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Abstract We study the stability of the spectral property (k) introduced and studied by
Kaushik and Kashyap (Int J Math Arch 12:167–171, 2014), under commuting perturbations
by Riesz operators, and we give generalizations of some known results.
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1 Introduction and basic definitions

For T in the Banach algebra B(X) of bounded linear operators acting on a Banach space
X, we will denote by σ(T ) the spectrum of T, by σa(T ) the approximate point spec-
trum of T, by N (T ) the null space of T , by n(T ) the nullity of T, by R(T ) the range
of T and by d(T ) its defect. If n(T ) < ∞ and d(T ) < ∞, then T is called a Fred-
holm operator and its index is defined by ind(T ) = n(T ) − d(T ). A Weyl operator
T ∈ B(X) is a Fredholm operator of index zero and the Weyl spectrum is defined by
σw(T ) = {λ ∈ C | T − λI is not a Weyl operator}. T ∈ B(X) is called an upper (resp.,
a lower) semi-Fredholm if R(T ) is closed and n(T ) < ∞ (resp., d(T ) < ∞). The
respective semi-Fredholm spectrum and semi-Weyl spectrum of T are defined respectively,
by σs f (T ) = {λ ∈ C | T − λI is not a semi-Fedholm operator}, and σs f −+ (T ) = {λ ∈
C | T − λI is not an upper semi-Fredholm operator with index less or equal than zero}.

For a bounded linear operator T and n ∈ N, let T[n] : R(T n) → R(T n) be the restriction
of T to R(T n). T ∈ B(X) is said to be a semi B-Fredholm if for some integer n ≥ 0, the
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234 H. Zariouh

range R(T n) is closed and T[n] is a semi-Fredholm; its index is defined as the index of the
semi-Fredholm operator T[n]. The respective semi B-Fredholm spectrum of T is defined by
σsb f (T ) = {λ ∈ C | T − λI is not a semi B-Fredholm operator}.

The ascent of an operator T is defined by a(T ) = inf{n ∈ N |N (T n) = N (T n+1)}, and
the descent of T is defined by δ(T ) = inf{n ∈ N |R(T n) = R(T n+1)}, with inf ∅ = ∞.

According to Heuser [8], a complex number λ ∈ σ(T ) is a pole of the resolvent of T if
T − λI has finite ascent and finite descent, and in this case they are equal. An operator
T ∈ B(X) is said to be Browder operator if it is a Fredholm with finite ascent and descent,
and is said to be an upper Browder operator if it is an upper semi-Fredholm operator with
finite ascent. The respective Browder spectrum and upper Browder spectrum of T are defined
respectively, by σb(T ) = {λ ∈ C | T − λI is not a Browder operator}, and σub(T ) = {λ ∈
C | T − λI is not an upper Browder operator}.

In the following, we recall the definition of a property which has a relevant role in local
spectral theory. For more details about this property see the monographs of Laursen and
Neumann [10] and Aiena [1].

Definition 1.1 An operator T ∈ B(X) is said to have the single valued extension property at
λ0 ∈ C (abbreviated SVEP at λ0), if for every open neighborhood U of λ0, the only analytic
function f : U −→ X which satisfies the equation (T − λI ) f (λ) = 0 for all λ ∈ U is the
function f ≡ 0. An operator T ∈ B(X) is said to have SVEP if T has SVEP at every point
λ ∈ C.

Evidently, T ∈ B(X) has SVEP at every isolated point of the spectrum. We summarize in
the following list the usual notations and symbols needed later.

Notations and symbols

F(X) The ideal of finite rank operators in B(X),

K(X) The ideal of compact operators in B(X),

N (X) The class of nilpotent operators on X,

Q(X) The class of quasi-nilpotent operators on X,

iso A Isolated points of a subset A ⊂ C,

acc A Accumulations points of a subset A ⊂ C,

D(0, 1) The closed unit disc in C,

C(0, 1) The unit circle of C,

�(T ) poles of T,

�0(T ) Poles of T of finite rank,
�a(T ) Left poles of T,

�0
a(T ) Left poles of T of finite rank,

σp(T ) Eigenvalues of T,

σ
f
p (T ) Eigenvalues of T of finite multiplicity,

E0(T ) iso σ(T ) ∩ σ
f
p (T ),

E(T ) iso σ(T ) ∩ σp(T ),

E0
a(T ) iso σa(T ) ∩ σ

f
p (T ),

σb(T ) = σ(T )\�0(T ) Browder spectrum of T,

σub(T ) = σa(T )\�0
a(T ) Upper-Browder spectrum of T,

σw(T ) Weyl spectrum of T,

σs f −+ (T ) Semi-Weyl spectrum of T,

σsb f (T ) Semi B-Fredholm spectrum of T .
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Property (k) and commuting Riesz-type perturbations 235

Definition 1.2 [2,6,9,12] Let T ∈ B(X). T is said to satisfy

(i) a-Browder’s theorem if σ(T )\σs f −+ (T ) = �0
a(T ), or equivalently σub(T ) = σs f −+ (T ).

