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Abstract In this paper we study the existence of solutions of mixed equilibrium problems
on Hadamard manifolds. We also introduce the implicit and explicit algorithms to solve
these problems. Under reasonable assumptions, we show that the sequence generated by
both implicit and explicit algorithms converges to a solution of mixed equilibrium problems,
whenever it exists. Moreover our results generalize some corresponding results, existing in
the literature.
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1 Introduction

The theory of equilibrium problems hasmany important applications inmany fields ofmathe-
matics such as optimization problems, variational inequality problems, fixed point problems,
Nash equilibria problems, complementarity problems etc. It has been studied extensively
in finite and infinite dimensional linear spaces, see for example [2–4,7] and the references
therein.

Recentlymany researchers [5,8,16,17] extended the concepts and techniques of the theory
of equilibrium problems from Euclidean spaces to nonlinear spaces like Hadamard mani-
folds. One motivation is to study equilibrium problems in Hadamard manifolds is that some
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equilibrium problems on Euclidean spaces can not be solved by the classical technique but
they can be solved on Hadamard manifolds [5].

Therefore, the extension of the concepts and techniques of the theory of equilibrium
problems from Euclidean spaces to Riemannian manifolds is natural. Colao et al. [5] proved
the existence of solutions of equilibrium problems on Hadamard manifolds. Nemeth [10]
introduced geodesic monotone vector fields,Wang et al. [22] studied monotone and accretive
vector fields on Riemannian manifolds. Nemeth [11] generalized some basic existence and
uniqueness theorems of the classical theory of variational inequalities from Euclidean spaces
to Hadamard manifolds. Zhou and Huang [23] introduced the notion of the (KKM) mapping
and proved a generalized (KKM) theorem on the Hadamard manifold. Li and Huang [8],
studied the generalized vector quasi-equilibrium problems.

Tang et al. [20] introduced the proximal point algorithm for pseudomonotone variational
inequalities on Hadamard manifolds. Implicit methods for solving equilibrium problems on
Hadamard manifolds were proposed by Noor et al. [17]. Also Noor et al. [16] introduced
explicit iterative methods for solving equilibrium problems on Hadamard manifolds.

Motivated by the research work mentioned above, we prove the existence of solutions
of mixed equilibrium problems on Hadamard manifolds. We also introduce the implicit
and explicit methods for solving mixed equilibrium problems on Hadamard manifolds and
observe that the results of [14–17] are particular cases of our work. Our results may stimulate
further research in this area.

2 Preliminaries

In this section, we recall some fundamental definitions, basic properties and notations which
will be needed in this paper. These materials can be found in any textbook on Riemannian
geometry, for example [19,21].

Let M be an n-dimensional connected manifold. We denote by TxM the n-dimensional
tangent space of M at x and by T M = ∪x∈MTxM, the tangent bundle of M. When M is
endowed with a Riemannian metric < · · · > on the tangent space TxM with corresponding
norm denoted by ‖.‖, then M is a Riemannian manifold. The length of a piecewise smooth
curve γ : [a, b] → M joining x to y such that γ (a) = x and γ (b) = y, is defined by

L(γ ) =
∫ b

a
‖ γ̇ (t) ‖γ (t) dt.

Then for any x, y ∈ M the Riemannian distance d(x, y)which induces the original topology
on M is defined by minimizing this length over the set of all curves joining x to y.

On every Riemannian manifold there exists exactly one covariant derivation called Levi–
Civita connection denoted by∇XY for any vector fields X, Y on M. Let γ be a smooth curve
in M. A vector field X is said to be parallel along γ if ∇γ ′ X = 0. If γ ′ itself is parallel
along γ , we say that γ is a geodesic. A geodesic joining x to y in M is said to be a minimal
geodesic if its length equals d(x, y).

A Riemannian manifold is complete if for any x ∈ M all geodesics emanating from x are
defined for all t ∈ R. By the Hopf–Rinow theorem, we know that if M is complete then any
pair of points in M can be joined by a minimal geodesic. Moreover, (M, d) is a complete
metric space and bounded closed subsets are compact.

