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Abstract The boundary layer flow, heat and mass transfer of an electrically conducting vis-
coelastic fluid over a stretching sheet embedded in a porous medium has been studied. The
effect of transverse magnetic field, non-uniform heat source and chemical reaction on the
flow has been analyzed. The Darcy linear model has been applied to account for the per-
meability of the porous medium. The method of solution involves similarity transformation.
The confluent hypergeometric function (Kummer’s function) has been applied to solve the
governing equations. Two aspects of heat equation namely, (1) prescribed surface ure and
(2) prescribed wall heat flux are considered. The study reveals that the loss of momentum
transfer in the main direction of flow is compensated by increasing in transverse direction
vis-à-vis the corresponding velocity components due to magnetic force density. The appli-
cation of magnetic field of higher density produces low solutal concentration and a hike in
surface temperature.
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Rc Visco-elastic parameter
Kc Chemical reaction parameter
Sc Schmidt number
M Magnetic field parameter
T Non-dimensional temperature
Tw Temperature of the wall
T∞ Ambient temperature
θ Temperature profile in PST case
ψ Temperature profile in PHF case
φ Concentration profile
b Stretching rate
Ec Eckert number
Pr Prandtl number
A∗ Space dependent parameters
B∗ Temperature dependent parameters
cp Specific heat at constant pressure
μ Viscosity
qw Heat flux
q ′′′ Space and temperature dependent internal heat generation/absorption
l Characteristic length
υ Kinematic viscosity
ρ Density

1 Introduction

Flow of an incompressible viscoelastic fluid over a stretching sheet has an important bearing
on many technological application, to be specific, in the extrusion of the polymer in the malt-
spinning processes, exudates from the die is generally drawn and simultaneously stretched
into a sheet which is after wards solidfyed through quenching or gradual cooling by direct
contact with water. Further, glass blowing, continuous casting of metal and spinning of fiver
involve the flow due to a stretching surface. In all these applications, the quality of the final
product depends on the rate of heat transfer at the stretching surface. Crane [1] studied two
dimensional boundary layer flow due to stretching of a sheet which move in its own plane
with a velocity varying linearly with the distance from a fixed point. Carragher and Crane [2]
analyzed the heat transfer aspect of the same problem. Andersson and Dandapat [3] analyzed
the flow of a non-Newtonian fluid (Power law fluid) past a stretching surface. Wang [4]
investigated the three dimensional flow due to the stretching surface.

Further, Pavlov [5] studied the MHD flow over a stretching surface in a electrically con-
ducting fluid and obtained an exact similarity solution. Besides the above mentioned works
Chakrabarti and Gupta [6], Anderson [7], Pop et al. [8], Bhatacharya and Layek [9] have
contributed to enrich the litrature.

Recently, the flow of incompressible fluid due to a shrinking sheet is gaining attention of
modern day researchers because it’s increasing applications to many engineering problems.
Wang [10] studied the flow behavior of liquid film over an unsteady stretching sheet. The
existence and uniqueness of the solution of steady viscous flow over a shrinking sheet was
established byMiklavcic andWang [11]. Bhukta et al. [12] considered heat and mass transfer
onMHDflowof a viscoelastic fluid through porousmedia over a shrinking Sheet. Kandasamy
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and Khamis [13] discussed the effects of heat and mass transfer on nonlinear MHD boundary
layer flow past a shrinking sheet subject to suction. Fang and Zhang [14] obtained a closed
form solution for steady MHD flow over a porous shrinking sheet subjected to mass suction.
Numerical investigation on heat and mass transfer effect of micropolar fluid over a stretching
sheet has been carried out by Tripathy et al. [15]. Fang and Zhang [16] obtained the exact
analytical solution of thermal boundary layer over a shrinking sheetwithmass transfer. On the
other hand, Wang [17] studied the stagnation-point flow towards a shrinking sheet. The work
of Wang [17] was extended by Ishak et al. [18]. Bhattacharya et al. [19] studied the effects of
suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a
shrinking sheet with thermal radiation. Baag et al. [20] attempted numerical investigation on
MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source
and chemical reaction.

