1}} \Phi_{t_{0}} \circ f_{t_{0}}^{k} \circ h_{t}^{-1}(v_{\tau}^{\alpha}) \\ &= t_{0}^{\frac{1}{m-1}} \Phi_{t_{0}}(f_{t_{0}}^{k}(v_{t}^{\alpha})) \quad \text{if } k \ge 1, \quad \text{and} \\ E_{0}(\tau) &= t_{0}(\Phi_{t_{0}}(v_{t}^{\alpha}))^{m}. \end{split}$$

Since $t \mapsto \tau$ is locally univalent, E_k is univalent at t_0 if and only if the map $t \mapsto t_0^{\frac{1}{m-1}} \Phi_{t_0}(f_{t_0}^k(v_t^{\alpha}))$ is univalent on some neighbourhood of t_0 . If $k \ge 1$, Φ_{t_0} is univalent on \mathscr{A}_{t_0} , and $f_{t_0}^k$ is univalent on $|z - v_{t_0}^{\alpha}| < \delta$ provided $Q_k(t_0) = f_{t_0}^k(v_{t_0}^{\alpha}) \neq 0$, while $f_{t_0}^k$ is *n*-valent at $v_{t_0}^{\alpha}$ if $Q_k(t_0) = 0$. In case of k = 0 we note that Φ_{t_0} is locally univalent on some forward invariant domain D that contains 0 and $v_{t_0}^{\alpha}$, and $v_t^{\alpha} = tv_1^{\alpha} \neq 0$ is trivially univalent.

The proof of Theorem 2 will be finished by

Lemma 3 Let h be a proper map of degree m of the domain D onto the unit disc \mathbb{D} , and assume that h is ramified exactly over zero, that is, h'(z) = 0 implies h(z) = 0. Then D is simply connected and h has a single zero on D.

Proof Assume that *h* has zeros with multiplicities m_{ν} $(1 \le \nu \le n)$. Then *h* has degree $d = m_1 + \cdots + m_n$ and r = d - n critical points. The Riemann-Hurwitz formula then yields #D - 2 = -d + r = -n, hence #D = 2 - n, which only is possible if n = 1 and #D = 1.

Remark Each connected component of Ω_k^{α} contains a zero of $Q_k(t) = tf_1(Q_{k-1}(t))$ which is not a zero of Q_{k-1} , hence is a zero of $Q_{k-1}(t) - 1$. Thus Ω_k^{α} consists of at most $\frac{d^{k-1}}{d-1}$ connected components.

4 The hyperbolic loci

The bifurcation locus \mathbf{B}^{β} is contained in some annulus $\delta < |t| < 1$, and this also holds for \mathbf{W}^{β} . Hence (super-)attracting cycles U_1, \ldots, U_k that contain the critical point β may occur only if $\delta < |t| < 1$.

Theorem 3 For 0 < |t| < 1, f_t is quasi-conformally conjugated to some polynomial

$$P_c(z) = cz^m(z+1)^n$$
 $(c = c_t \neq 0)$

with free critical point $-\frac{m}{m+n}$. The basin \mathscr{A}_t is completely invariant, and simply connected if and only if $t \notin \Omega^{\alpha}_{res}$. For $t \notin \Omega^{\beta}_0$, the Fatou set consists of \mathscr{A}_t , the simply connected basin \mathscr{B}_t and its pre-images and, additionally, of some (super-)attracting cycle of Fatou components and their pre-images if $t \in \mathbf{W}^{\beta}$; the cycle absorbs the critical point β .