Assuming that M is complete the exponential mapping expx : TxM → M is defined by
expx v = γv(1), where γv is the geodesic defined by its position x and velocity v at x .
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Recall that a Hadamard manifold is a simply connected complete Riemannian manifold
with nonpositive sectional curvature.

Let us recall that a geodesic triangle Δ(x1x2x3) of a Hadamard manifold is the set con-
sisting of three distinct points x1, x2, x3 called the vertices and three minimizing geodesic
segments γi+1 joining xi+1 to xi+2 called the sides, where i = 1, 2, 3(mod 3).

Theorem 1 [19] Let M be a Hadamard manifold, Δ(x1x2x3) a geodesic triangle and γi+1 :
[0, li+1] → M geodesic segments joining xi+1 to xi+2 and set li+1 = l(γi+1), θi+1 =
�(γ ′

i+1(0),−γ ′
i (li )), for i = 1, 2, 3(mod 3). Then

θ1 + θ2 + θ3 ≤ π,

l2i+1 + l2i+2 − 2li+1li+2 cos θi+2 ≤ l2i ,

d2(xi+1, xi+2) + d2(xi+2, xi ) − 2
〈
exp−1

xi+2
xi+1, exp

−1
xi+2

xi
〉 ≤ d2(xi , xi+1). (1)

Lemma 1 ([9]) Let x0 ∈ M and {xn} ∈ M such that xn → x0. Then the following assertions
hold.

(i) For any y ∈ M

exp−1
xn y → exp−1

x0 y and exp−1
y xn → exp−1

y x0.

(ii) If {vn} is a sequence such that vn ∈ Txn M and vn → v0, then v0 ∈ Tx0M.

(iii) Given the sequence {un} and {vn} with un, vn ∈ Txn M, if un → u0 and vn → v0 with
u0, v0 ∈ Tx0M, then

〈
un, vn

〉 → 〈
u0, v0

〉
.

Definition 1 ([18]) A subset K of M is said to be geodesic convex if and only if for any two
points x, y ∈ K , the geodesic joining x to y is contained in K . That is if γ : [0, 1] → M is
a geodesic with x = γ (0) and y = γ (1), then γ (t) ∈ K , f or 0 ≤ t ≤ 1.

Definition 2 ([18]) A real-valued function f : M → R defined on a geodesic convex set K
is said to be geodesic convex if and only if for 0 ≤ t ≤ 1,

f (γ (t)) ≤ (1 − t) f (γ (0)) + t f (γ (1)).

Definition 3 ([24]) Let K ⊂ M be a nonempty closed geodesic convex set andG : K → 2K

be a set-valued mapping. We say that G is a (KKM) mapping if for any {x1, . . . , xm} ⊂ K ,

we have

co({x1, . . . , xm}) ⊂
m⋃
i=1

G(xi ).

Lemma 2 ([5]) Let K be a nonempty closed geodesic convex set and G : K → 2K be a
set-valued mapping such that for each x ∈ K , G(x) is closed. Suppose that

(i) there exists x0 ∈ K such that G(x0) is compact.
(ii) ∀x1, . . . , xm ∈ K , co({x1, . . . , xm}) ⊂ ⋃m

i=1 G(xi ).

Then
⋂

x∈K G(x) �= ∅.

Throughout the rest part of the paperwe takeM to be a finite dimensional Hadamardmanifold
and K denote a nonempty closed geodesic convex subset of M , unless explicitly stated
otherwise.
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3 Main results

Let F : K ×K → R be a bifunction satisfying the property F(x, x) = 0 for all x ∈ K . Then
the equilibrium problem introduced by Colao et al. [5] is to find a point x̄ ∈ K , such that

F(x̄, y) ≥ 0 f or all y ∈ K . (2)

We introduce themixed equilibriumproblems on theHadamardmanifoldM . Letψ : K → R

be a mapping and F : K × K → R be a bifunction satisfying the property F(x, x) = 0 for
all x ∈ K . Then the problem is to find x̄ ∈ K such that

F(x̄, y) + ψ(y) − ψ(x̄) ≥ 0, ∀y ∈ K , (3)

is called a mixed equilibrium problem on K . We denote by SOL(MEP), the solution set of
the mixed equilibrium problem (3).

