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Abstract The aim of this paper is to extend the concept of measure density introduced by
Buck for finite unions of arithmetic progressions, to arbitrary subsets of N defined by a given
system of decompositions. This leads to a variety of new examples and to applications to
uniform distribution theory.
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1 Introduction and notation

Let S ⊂ N be a subset of the set of positive integers. Then the limit

d(S) = lim
N→∞

|{n ≤ N ; n ∈ S}|
N
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324 M. R. Iacò et al.

(if it exists) is called the asymptotic density of S; |E | denotes as usual the cardinality of a set
E . Let us fix a positive integer m ∈ N and a ∈ N ∪ {0}. Clearly,

a + (m) = {x ∈ N; x ≡ a (mod m)},
is an arithmetic progression, and d(a + (m)) = 1

m .
Starting from the asymptotic density of finite unions of arithmetic progressions, Buck [3]

defined the set function

μ∗(S) = inf

{
n∑

k=1

1

m k
; S ⊂

n⋃
k=1

ak + (mk)

}
,

now called Buck measure density. In general, d(S) ≤ μ∗(S) holds, but there are several
examples of sets S such that d(S) 
= μ∗(S).

The system of sets defined by

Dμ = {S ⊂ N; μ∗(S) + μ∗(N \ S) = 1}
is an algebra of sets and its elements are calledBuckmeasurable sets.Moreover, the restriction
μ = μ∗|Dμ is a finitely additive measure.

Our aim is to extend the definition of μ(S) to a bigger class of sets; in this context μ

extends to a σ -additive measure.
In the sequel we will denote by {xn}n∈N an arbitrary sequence of elements taken from

some space M and {sn}n∈N is a sequence of positive integers.
Then the “counting set function” A(S, {xn}) is defined to be the set of positive integers

given by

A(S, {xn}) = {n ∈ N; xn ∈ S}. (1.1)

A sequence of positive integers {sn} is called uniformly distributed in Z (for short u.d. in Z,
details see in [17]) if and only if for every arithmetic progression a + (m) we have

d(A(a + (m)), {sn}) = 1

m
.

The following characterization of Buck measurability is proved in [22, Theorem 7, page 51].

Theorem 1.1 A set S ⊂ N belongs to Dμ if and only if d(A(S, {sn})) = μ∗(S) holds for
every uniformly distributed sequence {sn}n∈N in Z.

It is well-known that the uniform distribution property, introduced byWeyl [29] for sequences
of real numbers in the unit interval, naturally extends to sequences on compact Hausdorff
spaces and in topological groups (see e.g. [8,16,25]). In [26] the author provides a criterion for
the uniform distribution of sequences in compact metric spaces. Let P be a Borel probability
measure on the compact metric space (M, ρ). A sequence {xn}n∈N in M is called Buck
uniformly distributed (for short B.u.d.) if and only if for every measurable set H ⊂ M with
P(∂H) = 0 we have A(H, {xn}) ∈ Dμ and μ(H, A({xn})) = P(H) (here ∂H denotes as
usual the boundary of H ).

The following theorem, proved in [20], is an analogue of Weyl’s criterion for B.u.d.
sequences {xn}n∈N ∈ M.

Theorem 1.2 A sequence {xn}n∈N inM is Buck uniformly distributed if and only if for every
continuous real valued function f defined onM and for every sequence of positive integers
{sn}n∈N uniformly distributed in Z we have
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Measure density for set decompositions... 325

lim
N→∞

N∑
n=1

f (xsn ) =
∫
M

f d P.

In the same paper, the author proves the existence of B.u.d. sequences in M.
In our paper we start with a generic setX and define a suitable system of decompositions of

it. The aim is to equipXwith a metric and with a natural probability measure. This procedure
is motivated by partitioning the integers into arithmetic progressions and by Buck’s approach
to uniform distribution. Many examples are provided. In particular, we devote Sect. 3 to the
study of the connections between systems of measurable sets of positive integers and sets of
real numbers in [0, 1). Section 4 deals with the special case when X is a free abelian group.