(ii) Browder’s theorem if σ(T )\σw(T ) = �0(T ), or equivalently σb(T ) = σw(T ).

(iii) Weyl’s theorem if σ(T )\σw(T ) = E0(T ).

(iv) Property (k) if σ(T )\σw(T ) = E(T ).

Definition 1.3 Let T ∈ B(X) and S ∈ B(X). We will say that T and S have a shared stable
sign index if for each λ /∈ σsb f (T ) and μ /∈ σsb f (S), ind(T − λI ) and ind(S − μI ) have the
same sign.

For examples we have:

1. It is easily verified that if T ∈ B(X) has SVEP then ind(T − μI ) ≤ 0 for every
μ /∈ σsb f (T ). So if S and T have SVEP, then they have a shared stable sign index.

2. Here and elsewhere,H denotes a Hilbert space. It is well known that every hyponormal
operator T acting on H has property (H1) (for the definition of (H1), see the end of
the second section) and hence has SVEP. As a consequence of the first point, every two
hyponormal operators have a shared stable sign index. Recall that T ∈ B(H) is said to
be hyponormal if T ∗T − T T ∗ ≥ 0 (or equivalently ‖T ∗x‖ ≤ ‖T x‖ for all x ∈ H).
The class of hyponormal operators includes also subnormal operators and quasinormal
operators, see Conway [4].

After giving an introduction and some preliminaries in the first section, we study in
the second section the preservation of property (k) introduced and studied by Kaushik and
Kashyap [9], under several commuting Riesz-type perturbations. We prove in particular
that if T is an isoloid operator acting on a Banach space and satisfies property (k), then
T + S satisfies property (k) for every finite rank power operator S which commutes with T .

Moreover, we give generalization of some perturbation results to commuting Riesz operators
such as Theorems 2.3 and 2.8 of Berkani and Zariouh [3]. In the end of this paper, we prove
that if S and T are isoloid bounded operators acting on Banach spaces and satisfy property
(k), then S⊕ T satisfies property (k) if and only if σw(S⊕ T ) = σw(S)∪ σw(T ), extending
a result of Kaushik and Kashyap [9]. Some crucial examples are also given.

2 Property (k) and perturbations

We recall that an operator R ∈ B(X) is said to be Riesz if R−μI is Fredholm for every non-
zero complex μ, that is, π(R) is quasi-nilpotent in the Calkin algebra C(X) = B(X)/K(X)

where π is the canonical mapping of B(X) into C(X).We denote byR(X) the class of Riesz
operators and by F0(X), the class of finite rank power operators as follows:

F0(X) = {
S ∈ B(X) : Sn ∈ F(X) for some n ∈ N

}
.

Clearly, F(X) ∪ N (X) ⊂ F0(X) ⊂ R(X), and K(X) ∪ Q(X) ⊂ R(X).

According toOberai [11], Rakocěvić [14] andTylli [15], we know that for every T ∈ B(X)

and R ∈ R(X) such that T R = RT, σ∗(T + R) = σ∗(T ); where σ∗ ∈ {σs f −+ , σw, σb, σub}.
From this, we give the following known lemma which we need in the proof of the next main
results.

Lemma 2.1 Let T ∈ B(X) and let R ∈ R(X) be a commuting operator with T . The
following statements hold:
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236 H. Zariouh

(i) T satisfies Browder’s theorem if and only if T + R satisfies Browder’s theorem.
(ii) T satisfies a-Browder’s theorem if and only if T + R satisfies a-Browder’s theorem.

We start this section by the following nilpotent perturbation result.

Proposition 2.2 Let T ∈ B(X) and let N ∈ N (X) which commutes with T . Then T satisfies
property (k) if and only if T + N satisfies property (k).