Some particular cases of mixed equilibrium problems are as follows.

(i) Equilibrium problem: If ψ ≡ 0, then the mixed equilibrium problem (3) reduces to the
equilibrium problem (2).

(ii) Variational inequality problem: Let V : K → T M be a vector field, that is, Vx ∈ TxM
for each x ∈ K and exp−1 denote the inverse of the exponential map. Then the problem
introduced by Nemeth ([11]), is to find x ∈ K such that

〈
Vx , exp

−1
x y

〉 ≥ 0, ∀y ∈ K , (4)

is called a variational inequality problem on K . If we define

F(x, y) = 〈
Vx , exp

−1
x y

〉
,

and ψ ≡ 0, then the mixed equilibrium problem (3) and the variational inequality
problem (4) are equivalent.

(iii) Mixed variational inequality problem: let ψ : K → R be a mapping. Then the mixed
variational inequality problem ([5]) is to find x ∈ K such that

〈
Vx , exp

−1
x y

〉 + ψ(y) − ψ(x) ≥ 0, ∀y ∈ K . (5)

If we take

F(x, y) = 〈
Vx , exp

−1
x y

〉
,

then the mixed equilibrium problem (3) and the mixed variational inequality problem
(5) are equivalent.

(iv) Optimization problem: Let f : K → R be a function and consider the minimization
problem

(P) f ind x ∈ K such that f (x) = min
y∈K f (y).

If we set F(x, y) = f (y) − f (x), for all x, y ∈ K . Then the problems (P) and (2) are
equivalent.

3.1 Existence of solutions of mixed equilibrium problems

Colao et al. [5] studied existence of solutions of equilibrium problems under monotonicity
assumptions on Hadamard manifolds.
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Mixed equilibrium problems on Hadamard manifolds 101

Definition 4 ([5]) We call a bifunction F to be monotone on K if for any x, y ∈ K , we have

F(x, y) + F(y, x) ≤ 0. (6)

In this section we study the existence of solutions of mixed equilibrium problems under
pseudomonotonicity assumptions.

Definition 5 A bifunction F is said to be pseudomonotone with respect to the function ψ if

F(x, y) + ψ(y) − ψ(x) ≥ 0 ⇒ F(y, x) + ψ(x) − ψ(y) ≤ 0. (7)

We show by an example that pseudomonotonicity is a generalization of monotonicity.

Example 1 Let H1 = {x = (x1, x2) ∈ R
2 : x21 − x22 = −1, x2 > 0} be the hyperbolic

1-space which forms a Hadamard manifold ([1]) endowed with the metric defined by
〈
x, y

〉 = x1y1 − x2y2, ∀x = (x1, x2), y = (y1, y2) ∈ R
2.

Let K be a subset of H1 defined by K = {x = (x1, x2) ∈ H1 : −1 ≤ x1 ≤ 1}.
Now we define the bifunction F : K × K → R by

F(x, y) = x2(x1 − y1). (8)

To show that F is pseudomonotone on K but not monotone.
We take ψ ≡ 0.
F(x, y) ≥ 0 on K when x1 ≥ y1 (as x2 > 0),
then F(y, x) = y2(y1 − x1) ≤ 0 (as y2 > 0).
Therefore, F is pseudomonotone.
Particularly if we take x = (1,

√
2) ∈ K and y = (0, 1) ∈ K ,

then F(x, y) + F(y, x) = √
2 − 1 > 0.

That is, F is not monotone.

Definition 6 A function F : K → R is said to be hemicontinuous if for every geodesic
γ : [0, 1] → K , whenever t → 0, F(γ (t)) → F(γ (0)).

Next we give the following lemma which will be needed in the sequel. Throughout the rest
of the paper we denote F as a bifunction with F(x, x) = 0, unless otherwise stated.