2 General results

Let X be an arbitrary set. For arbitrary fixed n ∈ N, we denote by En = {A(n)
1 , . . . , A(n)

kn
} a

systemof disjoint decompositions ofX, i.e. A(n)
i ∩A(n)

j = ∅ (for i 
= j) and∪kn
i=1A

(n)
i = X.We

assume that each system of decompositions satisfies the following two conditions extending
the properties of arithmetic progressions:

(i) For every family of sets A( j1)
h1

, . . . , A( jm )
hm

there exists an s such that each of these sets is
a union of sets belonging to Es .

(ii) If {hn} is an arbitrary sequence of indices, then for any n0 ∈ N the intersection⋂∞
n=n0 A

(n)
hn

contains at most 1 element.

Let us denote by D0 the system of all sets of the form A( j1)
h1

∪ . . . ∪ A( jm )
hm

. Condition ( i)
assures thatD0 is an algebra of sets and let � : D0 → [0, 1] be a finitely additive probability
measure defined on D0. The set function

ν∗(S) = inf{�(A); A ∈ D0, S ⊂ A}
will be called the measure density of the set S. Let us remark that this is the standard way of
constructing the outer measure ν∗ starting from the finitely additive measure�. In particular,
the following result holds (see [22, pp. 45–46, Theorem 5]).

Theorem 2.1 Let {cn}n∈N be a sequence in N such that for every A ∈ D0, there exists n0
such that A is a union of sets from Ecn , for n ≥ n0. Then for arbitrary S ⊂ X we have

ν∗(S) = lim
n→∞

∑
S∩A(cn )

j 
=∅
�

(
A(cn)
j

)
.

Moreover, if a set S ⊂ X has non-empty intersection with every set from En, n = 1, 2, . . . ,
then ν∗(S) = 1.

A set S ⊂ X is called ν∗-measurable if and only if ν∗(S) + ν∗(X \ S) = 1. Recall that
the Carathéodory’s extension theorem states that any measure defined on a given ring R
of subsets of a given set X can be extended to the σ -algebra generated by R. In our case,
the system of decompositions forms an algebra, and so a ring. We denote the Carathéodory
extension of D0 by Dν . By definition it is the system of all ν∗-measurable subsets of X.

It follows from general measure theory that the system Dν is a σ -algebra of sets and the
restriction ν = ν∗|Dν is a finitely additive probability measure on Dν (see e.g. [11]).

Now we provide some examples of systems of decompositions and related systemsDν of
ν∗-measurable subsets.
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326 M. R. Iacò et al.

Example 2.2 TakeX = N and En = {A(n)
1 , . . . , A(n)

n! }, n ∈ N, where A(n)
j = j−1+(n!), j =

1, 2, . . . , n!. Then ν∗ is the Buck measure density defined in [3].

Example 2.3 Again letX=N. Consider the system of decompositions En ={A(n)
1 , . . . , A(n)

n },
n ∈ N. where A(n)

1 = N \ {1, . . . , n − 1}, A(n)
j = { j − 1}, j = 2, . . . , n. In this case D0

consists of all subsets of N which are finite or have finite complement. Let S ∈ D0, put
�(S) = 1 if S is infinite and �(S) = 0 for S finite. In this case ν∗(A) = 1 if and only if A
is an infinite set, and the system Dν coincides with D0.

Example 2.4 Let X = [0, 1) ∩ Q, and En = {[ k−1
n , k

n ) ∩ Q, k = 1, . . . , n}, n ∈ N and
�([ k−1

n , k
n ) ∩ Q) = 1

n . Then ν = ν∗|Dν is a finitely additive measure defined on all subsets
of the countable space X.

It is well-known that for every compact group there exists a probability measure defined
on the system of its Borel subsets, invariant with respect the group operation (the normalized
Haar measure, see for instance [11,13]). In [9] the authors study certain finitely additive
measures on topological groups and rings.