Proof Since N is nilpotent and commutes with T, we know that σ(T + N ) = σ(T ), and it
is easily seen that 0 < n(T + N ) ⇐⇒ 0 < n(T ). Since σw(T ) = σw(T + N ), it follows
that T satisfies property (k) if and only if T + N satisfies property (k). ��
• Note that the assumption of commutativity in the Proposition 2.2 is crucial. Let T

and N be defined on �2(N) by T (x1, x2, . . .) = (0, x1
2 , x2

3 , . . .) and N (x1, x2, . . .) =
(0, −x1

2 , 0, 0, . . .). Clearly N is nilpotent and does not commute with T . The property
(k) is satisfied by T, since σ(T ) = {0} = σw(T ) and E(T ) = ∅. But T + N does not
satisfy property (k), because σ(T + N ) = σw(T + N ) = {0} and {0} = E(T + N ).

• The stability of property (k) showed in Proposition 2.2 cannot be extended to commuting
quasi-nilpotent operators, as we can see in the next example:

Example 2.3 Let T be the operator defined on �2(N) by T (x1, x2, . . .) = (0, x1
2 , x2

3 , . . .).

Put R = −T, clearly R is quasi-nilpotent, compact and commutes with T . As it is already
mentioned, T satisfies property (k). But T + R = 0 does not satisfy this property. Indeed,
σ(T+R) = {0} = σw(T+R), E(T+R) = {0}.Note also that�0(T+R) = ∅,�0(T ) = ∅.

Theorem 2.4 Let R ∈ R(X) and let T ∈ B(X) be a commuting operator with T . If T
satisfies property (k), then the following statements are equivalent:

(i) T + R satisfies property (k);
(ii) �0(T + R) = E(T + R);
(iii) E(T + R) ∩ σ(T ) ⊂ �0(T ).

Proof (i) ⇐⇒ (ii) If T + R satisfies property (k) then from [9, Theorem 2.5],�0(T + R) =
E(T+R).Conversely, since T satisfies property (k), then it satisfiesBrowder’s theorem,
and fromLemma2.1, T+R satisfiesBrowder’s theorem too. Soσ(T+R)\σw(T+R) =
�0(T + R). Thus T + R satisfies property (k).

(ii) ⇐⇒ (iii) Suppose that �0(T + R) = E(T + R) and let λ0 ∈ E(T + R) ∩ σ(T )

be arbitrary. Then λ0 ∈ �0(T + R) ∩ σ(T ) and hence λ0 ∈ σ(T )\σb(T ) = �0(T ).

Consequently, E(T+R)∩σ(T ) ⊂ �0(T ).Conversely, suppose that E(T+R)∩σ(T ) ⊂
�0(T ) and let μ0 ∈ E(T + R) be arbitrary. We distinguish two cases: the first is
μ0 ∈ σ(T ). Then μ0 ∈ E(T + R) ∩ σ(T ) ⊂ �0(T ). It follows that μ0 /∈ σb(T + R)

and since μ0 ∈ σ(T + R), then μ0 ∈ �0(T + R). The second case is μ0 /∈ σ(T ).

This implies that μ0 /∈ σb(T + R) and then μ0 ∈ �0(T + R). In the two cases we
have �0(T + R) ⊃ E(T + R) and as the opposite inclusion is always true, then
�0(T + R) = E(T + R).Remark that the statements (ii) and (iii) are always equivalent
without the assumption that T satisfies property (k). ��

As an application of Theorem 2.4 to commuting isoloid operators, we give the following
corollary.Recall that an operator T ∈ B(X) is said to be isoloid (resp.,polaroid) if iso σ(T ) =
E(T ) (resp., iso σ(T ) = �(T )).

Corollary 2.5 Let S ∈ F0(X) and let T ∈ B(X) be an isoloid operator commuting with S.

If T satisfies property (k) then T + S satisfies property (k).
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Property (k) and commuting Riesz-type perturbations 237

Proof Let λ0 ∈ E(T + S) ∩ σ(T ) be arbitrary. Then λ0 /∈ acc σ(T + S) = acc σ(T ), see
[16, Theorem 2.2]. As λ0 ∈ σ(T ), then λ0 ∈ iso σ(T ) = E(T ). The property (k) for T
implies that E(T ) = �0(T ) and hence E(T + S) ∩ σ(T ) ⊂ �0(T ). But this is equivalent
from Theorem 2.4, to say that T + S satisfies property (k). ��

The next theorem extends [3, Theorem 2.3] to commuting Riesz perturbations which are
not necessary nilpotent or compact. According to Rakocěvić [13], we recall that an operator
T ∈ B(X) is said to satisfy a-Weyl’s theorem if σa(T )\σs f −+ (T ) = E0

a(T ).