Lemma 3 Let F : K ×K → R be hemicontinuous in the first argument and for fixed x ∈ K
the mapping z �→ F(x, z) be geodesic convex. Also assume that the map ψ : K → R is
geodesic convex and the bifunction F is pseudomonotone with respect to ψ . Then x̄ ∈ K is
a solution of the mixed equilibrium problem (3), if and only if

F(y, x̄) + ψ(x̄) − ψ(y) ≤ 0 f or all y ∈ K . (9)

Proof Let x̄ ∈ K is a solution of the equilibrium problem (3), then

F(x̄, y) + ψ(y) − ψ(x̄) ≥ 0, f or all y ∈ K . (10)

Since F is pseudomonotone with respect to the function ψ, we have

F(y, x̄) + ψ(x̄) − ψ(y) ≤ 0.

Conversely, let x̄ ∈ K be a solution of (9). Let γ (t) be a geodesic joining x̄ and y such that
γ (0) = x̄ .
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As K is geodesic convex, we have

F(γ (t), x̄) + ψ(x̄) − ψ(γ (t)) ≤ 0 f or 0 ≤ t ≤ 1. (11)

As ψ is geodesic convex then

ψ(γ (t)) ≤ tψ(y) + (1 − t)ψ(x̄) ⇒ ψ(γ (t)) − ψ(x̄) ≤ t[ψ(y) − ψ(x̄)].
Also as z �→ F(x, z) is geodesic convex,

0 = F(γ (t), γ (t)) ≤ t F(γ (t), y) + (1 − t)F(γ (t), x̄),

⇒ ψ(γ (t)) − ψ(x̄) ≤ t F(γ (t), y) + (1 − t)F(γ (t), x̄) + ψ(γ (t)) − ψ(x̄)

≤ t F(γ (t), y) + (1 − t)F(γ (t), x̄) + t[ψ(y) − ψ(x̄)]
⇒ t[F(γ (t), y) − F(γ (t), x̄) + ψ(y) − ψ(x̄)] ≥ −[F(γ (t), x̄) + ψ(x̄) − ψ(γ (t))] ≥ 0

[by (11)].
That is, F(γ (t), y) − F(γ (t), x̄) + ψ(y) − ψ(x̄) ≥ 0, as t ≥ 0.
Since F is hemicontinuous in thefirst argument taking t → 0,wehave F(x̄, y)−F(x̄, x̄)+

ψ(y) − ψ(x̄) ≥ 0 ⇒ F(x̄, y) + ψ(y) − ψ(x̄) ≥ 0, f or all y ∈ K . This completes the
proof. ��
Next we prove the main existence theorem. First we consider the case when the set K is
bounded.

Theorem 2 Let K be a bounded subset of M and F : K × K → R be hemicontinuous in
the first argument. Suppose for fixed x ∈ K, the mappings z �→ F(x, z) and ψ : K → R are
geodesic convex, lower semicontinuous.Also assume that the bifunction F is pseudomonotone
with respect to ψ . Then the mixed equilibrium problem (3) has a solution.

Proof Consider the two set-valued mappings G1 : K → 2K and G2 : K → 2K such that

G1(y) = {x ∈ K : F(x, y) + ψ(y) − ψ(x) ≥ 0}, f or all y ∈ K ,

G2(y) = {x ∈ K : F(y, x) + ψ(x) − ψ(y) ≤ 0}, f or all y ∈ K .

It is easy to see that x̄ ∈ K solves the mixed equilibrium problem (3) if and only if x̄ ∈
∩y∈KG1(y). Thus it suffices to prove that ∩y∈KG1(y) �= ∅. First we show G1 is a (KKM)
mapping. So we have to prove that for any choice of x1, . . . , xm ∈ K

co({x1, . . . , xm}) ⊂
m⋃
i=1

G1(xi ). (12)

Suppose on the contrary that there exists a point x0 in K , such that x0 ∈ co({x1, . . . , xm})
but x0 /∈ ⋃m

i=1 G1(xi ). That is

F(x0, xi ) + ψ(xi ) − ψ(x0) < 0, ∀i ∈ {1, . . . ,m}. (13)