Example 2.5 Let us first assume that X = G is an infinite multiplicative locally compact
abelian group and H a subgroup of finite index. Then the quotient G/H is a finite group.
Denote by �∗ the normalized Haar measure measure on G. Since it is invariant with respect
the group operation we have

�∗(H) = 1

|G/H| ,

where |A| denotes the cardinality of A.
Let S = {Hn; n = 1, 2, . . . } be a system of subgroups of G of finite index such that for

every i, j Hi ∩ H j ⊇ Hk for some k and ∩∞
n=1Hn = {e}, where e is the neutral element of

G. Thus for every n we have a finite decomposition

En = {a(n)
1 Hn, . . . , a

(n)
kn

Hn}, kn = |G/Hn |.
The system D0 consists of all sets of the form g1Hn ∪ · · · ∪ gkHn , gi ∈ G, n = 1, 2, . . . . Let
� be the restriction of �∗ to D0 and ν∗ the corresponding measure density.

Let us now consider two special cases of Example 2.5.

Example 2.6 Let G be the free abelian group with countable set of prime generators
{p1, p2, . . . }. Let Hn , n = 1, 2, . . . , be the subgroups generated by {pn1 , pn2 , . . . , pnn , pn+1,

pn+2, . . . }. Since every element of G can be written as product of a finite number of gener-
ators, we get the following disjoint decomposition

G =
⋃

0≤ ji<n

p j1
1 p j2

2 . . . p jn
n Hn .

Thus G/Hn contains nn elements and therefore �(aHn) = 1
nn , for a ∈ G.

Example 2.7 If G = Q
∗ is the multiplicative group of positive rational numbers, then it can

be considered as the free abelian group generated by all primes. In this case, themeasurability
is not compatible with the natural order relation on Q. The inclusion

(0, 1] ∩ Q
+ ⊂ ∪m

i=1aiHn
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Measure density for set decompositions... 327

implies that the numbers ai take all the values p j1
1 p j2

2 . . . p jn
n , 0 ≤ ji < n, thus ν∗((0, 1] ∩

Q
+) = 1. Analogously, we can show that ν∗((1,∞) ∩ Q

+) = 1. Thus these sets are not
measurable.

Example 2.8 If G = ∏∞
j=1 G j is the direct product of finite groups, then we can take Hn =∏∞

j=n+1 G j and in this case

�(aHn) = 1

|G1 · . . . · Gn | , a ∈ G.

Let us return to the general setting. We will start by constructing a compact metric space
containing X as dense subset. Then we define a Borel probability measure induced by �.

First, we define the metric on X based on the system of decompositions En, n = 1, 2, . . . .
Let x, y ∈ X and put ψn(x, y) = 0 if x, y belong to the same set of En , and ψn(x, y) = 1
otherwise (for n = 1, 2, . . . ). Define

ρ(x, y) =
∞∑
n=1

ψn(x, y)

2n
,

and ρ is a metric on X. In particular, by condition (ii)

ρ(x, y) ≤ 1

2N
(2.1)

if and only if x, y belong to the same set of every decomposition En, n = 1, . . . , N . From
condition (i) it follows that a sequence {xn}n∈N of elements in X converges to an element
x ∈ X if and only if for every s = 1, 2, . . . there exists n0 such that for every n ≥ n0 the
elements xn and x belong to the same set of Es .

Similarly, one can define the concept of a Cauchy sequence which leads to the completion
of X in the usual way. Let X̄ be the completion of the metric space (X, ρ) and for S ⊂ X̄ let
S̄ be its closure in X̄. Then, clearly

X̄ = Ā(n)
1 ∪ · · · ∪ Ā(n)

kn

for n = 1, 2, . . . . Since a sequence of elements ofX is defined to be fundamental if and only if
for every s = 1, 2, . . . there exists n0 such that form, n ≥ n0 the elements xm and xn belong

to the same set of Es , the sets ¯
A(n)
1 , . . . , Ā(n)

kn
,n = 1, 2, . . . are disjoint. Thus they are open

and closed and, by condition ( i) and inequality (2.1), it follows that for every N = 1, 2, . . .
there exists a finite 1

2N
-net. This shows that the metric space X̄ is compact.