Theorem 2.6 Let R ∈ R(X). If T ∈ B(X) satisfies a-Weyl’s theorem and commutes with
R, then the following statements are equivalent:

(i) T + R satisfies a-Weyl’s theorem;
(ii) �0

a(T + R) = E0
a(T + R);

(iii) E0
a(T + R) ∩ σa(T ) ⊂ E0

a(T ).

Proof (i) ⇐⇒ (ii) Suppose that T + R satisfies a-Weyl’s theorem and let μ0 ∈ E0
a(T + R)

be arbitrary. Then μ0 ∈ E0
a(T + R) ⇐⇒ μ0 ∈ iso σa(T + R) ∩ σs f −+ (T + R)C ⇐⇒

μ0 ∈ �0
a(T + R), where σs f −+ (T + R)C is the complement of the semi-Weyl spectrum

of T + R. Thus �0
a(T + R) = E0

a(T + R). For the converse, since T satisfies a-Weyl’s
theorem, then it satisfies a-Browder’s theorem and therefore T +R satisfies a-Browder’s
theorem too, see Lemma 2.1. So σa(T +R)\σs f −+ (T +R) = �0

a(T +R) = E0
a(T +R).

(ii) ⇐⇒ (iii) Suppose that �0
a(T + R) = E0

a(T + R) and let λ0 ∈ E0
a(T + R) ∩ σa(T )

be arbitrary. Then λ0 ∈ �0
a(T + R) ∩ σa(T ). Hence λ0 ∈ σa(T )\σub(T ) = �0

a(T ).

Consequently, E0
a(T + R) ∩ σa(T ) ⊂ E0

a(T ). Conversely, suppose that E0
a(T + R) ∩

σa(T ) ⊂ E0
a(T ) and let μ0 ∈ E0

a(T + R) be arbitrary. We distinguish two cases:
the first is μ0 ∈ σa(T ). Then μ0 ∈ E0

a(T + R) ∩ σa(T ) ⊂ E0
a(T ). It follows that

μ0 /∈ σs f −+ (T + R) and since μ0 ∈ iso σa(T + R), then μ0 ∈ �0
a(T + R). The second

case is μ0 /∈ σa(T ). This implies thatμ0 /∈ σub(T + R) and soμ0 ∈ �0
a(T + R). In the

two cases we have �0
a(T + R) ⊃ E0

a(T + R) and as the opposite inclusion is always
true, then �0

a(T + R) = E0
a(T + R). ��

The next theorem extends [3, Theorem 2.8] to commuting Riesz perturbations which are
not necessary nilpotent or compact.

Theorem 2.7 Let R ∈ R(X). If T ∈ B(X) satisfies Weyl’s theorem and commutes with R,

then the following statements are equivalent:

(i) T + R satisfies Weyl’s theorem;
(ii) �0(T + R) = E0(T + R);
(iii) E0(T + R) ∩ σ(T ) ⊂ E0(T ).

Proof (i) ⇐⇒ (ii) Suppose that T + R satisfies Weyl’s theorem and let μ0 ∈ E0(T + R) be
arbitrary. Then μ0 ∈ E0(T + R) ⇐⇒ μ0 ∈ iso σ(T + R) ∩ σw(T + R)C ⇐⇒ μ0 ∈
�0(T + R), where σw(T + R)C is the complement of the Weyl spectrum of T + R.

Thus �0(T + R) = E0(T + R). For the converse, since T satisfies Weyl’s theorem,
then it satisfies Browder’s theorem and therefore T + R satisfies Browder’s theorem
too. So σ(T + R)\σw(T + R) = �0(T + R) = E0(T + R).

(ii) ⇐⇒ (iii) Suppose that �0(T + R) = E0(T + R) and let λ0 ∈ E0(T + R) ∩ σ(T )

be arbitrary. Then λ0 ∈ �0(T + R) ∩ σ(T ) and hence λ0 ∈ σ(T )\σb(T ) = �0(T ).
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238 H. Zariouh

Consequently, E0(T + R) ∩ σ(T ) ⊂ E0(T ). Conversely, suppose that E0(T + R) ∩
σ(T ) ⊂ E0(T ) and let μ0 ∈ E0(T + R) be arbitrary. We distinguish two cases:
the first is μ0 ∈ σ(T ). Then μ0 ∈ E0(T + R) ∩ σ(T ) ⊂ E0(T ). It follows that
μ0 ∈ σw(T + R)C ∩ iso σ(T + R) ⇐⇒ μ0 ∈ �0(T + R). The second case is
μ0 /∈ σ(T ). This implies that μ0 /∈ σb(T + R). Thus μ0 ∈ �0(T + R). In the two
cases we have �0(T + R) ⊃ E0(T + R) and as the opposite inclusion is always true,
then �0(T + R) = E0(T + R). ��

Corollary 2.8 Let S ∈ F0(X) and let T ∈ B(X) be a bounded operator commuting with S.