This implies that for any i ∈ {1, . . . ,m}, xi ∈ {y ∈ K : F(x0, y) + ψ(y) − ψ(x0) < 0}.
Now the function y �→ F(x0, y) is geodesic convex, also ψ is geodesic convex. Being the
sum of two geodesic convex function, y �→ F(x0, y) + ψ(y) is geodesic convex. Hence the
set {y ∈ K : F(x0, y) + ψ(y) − ψ(x0) < 0} is a geodesic convex set. Then

x0 ∈ co({x1, . . . , xm}) ⊆ {y ∈ K : F(x0, y) + ψ(y) − ψ(x0) < 0}.
Therefore F(x0, x0) + ψ(x0) − ψ(x0) < 0. But we have F(x0, x0) = 0, a contradiction.
Hence G1 is a (KKM) mapping.

123



Mixed equilibrium problems on Hadamard manifolds 103

From Lemma 3, we have G1(y) ⊂ G2(y), ∀y ∈ K . That is,

co({x1, . . . , xm}) ⊂
m⋃
i=1

G2(xi ).

Hence G2 is also a (KKM) mapping.
Since F(y, .) and ψ are lower semicontinuous, G2(y) is closed for all y ∈ K .
Now G2(y) is a closed subset of a compact set K . So G2(y) is compact for all y ∈ K .
Hence by Lemma 2, there exists a point x̄ ∈ K such that x̄ ∈ ⋂

y∈K G2(y).
By Lemma 3, we have

⋂
y∈K G1(y) = ⋂

y∈K G2(y). That is x̄ ∈ ⋂
y∈K G1(y).

So there exists a point x̄ ∈ K , such that

F(x̄, y) + ψ(y) − ψ(x̄) ≥ 0, ∀y ∈ K .

Therefore, x̄ ∈ K solves the equilibrium problem (3). ��

Suppose K is an unbounded subset ofM . Given a point 0 ∈ M, letΣR = {x ∈ M : d(0, x) ≤
R} be the closed geodesic ball of radius R and center 0.

Theorem 3 Let K be an unbounded subset of M and F : K ×K → R be hemicontinuous in
the first argument. Suppose for fixed x ∈ K, the mappings z �→ F(x, z) and ψ : K → R are
geodesic convex, lower semicontinuous.Also assume that the bifunction F is pseudomonotone
with respect to ψ . If there exists a point x0 ∈ K , such that

F(x, x0) + ψ(x0) − ψ(x) < 0, whenever d(0, x) → +∞, x ∈ K , (14)

holds, then the mixed equilibrium problem (3) has a solution.

Proof Let KR = K ∩ ΣR . If KR �= ∅, then there exists at least one xR ∈ KR such that

F(xR, y) + ψ(y) − ψ(xR) ≥ 0, ∀y ∈ KR, (15)

by Theorem 2.
We now take a point x0 ∈ K satisfying (14) with d(0, x0) < R, so x0 ∈ KR .
Hence by (15), we have

F(xR, x0) + ψ(x0) − ψ(xR) ≥ 0. (16)

If d(0, xR) = R for all R, we may choose R large enough so that d(0, xR) → +∞.
Hence by (14), F(xR, x0) + ψ(x0) − ψ(xR) < 0 contradicts (16). So there exists an R

such that d(0, xR) < R.
Given y ∈ K , let γ (t) be a geodesic joining xR to y with γ (0) = xR . Now since

d(0, xR) < R, we can choose 0 < t < 1, sufficiently small so that γ (t) ∈ KR .
Hence

0 ≤ F(xR, γ (t)) + ψ(γ (t)) − ψ(xR)

≤ t F(xR, y) + (1 − t)F(xR, xR) + t[ψ(y) − ψ(xR)]
= t[F(xR, y) + ψ(y) − ψ(xR)],

or, F(xR, y) + ψ(y) − ψ(xR) ≥ 0, f or y ∈ K .

That is xR is a solution of the mixed equilibrium problem (3). ��
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3.2 Implicit method for solving mixed equilibrium problem

In this section we introduce the implicit iterative method for solving mixed equilibrium
problemsonHadamardmanifolds.Wenowconsider the following implicit iterative (proximal
point) algorithm [17].

Algorithm 1 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , as a solution of the
following iterative scheme.