We construct a σ -additive Borel probability measure on X̄. The compactness of X̄ implies
that the extension of � to the family S = { Ā; A ∈ D0} (consisting of open and closed sets)
is a probability measure, since �( Ā) = �(A). Then

P∗(B) = inf

{ ∞∑
n=1

�( Ān); B ⊂
∞⋃
n=1

Ān, Ān ∈ S
}

is an outer measure on X̄ and SP∗ = {B; P∗(B) + P∗(X̄ \ B) = 1}, the system of P∗-
measurable sets, is a σ -algebra. Therefore, the restriction P of P∗ on SP∗ is a finitely
additive probability measure on SP∗ . Moreover, since P∗ is, by definition, an outer measure,
SP∗ contains all open sets. Thus P is a Borel probability measure on the compact metric
space X̄.
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328 M. R. Iacò et al.

Following the usual procedure, we have a compact metric space and a Borel probability
measure defined on it. We can introduce a suitable definition of uniform distribution of a
sequence {αn}n∈N in X̄ with respect to P , namely Buck uniform distribution.

Since the set X is dense in its completion, there exists a sequence {xn}n∈N in X such
that limn→∞ ρ(xn, αn) = 0. Since every continuous function on X̄ is uniformly continuous,
{xn}n∈N is also a B.u.d. sequence. Considering a set C with C̄ ∈ S and ∂C̄ = ∅, yields
A(C, {xn}) ∈ Dμ and

μ(A(C, {xn})) = �(C).

A sequence of elements of X fulfilling this condition will be called ν∗-B.u.d.. Moreover, it is
easy to see that for every S ∈ Dν the set A(S, {xn}) is measurable in the sense of Buck and

μ(A(S, {xn})) = ν(S).

Thus by Theorem 2.1 we have

ν(S) = lim
N→∞

1

N
|{n ≤ N ; xsn ∈ S}|

for S ∈ Dν and {sn} a sequence of positive integers u.d. in Z. Therefore the measure density
can be represented in certain sense as “limit” density.

Consider now a uniformly continuous function f : X → [0, 1] and a B.u.d. sequence
{xn}n∈N in X. Then for every real valued continuous function g defined on [0, 1] we have

lim
N→∞

1

N

N∑
n=1

g( f (xkn )) =
∫

g ◦ f d P, (2.2)

where {kn} is an arbitrary sequence of positive integers u.d. in Z.
More generally, let Y be a non-empty set and let P the ring of all subsets of Y. Recall

that a function 	∗ : Y → [0,∞) on the ring P with 	∗(∅) = 0 is a pre-measure if for every
countable (or finite) sequence (An)n∈N of pairwise disjoint sets in Y whose union lies in P ,
we have 	∗(

⋃∞
n=1 An) = ∑∞

n=1 	∗(An).
Assume further that 	∗ is a strong submeasure on D	 (a strong subadditive pre-measure,

see [24]), i.e.

	∗(A ∩ B) + 	∗(A ∪ B) ≤ 	∗(A) + 	∗(B),

with 	∗(Y) = 1, 	∗(∅) = 0. Consider D	, the system of all C ⊂ Y such that 	∗(C) + 	∗(Y \
C) = 1. Clearly, D	 is a set algebra and the restriction 	 = 	∗|D	

is a finitely additive
probability measure on D	.

Following the proofs from [19,22] we can derive the following result.

Theorem 2.9 Let g : X → Ybeabijectivemapping. The following statements are equivalent

(1) g(S) ∈ D	 ∧ 	(g(S)) = ν(S), for all S ∈ Dν;
(2) 	∗(g(A)) ≤ �(A), for all A ∈ D0;
(3) 	∗(g(B)) ≤ ν∗(B), for all B ⊂ X.

Analogouslywe can extend the concept of B.u.d. to this case. A sequence {xn}n∈N is said to
be 	∗-B.u.d. if and only if for every B ∈ D	 we have A(B, {xn}) ∈ Dμ and μ(A(B, {xn})) =
	(B).