The study of heat transfer in hydrodynamic boundary layer flow over porous stretch-
ing/shrinking sheet gains more importance when internal heat generation or absorption
occurs. Effects of heat source/sink on the boundary layer flow over a stretching sheet were
studied by Vajravelu and Hadjinjcolaou [21], Elbashbeshy and Bazid [22], Bataller [23],
Layek et al. [24] and Chen [25], Acharya et al. [26]. Further, Abel et al. [27] have considered
non-uniform heat generation on heat transfer phenomenon in viscoelastic boundary layer
flow. Though the present study is a straight forward generalization of [27], still it enjoys its
specialty in following aspects:

(i) Application of magnetic field, considering the flow of viscoelastic liquid is a conducting
one, which is more practical and realistic. Thereby interaction with a resistive force of
electromagnetic origin is accounted for.

(ii) The inclusion of mass transfer of diffusing species of low concentration level neglect-
ing the Soret-Dufour (thermal diffusion and diffusion-thermo) effects. This contributes
significantly affecting the flow and heat transfer phenomena. Moreover, in the present
study we have considered the convective contribution (convective terms) acceleration
in momentum, heat and mass transfer equations which render the equations coupled.

(iii) To account for a resistive body force due to porous medium by linear Darcy model.

2 Mathematical formulation

Consider the steady two-dimensional laminar flow of an incompressible electrically con-
ducting viscoelastic fluid (Walters’ B ′ model) which represents an approximation to the first
order in elasticity i.e. for short / rapidly fading memory fluid, on a semi-infinite, vertical
impermeable sheet embedded in a saturated porous medium at the plane y = 0, the flow
being confined to y > 0. In present analysis we have taken x-axis along the wall in the direc-
tion of motion of the flow, the y-axis being normal to it and u and v are the velocities along
X-axis and Y-axis respectively. Two equal and opposite forces are applied along the X-axis
to stretch the flat sheet keeping the origin fixed. The applied magnetic field is perpendicular
to the flat sheet. Further, we assume that fluid possesses strong viscous property than elastic
property (Fig. 1).

The governing equations of viscoelastic fluid of Walters B ′ model and the boundary
conditions following Abel et al. [27] are given by

∂u

∂x
+ ∂v

∂y
= 0 (1)
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u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− Kc′(C − C∞) (4)

uw(x) = bx, v = 0,

T = Tw = T∞ + A
( x
l

)2
, (PST case)

−k ∂T
∂y = qw = d

( x
l

)2
, (PHF case)

−D ∂C
∂y = mw = E1x2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

at y = 0

u → 0, T → T∞,C → C∞ as y → ∞

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)

where u and v are the velocities along x and y directions respectively, k0, the co-efficient
of viscoelasticity, ρ, the density, σ , the electrical conductivity of the fluid, cp , the specific
heat at constant pressure, κ , the thermal conductivity, μ, the viscosity, Kp′, porosity of the
medium, D, the mass diffusivity, K ′

c, the non-dimensional chemical reaction parameter, C ,
the concentration of the fluid, C∞, the ambient concentration,υ, the kinematic viscosity, b,
the stretching rate, T , the non-dimensional temperature, Tw, the temperature of the wall, T∞,
the ambient temperature, A, E1 and d are constants, qw , the heat flux and mw , the mass flux.

When a viscoelastic liquid is in flow, a certain amount of energy is stored up in the
material as strain energy in addition to viscous dissipation. This strain energy is responsible
for recovery to the original state. In the present studywe have assumed that the fluid possesses
strong viscous property in comparison with the elastic property. Also the effect of elastic
deformation terms might not be significant as the momentum boundary layer equation is
valid at low shear rate and small values of elastic parameter [28]. Numerous works are also
reported in the literature relating to viscoelastic boundary layer flow which recognizes this
fact while studying heat transfer.
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Further, q ′′′, the space and temperature dependent internal heat generation/absorption
(non-uniform heat source/sink) [29], can be expressed in simplest form as

q ′′′ =
(

κuw(x)

xυ

) (
A∗(Tw − T∞) f ′(η) + B∗(T − T∞)

)
(6)

where A∗andB∗ are space and temperature dependent parameters. It is to be noted that A∗ > 0
and B∗ > 0 correspond to internal heat generation while A∗ < 0 and B∗ < 0 correspond
to internal heat absorption. The solution of Eq. (3) depends on the nature of the prescribed
boundary conditions. The constant A depends on the thermal properties of the liquid and
l = √

υ/b is a characteristic length.