F(xn+1, y) + 1

ρ

〈
exp−1

xn xn+1, exp
−1
xn+1

y
〉 + ψ(y) − ψ(xn+1) ≥ 0, ∀y ∈ K . (17)

Next we deduce some special cases of Algorithm 1.

(i) When ψ ≡ 0, the Algorithm 1 reduces to the following implicit iterative algorithm.

Algorithm 2 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , such that

F(xn+1, y) + 1

ρ

〈
exp−1

xn xn+1, exp
−1
xn+1

y
〉 ≥ 0, ∀y ∈ K .

Algorithm 2 is the implicit algorithm solving for the equilibrium problems introduced by
Noor et al. [17].

(ii) If K is a convex set in R
n, then Algorithm 1 reduces into the following algorithm

([12,13]).

Algorithm 3 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , as a solution of the
iterative scheme

F(xn+1, y) + 1

ρ

〈
xn+1 − xn, y − xn+1

〉 + ψ(y) − ψ(xn+1) ≥ 0, ∀y ∈ K .

(iii) If we take F(x, y) = 〈
Vx , exp−1

x y
〉
, then Algorithm 1 reduces to the following.

Algorithm 4 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , as a solution of the
iterative scheme〈

ρVxn+1 + exp−1
xn xn+1, exp

−1
xn+1

y
〉 + ψ(y) − ψ(xn+1) ≥ 0, ∀y ∈ K ,

which is an algorithm for solving mixed variational inequalities and is studied by Noor et al.
[15].

(iv) When ψ ≡ 0, the Algorithm 4 reduces to the following implicit iterative algorithm
([20]) for solving variational inequalities.

Algorithm 5 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , as a solution of the
iterative scheme 〈

ρVxn+1 + exp−1
xn xn+1, exp

−1
xn+1

y
〉 ≥ 0, ∀y ∈ K .

We now consider the convergence analysis of Algorithm 1. For which we recall the notion
of Fejer convergence and the following related results which can be found in [6] and [9].

Definition 7 Let X be a complete metric space and A ⊆ X be a nonempty set. A sequence
{xn} ⊂ X is said to be Fejer convergent to A if

d(xn+1, y) ≤ d(xn, y), ∀y ∈ A and n = 0, 1, 2, . . . (18)
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Mixed equilibrium problems on Hadamard manifolds 105

Lemma 4 Let X be a complete metric space and let A be a nonempty subset of X. Suppose
{xn} ⊂ X be Fejer convergent to K and any limit point of {xn} belongs to A. Then {xn}
converges to a point of A.

Theorem 4 Let F : K × K → R be pseudomonotone with respect to the function ψ

and continuous in the first argument and SOL(MEP) �= ∅. Suppose that the sequence {xn}
generated by (17) is well defined and ψ : K → R is continuous. Then {xn} converges to a
solution of the mixed equilibrium problem (3).

Proof We first prove that {xn} is Fejer convergent to SOL(MEP). Let x ∈ K be a solution of
(3). Then

F(x, y) + ψ(y) − ψ(x) ≥ 0, ∀y ∈ K . (19)

Taking y = xn+1 in (19), we get

F(x, xn+1) + ψ(xn+1) − ψ(x) ≥ 0. (20)

Since F is pseudomonotone with respect to ψ, then

F(xn+1, x) + ψ(x) − ψ(xn+1) ≤ 0. (21)

From (17), taking y = x we have

F(xn+1, x) + 1

ρ

〈
exp−1

xn xn+1, exp
−1
xn+1

x
〉 + ψ(x) − ψ(xn+1) ≥ 0 ∀y ∈ K .