The following assertions hold:

(i) If T satisfies a-Weyl’s theorem and iso σa(T ) = E0
a(T ), then T + S satisfies a-Weyl’s

theorem.
(ii) If T satisfiesWeyl’s theorem and iso σ(T ) = E0(T ), then T +S satisfiesWeyl’s theorem.

Proof (i) Let λ0 ∈ E0
a(T + S)∩σa(T ) be arbitrary. Then λ0 /∈ acc σa(T + S) = acc σa(T ),

see [16, Theorem 2.2]. As λ0 ∈ σa(T ) then λ0 ∈ iso σa(T ) = E0
a(T ). So E0

a(T + S) ∩
σa(T ) ⊂ E0

a(T ). But this is equivalent from Theorem 2.6, to say that T + S satisfies
a-Weyl’s theorem.

(ii) Goes similarly with the proof of the first assertion, as an application of Theorem 2.7. ��
In the next, we explore conditions on S ∈ B(X) and T ∈ B(Y ) so that S ⊕ T satisfies

property (k). The motivation for this work has come from Duggal and Kubrusly [7]. We
begin with an example which shows that even if two operators S and T satisfy property (k),
yet there direct sum may fail to satisfy property (k).

Example 2.9 Let R and L be the operators defined on �2(N) by R(x1, x2, x3, . . .) =
(0, x1, x2, x3, . . .) and L(x1, x2, x3, . . .) = (x2, x3, . . .). Then property (k) holds for R
and L , since σ(R) = σw(R) = D(0, 1), E(R) = ∅, σ (L) = σw(L) = D(0, 1)
and E(L) = ∅. But it does not hold for R ⊕ L . In fact σ(R ⊕ L) = D(0, 1), and as
n(R ⊕ L) = d(R ⊕ L) = 1 then 0 /∈ σw(R ⊕ L). So σw(R ⊕ L) � σ(R ⊕ L). We also
remark that E(R ⊕ L) = ∅. Thus σ(R ⊕ L)\σw(R ⊕ L) �= E(R ⊕ L). Note that S and T
are isoloid and σw(R ⊕ L) � σw(R) ∪ σw(L) = D(0, 1).

Nonetheless, and under the assumption that S and T are isoloid, we give in the following
result a characterization of the stability of property (k) under direct sum.

Theorem 2.10 Let S ∈ B(X) and let T ∈ B(Y ), X and Y are Banach spaces. If S and T
satisfy property (k) and are isoloid, then the following assertions are equivalent:

(i) S ⊕ T satisfies property (k);
(ii) σw(S ⊕ T ) = σw(S) ∪ σw(T ).

Proof (i) �⇒ (ii) The property (k) for S⊕T implieswith no other restriction on either S or T
that σw(S⊕T ) = σw(S)∪σw(T ). Indeed, as S⊕T satisfies property (k) then it satisfies
Browder’s theorem and so σw(S⊕T ) = σb(S⊕T ). Since σb(S⊕T ) = σb(S)∪σb(T ),

then σw(S ⊕ T ) = σb(S) ∪ σb(T ), and as σw(S) ∪ σw(T ) ⊂ σb(S) ∪ σb(T ), we then
have σw(S) ∪ σw(T ) ⊂ σw(S ⊕ T ). Hence σw(S ⊕ T ) = σw(S) ∪ σw(T ).

(ii) �⇒ (i) Suppose that σw(S ⊕ T ) = σw(S) ∪ σw(T ). As S and T are isoloid then

E(S ⊕ T ) = [E(S) ∩ ρ(T )] ∪ [E(T ) ∩ ρ(S)] ∪ [E(S) ∩ E(T )] ,
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Property (k) and commuting Riesz-type perturbations 239

where ρ(.) = C\σ(.). On the other hand, since S and T satisfy property (k), i.e.
σ(S)\σw(S) = E(S) and σ(T )\σw(T ) = E(T ), we then have

[σ(S) ∪ σ(T )] \ [σw(S) ∪ σw(T )]

= [(σ (S)\σw(S)) ∩ ρ(T )] ∪ [(σ (T )\σw(T )) ∩ ρ(S)]

∪ [(σ (S)\σw(S)) ∩ (σ (T )\σw(T ))]

= [E(S) ∩ ρ(T )] ∪ [E(T ) ∩ ρ(S)] ∪ [E(S) ∩ E(T )] .