3 Method of solution

Equations (1) and (2), subjected to boundary condition (5), admit self-similar solution in
terms of the similarity function f and the similarity variable η defined by

u = bx f ′(η), v = −√
bυ f (η), η =

√
b

υ
y (7)

Clearly u and v as defined above satisfy the continuity Eq. (1). On substitution of Eq. (7),
Eq. (2) becomes

f ′′′ + f f ′′ − f ′2 − Rc
{
2 f ′ f ′′′ − f f ′′′′ − f ′′2} −

(
M + 1

Kp

)
f ′ = 0 (8)

where Rc = k0b
υ
, the viscoelastic parameter, M = σ B2

0
ρb , the magnetic field parameter and

Kp = bKp′
υ

, the porous matrix.
The corresponding boundary conditions are

f ′(η) = 1, f (η) = 0 at η → 0,
f ′(η) → 0 as η → ∞ (9)

It is to be noted that the boundary condition (9) is not sufficient to solve Eq. (8) uniquely. So
using (9), Rajagopal et al. [28] obtained corresponding solution of Eq. (8), which is an exact
solution, satisfying the boundary condition (9), is given by

f (η) = 1 − e−αη

α
withα =

√
1 + M + 1

Kp

1 − Rc
and 0 < Rc < 1 (10)

Therefore, the velocity components are

u = bxe−αη and v = −√
bυ

(
1 − e−αη

α

)
(11)

The shear stress at the wall is defined as

C f = μ

(
∂u

∂y
− k0

{
u

∂2u

∂x∂y
+ v

∂2u

∂y2
− 2

∂u

∂y

∂v

∂y

})
y=0

= −1√
Rex

f ′′(0)(1 − 3Rc) (12)

where Rex = uwx
υ

is the local Reynolds number.
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4 Temperature distribution

4.1 Case A: Prescribed surface temperature (PST case)

Introducing dimensionless scaled temperature

θ(η) = T − T∞
Tw − T∞

(13)

and using (5), the Eq. (3) can be transformed to

θ ′′(η) + Pr f (η)θ ′(η) − (2 Pr f ′(η) − B∗)θ(η) = −(Ec Pr f ′′2(η) + A∗ f ′) (14)

where Ec = b2l2
Acp

, the Eckert number and Pr = μcp
κ
, the Prandtl number.

The non-dimensional boundary conditions are

θ(η) = 1 at η = 0
θ(η) → 0 as η → ∞ (15)

Introducing a new variable ζ = − Pr
α2 e

−αη, the Eq. (14) and boundary condition (15) are
reduced to

ζ
d2θ

d2ζ
+ [(1 − a0) − ζ ]

dθ

dζ
+

(
2 + B∗

α2ζ

)
θ = 1

Pr

[
A∗ − Ecα4ζ

]
(16)

θ

(
ζ = − Pr

α2

)
= 1, θ(ζ = 0) = 0 (17)

The Eq. (16), subject to boundary conditions (17), admit hypergeometric Kummer’s function
as the solution

θ(η) = c1
(
e−αη

) a0+b0
2 F

(
a0 + b0

2
− 2, 1 + b0;− Pr

α2 e
−αη

)
+ c2e

−αη + c3e
−2αη (18)

where

a0 = Pr
α2 , b0 =

√
a20 − 4B∗

α2 , c1 = 1−(c2+c3)

F
(
a0+b0

2 −2,1+b0;− Pr
α2

) ,

c2 = −A∗
(4α2−2 Pr+B∗) and c3 = −Ecα2 Pr

(4α2−2 Pr+B∗)

The non-dimensional wall temperature gradient derived from Eq. (18) is

−θ ′(0) = c1

[
−α

(
a0 + b0

2

)
F

(
a0 + b0 − 4

2
, 1 + b0;− Pr

α2

)

+
(
a0 + b0 − 4

2(1 + b0)

)
Pr

α
F

(
a0 + b0 − 2

2
, 2 + b0;− Pr

α2

)]
− c2α − 2c3α (19)

4.2 Case B: Prescribed heat flux (PHF case)

Introducing dimensionless scaled temperature

ψ(η) = T − T∞
Tw − T∞

(20)

Tw − T∞ = d

k

( x
l

)2 √
υ

b
(21)
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Using Eqs. (20) and (21) in (3) we get

ψ ′′(η) + Pr f (η)ψ ′(η) − (2 Pr f ′(η) − B∗)ψ(η) = −(Ec Pr f ′′2 + A∗ f ′) (22)

where Ec = κb2l2
dcp

√
b
υ
and the boundary conditions take the form

ψ ′(η) = −1 at η = 0
ψ(η) → 0 as η → ∞ (23)