In particular the following result holds.
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Measure density for set decompositions... 329

Theorem 2.10 If g : X → Y is a bijective mapping fulfilling condition (1) of Theorem 2.9
and {xn} is a 	∗-B.u.d. sequence of elements in Y then g−1(xn) is a ν∗-B.u.d. sequence of
elements in X.

For every bijection g, all x ∈ X and S ⊂ X, we have g−1(x) ∈ S ⇔ x ∈ g(S). Thus for
each sequence {xn}n∈N we have A(S, {g−1(xn)}) = A(g(S), {xn}). This yields
Corollary 2.11 If g preserves measure density then for every ν∗-B.u.d. sequence {xn}n∈N
the sequence {g−1(xn)}n∈N is also ν∗-B.u.d.

Remark 2.12 Functions g−1 such that the sequence {g−1(xn)}n∈N is u.d. for every u.d.
sequence {xn}n∈N are called uniform distribution preserving mappings (for short: u.d.p. map-
pings). They are of particular interest since they are maps generating u.d. sequences for every
u.d. sequence {xn}n∈N. In [27] the authors establish general criteria on u.d.p. transformations
on compact metric spaces and a full characterization of u.d.p. maps on [0, 1].

Therefore, in view of Theorem 2.9 we have the following

Corollary 2.13 Let g be a bijection. Then the following statements are equivalent.

(1) g preserves the measure density;
(2) ν∗(g(A(n)

i )) ≤ �(A(n)
i ), for all n ∈ N and all i ≤ kn;

(3) ν∗(g(S)) ≤ ν∗(S), for all S ⊂ X.

Example 2.14 Consider again X = G a locally compact abelian group. The mapping x →
x−1 defined on G is a bijection fulfilling condition (2) of Corollary 2.13 by applying the
decomposition A(n)

j = a j Hn . Thus Corollary 2.11 implies that each sequence {xn}n∈N of

elements of G is ν∗-B.u.d. sequence if and only if {x−1
n } is ν∗-B.u.d.

Analogouslywe can consider themapping x → ax , for a fixed a ∈ G. Then each sequence
{xn}n∈N of elements of G is ν∗-B.u.d. sequence if and only if {axn} is ν∗-B.u.d.

We now conclude this section with a theorem that can be considered as a generalization
of the construction of Haar measure with the help of Kakutani’s fixed point Theorem (see
e.g. [10]).

Theorem 2.15 Let g be a permutation defined on X such that g(S) ∈ D0 for every S ∈ D0,
where D0 is a countable σ -algebra of X. Then there exists a finite probability measure �

such that for every A ∈ D0

�(g(A)) = �(A).

Proof Denote by B the set of all bounded real valued and finitely additive set functions
defined on D0. Then B is a linear space. Let R be the subset of B consisting of all finitely
additive probability measures. It is easy to check that R is a convex set. Define a topology
on B by


n → 
 ⇔ ∀S ∈ D0 lim
n→∞ 
n(S) = 
(S).

Consider a sequence {�n} of elements in R. Since D0 is a countable set, we can iteratively
select a sequence of indices {nk} such that {�nk (S)} converges for every S ∈ D0. Thus R is
sequentially compact with respect to this topology.

Let us define a linear mapping g̃ : B → B, with g̃(
)(S) = 
(g(S)). Then g̃(R) ⊂ R
and g̃ is continuous with respect to the topology under consideration.

123
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Put

g̃n(�) = 1

n

n∑
k=1

g̃n(�)

for � ∈ R, n = 1, 2, . . . SinceR is sequentially compact, every countable centered system
of closed sets has non empty intersection. Thus, by an application of Markov–Kakutani fixed
point theorem, the assertion follows. ��

The following example provides an explicit construction of a finite additive probability
measure on the algebra D0.

Example 2.16 Let C be the set of all real-valued uniformly continuous functions defined on
X. Since these functions are bounded we can define the norm

|| f || = sup{ f (x); x ∈ X},
where f ∈ C. It can be seen easily that (C, || · ||) is a Banach space.