Hence E(S ⊕ T ) = [σ(S) ∪ σ(T )]\[σw(S) ∪ σw(T )] = σ(S ⊕ T )\σw(S ⊕ T ), and this
shows that property (k) is satisfied by S ⊕ T . ��
Remark 2.11 1. Theorem 2.10 extends [9, Theorem 3.2] which proves that if T ∈ B(H)

and S ∈ B(K) are isoloid operators acting on Hilbert spacesH andK satisfying property
(k)with the supplementary condition σw(S⊕T ) = σw(S)∪σw(T ), then S⊕T satisfies
property (k).

2. The assumption “S and T are isoloid” is essential in Theorem 2.10. For this define
on C

n ⊕ �2(N) the operator U = 0 ⊕ S where S is defined by S(x1, x2, . . .) =
(0, x1

2 , x2
3 , . . .). It is clear that the null operator satisfies property (k). Also the oper-

ator S satisfies property (k), since σ(S) = σw(S) = {0} and E(S) = ∅. But U
does not satisfy this property, since σ(U ) = σw(U ) = {0} and E(U ) = {0}. Here
σw(0 ⊕ S) = σw(0) ∪ σw(S) = {0}, the null operator is isoloid, but S is not isoloid.

Before we state our next corollary as an application of Theorem 2.10 to the class of (H)-
operators, we recall the definition of this class and definitions of some classes of operators
which are contained in the class (H).

According to the monograph of Aiena [1], the quasinilpotent part H0(T ) of T ∈ B(X) is

defined as the set H0(T ) = {x ∈ X : lim
n→∞ ‖T n(x)‖ 1

n = 0}.Note that generally, H0(T ) is not

closed and from [1, Theorem 2.31] we have if H0(T −λI ) is closed then T has SVEP at λ.We
also recall that T is said to belong to the class (H) if for all λ ∈ C there exists p := p(λ) ∈ N

such that H0(T−λI ) = N ((T−λI )p), seeAiena [1] formore details about this class of (H)-
operators. Of course, every operator T which belongs the class (H) has SVEP, since H0(T −
λI ) is closed.Observe also thata(T−λI ) ≤ p, for everyλ ∈ C.The class of operators having
the property (H) is rather large. Obviously, it contains every operator having the property
(H1). Recall that an operator T ∈ B(X) is said to have the property (H1) if H0(T − λI ) =
N (T − λI ) for all λ ∈ C. Although the property (H1) seems to be rather strong, the class of
operators having the property (H1) is considerably large. In the sequelwe give some important
classes of operators which satisfy property (H1). Every totally paranormal operator has
property (H1), and in particular every hyponormal operator has property (H1). Also every
transaloid operator or log-hyponormal has the property (H1). Some other operators satisfy
property (H); for exampleM-hyponormal operators, p-hyponormal operators, algebraically
p-hyponormal operators, algebraically M-hyponormal operators, subscalar operators and
generalized scalar operators. For more details about these definitions and comments which
we cited above,we refer the reader toAiena [1], Curto andHan [5] and, Laursen andNeumann
[10].

Corollary 2.12 Let S ∈ B(X) and T ∈ B(Y ) be isoloid operators and have a shared stable
sign index. If S and T satisfy property (k), then S ⊕ T satisfies property (k). In particular, if
S and T are (H)-operators satisfying property (k) then S ⊕ T satisfies property (k).
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Proof Assume that S and T are isoloid and satisfy property (k). Since S and T have a
shared stable sign index, then it is easily seen that σw(S ⊕ T ) = σw(S) ∪ σw(T ). But this is
equivalent by Theorem 2.10, to say that property (k) holds for S⊕T . In particular if S and T
are (H)-operators, then they are polaroid and so isoloid. But every (H)-operator has SVEP.
Hence ind(T − λI ) and ind(S − μI ) are less or equal than zero, for each λ ∈ ρsb f (T ) and
μ ∈ ρsb f (S). Hence S ⊕ T satisfies property (k). ��
Acknowledgements The author would like to thank the referee for his valuable comments.
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