With the help ‘ζ ’ as defined earlier, the Eq. (22) becomes

ζ
d2ψ

d2ζ
+ [(1 − a0) − ζ ]

dψ

dζ
+

(
2 + B∗

α2ζ

)
ψ = 1

Pr

[
A∗ − Ecα4ζ

]
(24)

and corresponding boundary conditions are

ψ ′
(

ζ = − Pr

α2

)
= −1, ψ(ζ = 0) = 0 (25)

The solution of Eq. (24), subject to the boundary condition (25) can be obtained in terms of
hypergeometric Kummer’s function [F(α;β; x)] as

ψ(η) = c4e
−α

(
a0+b0

2

)
η
F

(
a0 + b0

2
− 2, 1 + b0;− Pr

α2 e
−αη

)
+ c2e

−αη + c3e
−2αη (26)

where a0, b0, c2 and c3 are as defined earlier in the PST case and c4 is given by

c4 = (c2 + 2c3)α − 1[
−α

(
a0+b0

2

)
F

(
a0+b0−4

2 , 1 + b0;− Pr
α2

)
+

(
a0+b0−4
2(1+b0)

)
Pr
α
F

(
a0+b0−2

2 , 2 + b0;− Pr
α2

)]
(27)

The non-dimensional wall temperature derived from Eq. (26) is given by

ψ(0) = c4F

(
a0 + b0

2
− 2, 1 + b0;− Pr

α2

)
+ c2 + c3 (28)

5 Solutal concentration distribution

Introducing the similarity transformation C − C∞ = E1x2

D

√
υ
b φ(η) where φ is the concen-

tration profile and using (7) in Eq. (5) we get,

φ′′(η) + Sc f (η)φ′ − Sc(2 fη(η) + Kc)φ(η) = 0 (29)

where Sc = υ
D , the Schmidt number and Kc = K ′

c
b , the chemical reaction parameter with

the boundary conditions
φ′ = −1 at η = 0
φ → 0 as η → ∞ (30)

Again introducing a new variable ζ = − Sc
α2 e

−αη, the Eq. (29) becomes

ζ
d2φ

d2ζ
+ [(1 − s1) − ζ ]

dφ

dζ
−

(
2 − Kc

α2ζ

)
φ = 0 (31)
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The corresponding boundary conditions are

φ(ζ = 0) = 0, φ′
(

ζ = − Sc

α2

)
= − α

Sc
(32)

The exact solution of Eq. (29) subject to the boundary condition (30) is given by

φ(η) =
e− α(s1+s2)

2 η
1F1

(
s1+s2−4

2 ; 1 + s1;− Sce−αη

α2

)
α(s1+s2)

2 1F1
(
s1+s2−4

2 ; 1 + s1;− Sc
α2

)
− Sc

α

(
s1+s2−4
2(1+s1)

)
1F1

(
s1+s2−2

2 ; 2 + s1;− Sc
α2

)
(33)

where s1 = Sc
α2 and s2 =

√
s21 + 4Kc

α2 .
The non-dimensional wall concentration gradient derived from Eq. (33) is

−φ′(0) =
−α(s1+s2)

2 1F1
(
s1+s2−4

2 ; 1 + s1;− Sc
α2

)
+ 1F1

(
s1+s2−2

2 ; 2 + s1;− Sc
α2

)
α(s1+s2)

2 1F1
(
s1+s2−4

2 ; 1 + s1;− Sc
α2

)
− Sc

α

(
s1+s2−4
2(1+s1)

)
1F1

(
s1+s2−2

2 ; 2 + s1;− Sc
α2

)
(34)

6 Results and discussion

Wehavegot an analytical solutionof theNavier–Stokes equationwhich represents steady two-
dimensional flow of an incompressible viscoelastic fuid of WaltersB ′model. The following
discussion reveals the effect of elasticity, porosity and magnetic field parameters on the flow
phenomena. The effects of non-unform heat source and sink are to be discussed along with
other parameters. The discussion also brings to its fold surface criterion such as skin friction
andNusselt number relating to shearing stress and the rate of heat transfer on the plate surface.
Finally, for verification of the results of the present study we have compared with Abel et
al. [27] in the absence of magnetic field.