Let C∗ be the dual space to C. Denote byP the set of allϕ ∈ C∗ thatϕ(1) = 1 andϕ( f ) ≥ 0
for f ≥ 0. Then �ϕ(A) = ϕ(χA), A ∈ D0, ϕ ∈ P , is a finitely additive probability measure
on D0 and ϕ( f ) = ∫

f d�ϕ , for all f in C.
Assume that g : X → X is a permutation such that g(A) ∈ D0 for A ∈ D0. We want to

show that g−1 ◦ f ∈ C for every f ∈ C.
A real valued function f onX is inC if andonly if for every ε > 0 there exists a step function∑k
i=1 ciχAi , Ai ∈ D0 such that || f −∑k

i=1 ciχAi || < ε. Hence ||g−1◦ f −∑k
i=1 ciχg(Ai )|| <

ε, since g(Ai ) ∈ D0. Thus g−1 ◦ f is uniformly continuous.

3 Buck uniform distribution mod 1

In this sectionwe study the connectionbetween systemsofmeasurable sets of positive integers
and sets of real numbers in the unit interval.Wewill use the so-called radical-inverse function
which is an important function in the theory of uniform distribution and in the study of low-
discrepancy sequences (see for instance [8,16]). Finally, the measure mentioned in Example
2.4, here denoted with 	∗, instead of ν∗, will be relevant.

Let X = N and p a prime. Let us consider the arithmetic progression r + (m). This leads
to the system of decompositions

En = {r + (pn); r = 0, . . . , pn − 1} , n = 1, 2, . . .

If �(r + (pn)) = 1
pn , n = 1, 2, . . . , then the corresponding measure density ν∗ will be the

covering density with respect to the system {pn; n ∈ N} (see [18]).
Now, let us recall that every n ∈ N has a unique p-adic expansion , i.e. n can be written

as

n = a0(n) + a1(n)p + · · · + as(n)ps , 0 ≤ ai (n) < p , i = 1, . . . , s.

The radical-inverse function gp : N → [0, 1) is defined by

gp(n) = a0(n)

p
+ a1(n)

p2
+ · · · + as(n)

ps+1 .
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Measure density for set decompositions... 331

This function maps N to the set of p-adic rationals Jp = { r
ps ; r = 0, . . . , ps − 1} in [0, 1).

Therefore the image of N under gp(n) is dense in [0, 1). Since every number from Jp has a
finite p-adic expansion we obtain that the mapping gp : N → Jp is a bijection.

The properties of p-adic expansions provide that

gp(r + (pn)) =
[
a

pn
,
a + 1

pn

)
∩ Jp

for 0 ≤ r < pn and a
pn = gp(r). Let D	 be the system of all S ⊂ Jp such that 	∗(S) +

	∗(Jp \ S) = 1. Then gp and 	∗ satisfy condition (2) of Theorem 2.9 which is equivalent to
condition (1).

Let us remark that the sequence (gp(n))n∈N, with p not necessarily prime, is called the
van der Corput sequence in base p and it is a well-known example of a u.d. sequence in
[0, 1] (see [8,16]). Moreover, the above construction has been considered and extended to
more general systems of numeration by several researchers (see e.g. [6,14]). Recently, this
method has been applied to obtain the so-called LS-sequences (see [6]). These sequences
were first introduced in [5] as sequences of points associated to the so-called LS-sequences
of partitions of [0, 1[. The latter being obtained as a particular case of a splitting procedure
introduced by Kakutani [15] and generalized in [28], for a particular choice of the parameters
L and S. Moreover, this construction has been generalized to the multidimensional case in
[7]. Finally, let us note that when L = p and S = 0 the LS-sequence coincides with the van
der Corput sequence in base p (see [1]).

Now, let us consider the Cantor expansion. By this expansion every x ∈ N is uniquely
given in the form

x = b1(x)1! + b2(x)2! + · · · + bs(x)s!, s ∈ N, 0 ≤ bi (x) ≤ i, i = 1, . . . , s.