Proof To prove the second assertion we note that by Lemma 1 the pre-image D of the disc $\Delta = \Delta_{r|t|}$ is a simply connected Jordan domain that contains $\overline{\Delta} \cup [0, 1]$, but does not contain v_t^{β} . Then $D_2 = \widehat{\mathbb{C}} \setminus \overline{\Delta}$ is a backward invariant domain, and

$$f_t: D_1 \xrightarrow{d:1} D_2 \quad \left(D_1 = f_t^{-1}(D_2)\right)$$

is a polynomial-like mapping in the sense of [6], of degree d = m + n, hence is hybrid equivalent to some polynomial P of degree d. We may assume that the quasi-conformal conjugation ψ_t with

$$\psi_t \circ f_t = P \circ \psi_t$$

maps ∞ , 0, and -1 onto 0, ∞ , and -1, respectively. Thus *P* is given by $P(z) = P_c(z) = cz^m(z+1)^n$, and ψ_t , hence also $c = c_t$ depends analytically on *t*.

Remark We note that $D_2 = D_2(|t|) = \{z : |z| > r|t|\}$ increases if |t| decreases, while $D_1 = f_t^{-1}(\widehat{\mathbb{C}} \setminus \overline{\Delta}_r|_t) = f_1^{-1}(\widehat{\mathbb{C}} \setminus \overline{\Delta}_r)$ is independent of *t*. Thus the conformal modulus $\mu(|t|)$ of $D_2(|t|) \setminus \overline{D_1}$ satisfies $\mu(1) \le \mu(|t|) - \log \frac{1}{|t|} \le \log \frac{\inf_{z \in D_1} |z|}{r}$. The bifurcation locus of P_c corresponds conformally to the bifurcation locus \mathbf{B}^{β} , and the hyperbolic components are just quasi-conformal images of the hyperbolic components of the quadratic family $z \mapsto z^2 + \xi$.

For $t \in \mathbf{W}_k$, the multiplier map $t \mapsto \lambda_t$ is an algebraic function of t. This is easily seen by writing the equations $f_t^k(z) = z$ and $\lambda = (f_t^k)'(z)$ as polynomial equations $q_1(z, t) = 0$ and $q_2(z, t, \lambda) = 0$, and computing the resultant $R_f(t, \lambda)$ of q_1 and q_2 with respect to z. For example, in case of k = 1, m = 2, and n = 1 we obtain

$$R_f(t,\lambda) = \left[-2 + 14t - 2t^2\right] + \left[1 - 10t + t^2\right]\lambda + 2t\lambda^2 = 0.$$

For $P_c(z) = cz^2(z+1)$ we obtain in the same manner (multiplier μ)

$$R_P(c,\mu) = 9 + 2c - (c+6)\mu + \mu^2 = 0.$$

Since the quasi-conformal conjugation respects multipliers $(\lambda_t = \mu_{c_t})$, c_t is an algebraic function of *t* by the identity theorem; in the present case we obtain $(1 + 2t + t^2 + 2tc)^2 = 0$ by computing the resultant of $R_f(t, \lambda)$ and $R_P(c, \lambda)$ with respect to λ , hence

$$t \mapsto c = c_t = -\frac{1}{2} \left(t + 2 + \frac{1}{t} \right) \quad \left(c = -\frac{9}{2} \leftrightarrow t = \frac{1}{2} \left(\sqrt{49} - \sqrt{45} \right) \right)$$

maps 0 < |t| < 1 conformally onto $\mathbb{C} \setminus [-2, 0]$, see Fig. 2.

The following result was not explicitly stated but proved in [17]. The proof is an adaption of the procedure due to Douady [5], applied to the hyperbolic components of the quadratic family $R_t(z) = z^2 + t$ with one free critical point. The occurrence of several critical points requirers a slightly more sophisticated argument. The present version applies to a wider class of functions like $R_t(z) = z^d + t$, $R_t(z) = z^m + t/z^n$, $R_t(z) = t \left(1 + \frac{((d-1)^{d-1}/d^d)z^d}{1-z}\right)$ $(d \ge 3)$, $R_t(z) = -\frac{t}{4} \frac{(z^2-2)^2}{z^2-1}$, the present family, and many others, to show that the hyperbolic components are simply connected and are mapped properly onto the unit disc by the multiplier map $t \mapsto \lambda_t$.