Figures 2 and 3 exhibit the longitudinal and transverse component of velocity distribution.
Form Eq.(10) we have

f (η) = 1−e−αη

α
(Transverse), η → ∞ f (η) → 1/α, where α =

√
1−Rc

1+M+(1/Kp) , Rc �= 1.

f ′(η) = e−αη (Longitudinal), η → ∞ f ′(η) → 0
Thus, the attainment of ambient state of transverse velocity depends upon the parameters

M , Kp and Rc with restriction Rc �= 1. Therefore this flow model is valid for viscoelastic
flow with small Rc i.e. slightly elastic which has been already mentioned. Whereas, the
longitudinal velocity is independent of the parameters. Again η → 0, longitudinal velocity
f ′(η) → 1 whereas transverse velocity f (η) → 0. From the above analysis it is clear that as
the flow proceeds the loss of momentum transfer in the main direction of flow is compensated
by increasing in transverse direction. Therefore, longitudinal velocity suddenly falls in a few
layers near the plate whereas transverse velocity increases. This causes a decay versus growth
type of variation in velocity components leading to momentum conservation.

The effects of the parameters can be analyzed from the analytical expressions also. How-
ever, from the graph it is clear that an increase inmagnetic force density (M), f ′(η) decreases
for both Newtonian (Rc = 0) and non-Newtonian fluids (Rc �= 0). This decrease is due to
magnetic force density, which is equivalent to a viscous breaking force. It tries to cancel the
velocity component i.e. orthogonal to direction of magnetic field B [30]. Elastic parameter
Rc as well as porosity parameter Kp also reduce the velocity at all the points producing a
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Fig. 2 Longitudinal velocity profile
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Fig. 3 Transverse velocity profile

thinner boundary layer (Fig. 2). The effect of porosity parameter is significant in comparison
with other parameters. Similar effect is observed on the transverse velocity component also.

From Fig. 4a, b it is seen that both magnetic field, elasticity and porosity contributed to the
growth of thermal boundary in both PST and PHF cases. On careful observation it is seen that
the little hike in temperature for PST case is marked for Curve-V (Rc = 0.2, M = 2, Kp =
0.5). Thus, this hike in temperature can be interpreted as the contribution of heat energy due
to combined effects of resistive magnetic force and porous matrix as well as stored energy
due to elastic property of the fluid.

The variation of Prandtl number in the presence/absence of magnetic parameter on tem-
perature profile for both PST and PHF cases are shown in the fig. 5a, b. The value of
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Fig. 4 a Effect of Rc on temperature profile (PST case). b Effect of Rc on temperature profile (PHF case)

the elastic parameter Rc(= 0.2) is fixed with the space and time dependent heat source
A∗ = 0.3 and B∗ = 0.3 respectively. It is observed that the presence of magnetic parame-
ter enhances the temperature at all points within the thermal boundary layer whereas, increase
in Prandtl number reduces it due to a low thermal diffusivity. The Prandtl number is a relative
measure of the mechanism of heat conduction and viscous stresses. For gases, Pr is of the
order of unity implies that heat conduction and viscosity of the gas enjoy same priority. In
the present case we have considered the value of Pr > 1. From the temperature profiles it
is clear that temperature decreases with an increase in Pr implies flow of liquids with low
thermal diffusivity and high viscous stresses causes a fall in temperature in producing thinner
boundary layer.

Figure 6a, b show the temperature distribution in PST and PHF cases. The profiles display
similar nature of variation only exhibiting the effect of Eckert number Ec. It is seen that an
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Fig. 5 a Effect of Pr on temperature profile (PST case). b Effect of Pr on temperature profile (PHF case)

increase in viscous dissipative heat contributes to the rise in temperature in the presence /
absence of porous matrix. Thus, the dissipative heat is responsible for the rise in temperature
within fluid layers in the presence / absence of porous medium.

Figure 7 depicts the concentration distribution in forming solutal boundary layer. It is seen
that an increase inM , leads to increase in concentrationwhereas an increase in Sc, Rc and Kc
resulted in a decrease in concentration level at all points. Thus, the magnetic field parameter
contributed to the growth of solutal boundary layers same as thermal but the heavier species
exhibiting viscoelastic nature with destructive reaction produces the thinner boundary layer.