Then we define a generalization of the radical-inverse function by

gv(x) = b1(x)

2! + b2(x)

3! + · · · + bs(x)

(s + 1)! . (3.1)

Consider

En = {r + (n!); r = 0, . . . , n! − 1} , n = 1, 2, . . . ,

as system of decompositions of N, then ν∗ = μ∗-Buck measure density. Since every rational
number in [0, 1) has a finite Cantor expansion we observe that gv : N → J is a bijective
mapping. Clearly, for n = 1, 2, . . . , and r = 0, . . . , n! − 1 we have

gv(r + (n!)) =
[
b

n! ,
b + 1

n!
)

∩ J, gv(r) = b

n! .

Again D	 is the set of all S ⊂ J such that 	∗(S) + 	∗(J \ S) = 1, then 	∗ and gv fulfill
condition (2) of Theorem 2.9.

Moreover, we observe that both gv and g−1
v satisfy (1) of Theorem 2.9. Therefore Theorem

2.10 assures that a sequence {xn}n∈N of elements of J is a B.u.d. sequence if and only if
{g−1

v (xn)} is a B.u.d. sequence in N.
Let us remark that the above example of Cantor expansion can be extended to general

Cantor series, as shown in the following example.
Let {Q(k)

n } be increasing sequences of positive integers, k = 1, . . . , s such that
Q(k)

n |Q(k)
n+1, n = 1, 2, . . . . Then every positive integer a has a unique representation as a

Cantor series of the form (see [4])
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a =
mk∑
j=1

akj Q
(k)
j , 0 ≤ akj <

Q(k)
j+1

Q(k)
j

.

Put

γk(a) =
mk∑
j=1

akj

Q(k)
j+1

.

We can associate to a a point in the s-dimensional unit interval

γ (a) = (γ1(a), . . . , γs(a)) .

If J ⊂ [0, 1]s is a set of the form J = J1 × · · · × Js then

A({γ (n)}, J ) =
s⋂

k=1

A({γk(n)}, Jk}).

For Jk =
[

i
Q(k)
n

, i+1
Q(k)
n

[
we have

A({γk(n)}, Jk) = b + (Q(k)
n ),

with b a suitable positive integer, and b+ (Q(k)
n ) the residue class of b mod Q(k)

n . Thus from
Chinese remainder theorem, if Q(k1)

n , Q(k2)
n , k1 
= k2 are coprime, then A({γ (n)}, J ) is Buck

measurable and

μ(A({γ (n)}, J ) = |J1| . . . |Js |. (3.2)

Since the set of the points ( i1
Q(1)
n

, . . . , is
Q(s)
n

) is dense in [0, 1]s we can conclude that (3.2) holds
for arbitrary intervals Jk , k = 1, . . . , s.

The above statements can be adapted to a more general setting. Let f be a non-decreasing
real-valued function on J, with f (0) = 0, f (1) = 1. For every S ⊂ J, we can associate, in the
usualway, the Jordan–Stieltjes uppermeasure 	∗

f (S) defined as 	∗
f ([a, b)∩J) = f (b)− f (a),

with a, b ∈ Q. By the generalized radical-inverse function g defined in (3.1), we can associate
a finite additive measure on the system D0, where � f (r + (n!)) = 	∗

f (gv(r + (n!))). On
the other hand, if a finitely additive probability measure � on D0 is given, we can define a
non-decreasing function f (x) = �(g−1

v ([0, x)∩J)), x ∈ J, since every rational number can
be expressed in the form x = a

n! and so the preimage of [0, x)∩J is a union of a finite number
of sets of the form r + (n!). Thus � = � f . If we denote by ν∗

f the corresponding measure
density, condition (1) of Theorem 2.9 is fulfilled and Theorem 2.10 yields the following

Corollary 3.1 A sequence of positive integers {yn} is ν f -B.u.d. if and only if {gv(yn)} is
	 f -B.u.d..