Theorem 4 Let $(R_t)_{t \in T}$ be any family of rational maps that is analytically parametrised over some domain T. Suppose that each R_t has a (super-)attracting cycle $U_0 \xrightarrow{m_1:1} U_1 \xrightarrow{m_2:1} U_1 \xrightarrow{m_1:1} U_1 \xrightarrow{m_2:1} U_1 \xrightarrow{m_1:1} U_n = U_0$, such that R_t^n has a single critical point $c_t \in U_0$ of multiplicity m-1, where $m = m_1 \cdots m_n$ is the degree of $R_t^n : U_0 \xrightarrow{m:1} U_0$. Assume also that the multiplier λ_t satisfies $|\lambda_t| \to 1$ as $t \to \partial T$. Then the multiplier map $t \mapsto \lambda_t$ provides a proper map $T \xrightarrow{(m-1):1} \mathbb{D}$ which is ramified just over w = 0, and T is simply connected.

Acknowledgements We would like to thank the referee for valuable comments.

References

- 1. Beardon, A.F.: Iteration of Rational Functions. Springer, Berlin (1991)
- 2. Carleson, L., Gamelin, W.: Complex Dynamics. Springer, Berlin (1993)
- Devaney, R.: Mandelpinski Structures in the Parameter Planes of Rational Maps. http://math.bu.edu/ people/bob/papers.htm
- Devaney, R., Fagella, N., Garijo, A., Jarque, X.: Sierpiński curve Julia sets for quadratic rational maps. Ann. Acad. Sci. Fenn. Math. 39, 3–22 (2014)
- 5. Douady, A.:L Systèmes dynamiques holomorphes, Séminaire Bourbaki 599 (1982/1983), 39-63
- Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. 18, 287–344 (1985)
- 7. Jang, H.G., Steinmetz, N.: On the dynamics of the rational family $f_t(z) = -\frac{t}{4} \frac{(z^2-2)^2}{z^2-1}$. Comput. Math. Funct. Theory (CMFT) **12**, 1–17 (2012)
- McMullen, C.: Automorphisms of rational maps. In: Drasin, D., Earle, C., Gehring, F.W., Kra, I., Marden, A. (eds.) Holomorphic Functions and Moduli I, pp. 31–60. Springer, Berlin (1988)
- 9. McMullen, C.: Complex Dynamics and Renormalization. Princeton University Press, Princeton (1994)
- McMullen, C.: The Mandelbrot set is universal. In: Lei, T. (ed) The Mandelbrot set, theme and variations. Lond. Math. Soc. Lect. Note Ser, vol. 274, pp. 1-18. Cambridge University Press, Cambridge (2000)
- 11. Milnor, J.: Dynamics in One Complex Variable. Vieweg, Braunschweig (1999)
- Milnor, J., Lei, Tan: A "Sierpiński carpet" as Julia set, Appendix F in geometry and dynamics of quadratic rational maps. Exp. Math. 2, 37–83 (1993)
- 13. Roesch, P.: On captures for the family $f_{\lambda}(z) = z^2 + \lambda/z^2$. In: Hjorth, P.G., Petersen, C.L. (eds.) Dynamics on the Riemann Sphere. A Bodil Branner Festschrift. EMS Publishing House (2006)
- Shishikura, M.: On the quasi-conformal surgery of the rational functions. Ann. École Norm. Sup. 20, 1–29 (1987)
- 15. Steinmetz, N.: Rational Iteration: Complex Analytic Dynamical Systems. W. De Gruyter, Berlin (1993)
- Steinmetz, N.: Sierpiński curve Julia sets of rational maps. Comput. Math. Funct. Theory (CMFT) 6, 317–327 (2006)
- Steinmetz, N.: Sierpiński and non-Sierpiński curve Julia sets in families of rational maps. J. Lond. Math. Soc. 78, 290–304 (2008)