Table 1 presents the shearing stress at the stretching surface. The table shows that the
elasticity increases the skin friction with or without the effect of magnetic field on the other
hand, an increase inmagnetic parameter reduces the skin friction. Therefore, higher magnetic
force density aids to flow stability by reducing the skin friction.
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Fig. 6 a Effect of Ec on temperature profile (PST case). b Effect of Ec on temperature profile (PHF case)

Tables 2 and 3 present the rate of heat transfer and solutal distribution at the stretching
surface. One remarkable point is to note that Nu becomes negative when Pr = 4.0 (liquid),
Pr being the relative measure of momentum diffusion. The increase in Pr gives rise to slow
rate of thermal diffusion hence higher value of Pr results in the decrease in temperature at
a particular point of flow region. This is supported by Fig. 5a, b. Therefore, decrease in
temperature produces a cooling effect on the stretching surface.

For PHF case, an increase in magnetic parameter (M) and elastic parameter (Rc) increase
the rate of heat transfer (Nu) at the surface producing a cooling effect but for PST case, the
reverse effect is observed. To sum up, magnetic force density ad elasticity of the fluid produce
a cooling effect on the stretching surface on the presence of heat flux but the reverse effect
is observed when the bounding surface is subjected to a prescribe temperature. As regard to
the effect of Ec, it is seen that an increase in Ec leads to increase the temperature for both
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Fig. 7 Concentration profile

Table 1 Skin friction Rc M f ′′(0)

0 0 1

0.1 0 1.0541

0.1 1 1.4907

0.1 2 1.8257

0.2 1 1.5811

Table 2 Nusselt number M Rc Pr A∗ B∗ Ec −θ ′(0) ψ(0)

0 0 3 0.3 0.3 1 0.72302646 0.83361902

0 0.1 3 0.3 0.3 1 0.45283417 0.89654048

1 0.1 3 0.3 0.3 1 0.17369464 1.02256269

1 0.1 4 0.3 0.3 1 −0.0575031 0.89234222

1 0.1 3 0 0.3 1 0.13986319 1.05563639

1 0.1 3 0.3 0 1 0.32239602 0.9692056

1 0.1 3 0.3 0.3 2 2.19096647 1.64321306

1 0.1 3 −0.3 0.3 1 0.21403273 1.04662929

1 0.1 3 0.3 −0.3 1 0.39573713 0.96652065

PST and PHF cases. The Eckert number measures frictional heat due to viscosity of the fluid
which resists the motion. The table 2 shows that an increase in Ec, increases the rate of heat
transfer for both PST and PHF cases.

Table 3 presents the rate of solutal concentration at the plate. It is seen that rate of mass
transfer at the surface increases with an increase in elasticity (Rc), chemical reaction rate
coefficient (Kc) and heavier species, higher value of Sc but magnetic parameter reduces it.
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Table 3 Sherwood number Sc M Rc Kc −φ′(0)

2 0 0 0 0.675751

2 1 0 0 0.396447

2 1 0.1 0 0.45671

2 1 0.1 1 0.582832

2 2 0.1 1 0.507567

1 1 0.1 1 0.39193

Thus, for reduction of solutal concentration at the surface one is to apply a magnetic field of
higher density.

Thus, surface condition shearing stress, rate of heat transfer and solutal concentration are
to be regulated at the stretching surface as per the design requirement of the final product.

7 Conclusion

Heat transfer problem in hydrodynamic boundary layer flow over porous stretching/shrinking
sheet has been solved by using Runge-Kutta method followed by shooting technique. From
the above the following conclusions are obtained.

• The loss of momentum transfer in the layers near the stretching surface in the main
direction of flow is compensated by increase in transverse direction. This causes decay
versus growth type of variation in the velocity components. This supports the conservation
of momentum on the boundary layer.

• The resistive magnetic force density which is equivalent to a viscous braking force
opposes the motion.

• Hike in temperature is due to combined effects of resistive magnetic force and porous
matrix as well as stored energy is due to elastic property of the fluid.

• Low thermal diffusivity and high viscous stresses causing a fall in temperature.
• The increase in viscous dissipation leads to increase the temperature for both PST and

PHF cases.
• For reduction of solutal concentration at the bounding surface, one is to apply a magnetic

field of higher density.
• Heavier chemical reactive diffusing species exhibiting elasticity property decreases the

solutal concentration.
• Surface temperature (PST) and heat flux (PHF) show opposite behavior on the rate of

heat transfer.
• Rate of solutal concentration falls at the plate in the presence of magnetic field ignoring

the effect of elasticity.
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