⇒ 1

ρ

〈
exp−1

xn xn+1, exp
−1
xn+1

x
〉 ≥ −(F(xn+1, x) + ψ(x) − ψ(xn+1))

≥ 0(by equation (21)). (22)

So we finally get as ρ > 0, 〈
exp−1

xn+1
xn, exp

−1
xn+1

x
〉 ≤ 0. (23)

Considering the geodesic triangle Δ(xnxn+1x), by using (1) we get

d2(xn+1, x) + d2(xn+1, xn) − 2
〈
exp−1

xn+1
xn, exp

−1
xn+1

x
〉 ≤ d2(xn, x),

or

d2(xn+1, x) + d2(xn+1, xn) ≤ d2(xn, x) (by (23)). (24)

This clearly implies that d2(xn+1, x) ≤ d2(xn, x), so {xn} is Fejer convergent to SOL(MEP).
From (24) it follows that

d2(xn+1, xn) ≤ d2(xn, x) − d2(xn+1, x). (25)

Since the sequence {d(xn, x)} is monotone decreasing and bounded below by 0, it is also
convergent. Hence by (25) limn→∞ d2(xn+1, xn) = 0. That is

lim
n→∞ d(xn+1, xn) = 0. (26)

Nextwe prove that any limit point of {xn} belongs to SOL(MEP). Let x be a limit point of {xn}.
Then there exists a subsequence {nk} of {n} such that xnk → x . Hence d(xnk+1, xnk ) → 0,
by the assertion just proved, and so xnk+1 → x . It follows from (17) with n = nk,

F(xnk+1, y) + 1

ρ

〈
exp−1

xnk
xnk+1, exp

−1
xnk+1

y
〉 + ψ(y) − ψ(xnk+1) ≥ 0 ∀y ∈ K . (27)
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Passing to the limit as k → ∞ in (27) we get

F(x, y) + ψ(y) − ψ(x) ≥ 0, ∀y ∈ K . (28)

That is x ∈ SOL(MEP). Hence by Lemma 4, {xn} converges to point of SOL(MEP). This
completes the proof. ��
3.3 Explicit method for solving mixed equilibrium problem

In this sectionwe prove the convergence of explicit iterativemethods ([14]) for solvingmixed
equilibrium problems on Hadamard manifolds.

Definition 8 The bifunction F is said to be partially relaxed pseudomonotone with respect
to the function ψ if there exists α > 0 such that ∀x, y, z ∈ K

F(x, y) + ψ(y) − ψ(x) ≥ 0 ⇒ F(z, x) + ψ(x) − ψ(z) ≤ αd2(y, z). (29)

If we take z = y, then F reduces to a pseudomonotone function.

We now consider the following explicit iterative scheme for solving mixed equilibrium prob-
lems.

Algorithm 6 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , as a solution of the
iterative scheme

F(xn, y) + 1

ρ

〈
exp−1

xn xn+1, exp
−1
xn+1

y
〉 + ψ(y) − ψ(xn) ≥ 0 ∀y ∈ K . (30)

Some particular cases of Algorithm 6 are given as:

(i) When ψ ≡ 0, the Algorithm 6 reduces to the following explicit iterative algorithm [16]
for equilibrium problems.

Algorithm 7 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , such that

F(xn, y) + 1

ρ

〈
exp−1

xn xn+1, exp
−1
xn+1

y
〉 ≥ 0, ∀y ∈ K .

(ii) If K is a convex set in R
n, then Algorithm 6 reduces to the following ([12,13]).

Algorithm 8 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , as a solution of the
iterative scheme

F(xn, y) + 1

ρ

〈
xn+1 − xn, y − xn+1

〉 + ψ(y) − ψ(xn+1) ≥ 0, ∀y ∈ K .

(iii) If we take F(x, y) = 〈
Vx , exp−1

x y
〉
, thenAlgorithm 6 turns into the following algorithm

for solving mixed variational inequalities .

Algorithm 9 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , as a solution of the
iterative scheme

〈
ρVxn + exp−1

xn xn+1, exp
−1
xn+1

y
〉 + ψ(y) − ψ(xn+1) ≥ 0, ∀y ∈ K .

(iv) Whenψ ≡ 0, the Algorithm 9 reduces to the following explicit iterative algorithm [14].
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Algorithm 10 At stage n, given xn ∈ K , ρ > 0, compute xn+1 ∈ K , as a solution of the
iterative scheme

〈
ρVxn + exp−1

xn xn+1, exp
−1
xn+1

y
〉 ≥ 0, ∀y ∈ K .

We now study the convergence analysis of Algorithm 6.

Theorem 5 Let F : K × K → R be a partially relaxed pseudomonotone bifunction with
respect to the function ψ with a constant α > 0, and continuous in the first argument.
Suppose that the sequence {xn} generated by (30) is well defined, ψ : K → R is continuous
and SOL(MEP)�= ∅. Then

d2(xn+1, x) ≤ d2(xn, x) − (1 − 2ρα)d2(xn+1, xn).

If in addition ρ < 1
2α , then {xn} converges to a solution of the mixed equilibrium problem

(3).

Proof We first prove that {xn} is Fejer convergent to SOL(MEP). Let x ∈ K be a solution of
(3). Then

F(x, y) + ψ(y) − ψ(x) ≥ 0, ∀y ∈ K . (31)

Taking y = xn+1 in (31), we get

F(x, xn+1) + ψ(xn+1) − ψ(x) ≥ 0. (32)

Since F is partially relaxed pseudomonotone with a constant α > 0, then

F(xn, x) + ψ(x) − ψ(xn) ≤ αd2(xn+1, xn). (33)

From (30), taking y = x we have

F(xn, x) + 1

ρ

〈
exp−1

xn xn+1, exp
−1
xn+1

x
〉 + ψ(x) − ψ(xn) ≥ 0 ∀y ∈ K .

⇒ 1

ρ

〈
exp−1

xn xn+1, exp
−1
xn+1

x
〉 ≥ −(F(xn, x) + ψ(x) − ψ(xn))

≥ −αd2(xn+1, xn)(by (33)). (34)

So we finally get
〈
exp−1

xn+1
xn, exp

−1
xn+1

x
〉 ≤ ραd2(xn+1, xn). (35)

Considering the geodesic triangle Δ(xnxn+1x) we get

d2(xn+1, x) + d2(xn+1, xn) − 2
〈
exp−1

xn+1
xn, exp

−1
xn+1

x
〉 ≤ d2(xn, x)

⇒ d2(xn+1, x) + d2(xn+1, xn) ≤ d2(xn, x) + 2
〈
exp−1

xn+1
xn, exp

−1
xn+1

x
〉
.

It follows from (35)

d2(xn+1, x) + d2(xn+1, xn) ≤ d2(xn, x) + 2ραd2(xn+1, xn)

⇒ d2(xn+1, x) ≤ d2(xn, x) − (1 − 2ρα)d2(xn+1, xn). (36)

As ρ < 1
2α , from (36) this clearly follows

d2(xn+1, x) ≤ d2(xn, x).
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So {xn} is Fejer convergent to SOL(MEP). From (36) we get

⇒ (1 − 2ρα)d2(xn+1, xn) ≤ d2(xn, x) − d2(xn+1, x). (37)

Since the sequence {d(xn, x)} is monotone decreasing and bounded below by 0, it is also
convergent. Hence by (36) it follows that limn→∞ d2(xn+1, xn) = 0. That is

lim
n→∞ d(xn+1, xn) = 0. (38)

Nextwe prove that any limit point of {xn} belongs to SOL(MEP). Let x be a limit point of {xn}.
Then there exists a subsequence {nk} of {n} such that xnk → x . Hence d(xnk+1, xnk ) → 0,
by the assertion just proved, and so xnk+1 → x . It follows from (25) with n = nk,

F(xnk , y) + 1

ρ

〈
exp−1

xnk
xnk+1, exp

−1
xnk+1

y
〉 + ψ(y) − ψ(xnk ) ≥ 0 ∀y ∈ K . (39)

Passing to the limit as k → ∞ in (39), we get

F(x, y) + ψ(y) − ψ(x) ≥ 0, ∀y ∈ K . (40)

That is x ∈ SOL(MEP). Hence by Lemma 4, {xn} converges to point of SOL(MEP). This
completes the proof. ��

4 Conclusions

This paper is devoted to the study of existence of solutions of mixed equilibrium prob-
lems on Hadamard manifolds. We also prove the convergence of the implicit and explicit
iterative methods for solving mixed equilibrium problems under generalized monotonicity
assumptions. The results presented in this paper are completely new and some existing results
followed as a special case of our results.
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