Moreover, we can prove the following result

Lemma 3.2 Let f and � f be as above. Then f is uniformly continuous on J if and only if

lim
n→∞ � f (r + (n!)) = 0 (3.3)

uniformly for r = 0, 1, . . .
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Proof Suppose that [x1, x2) ∈ J. Clearly,

f (x2) − f (x1) = � f (g
−1
v ([x1, x2) ∩ J). (3.4)

Let x2 − x1 < 1
(n+1)! for some n ∈ N. Then [x1, x2) ⊂ [ c

n! ,
c+1
n! ) for some c ∈ N with

0 < c ≤ n!. Thus g−1
v ([x1, x2) ∩ J ⊂ r + (n!) for some r ∈ N. Using (3.4), this yields

f (x2) − f (x1) ≤ � f (r + (n!)). Hence f is uniformly continuous on J.
The other implication immediately follows from

� f (r + (n!)) = 	 f (gv(r + (n!)) = 	 f

([ c′

n! ,
c′ + 1

n!
)

∩ J

)
= f

(
c′ + 1

n!
)

− f

(
c′

n!
)

with r, n ∈ N, for a suitable non-negative integer c′. ��
Since a uniformly continuous function on J can be extended to a continuous function on

[0, 1], Lemma 3.2 has the following immediate consequence (see [22, page 54]).

Corollary 3.3 If {yn} is a ν-B.u.d. sequence of positive integers fulfilling Eq. (3.3), then the
sequence {gv(yn)} is Buck measurable and its Buck distribution function is the continuous
extension of f on [0, 1].

In the same way, one can prove the following result.

Theorem 3.4 Let g : X → [0, 1] be an injective function such that g(X) is dense in [0, 1]
and assume that g(A(n)

r ) = I (n)
r ∩ g(X), with I (n)

r right half-open intervals, and

lim
n→∞ 	(I (n)

r ) = 0

uniformly for r ∈ N.
Denote f (x) = �(g−1([0, x) ∩ g(X)) for every right endpoint x of I (n)

r and for all
r, n ∈ N. Then f is uniformly continuous on g(X) if and only

lim
n→∞ �(A(n)

r ) = 0

uniformly in r ∈ N.
In this case for every ν-B.u.d. sequence {yn} the sequence {g(yn)} is Buck measurable

and its Buck distribution function is the continuous extension of f to [0, 1].
It is well-known that a real-valued uniformly continuous function f on a metric space

(X, ρ) can be extended to a continuous function on a compact space X̄ (see [23]). In particular,
one can define the concept of Riemann integrability by defining the Riemann upper and lower
sums associated to the decompositions En, n = 1, 2, . . . and to the finitely additive measure
�. More precisely, we have the following definition.

Definition 3.5 Let {cn} be a sequence of positive integers such that for every A ∈ D0 there
exists n0 such that A is a union of sets from Ecn , for all n ≥ n0. Then a function f is said to
be Riemann integrable if and only if there exists a real number S such that for every system
of finite sequences {a(n)

i ; i = 1, . . . , kcn } with a(n)
i ∈ A(cn)

i we have

lim
n→∞

kcn∑
i=1

�(A(cn)
i ) f (a(n)

i ) = S.

In this case
∫

f := S.
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The link between Riemann integrability and uniform distribution was first time described
in the paper [2]. The main argument relies in the fact that the set of discontinuity point of a
Riemann integrable function has Lebesque measure zero. Later, in [2] this result was proven
in a different way and extended to compact metric spaces.

Remark 3.6 Let B ⊂ X then B is a ν∗-measurable set if and only if its indicator function χB

is Riemann integrable and in this case

ν∗(B) =
∫

χB .

In this way, following [2], one gets that a sequence {xn}n∈N in X is ν∗-B.u.d. if and only
if for every Riemann integrable function f we have

lim
N→∞

1

N

N∑
n=1

f (xsn ) =
∫

f

for every sequence of positive integers {sn} uniformly distributed in Z.
Now, since f is a real valued function uniformly continuous with respect to the metric ρ,

we can extend it to a continuous function on X̄ and∫
f =

∫
f d P.

Thus Theorem 2.9 can be extended to uniformly continuous functions f with respect to ρ.
Under the assumption of continuity and using the definition of the measure ν∗ given in

Remark 3.6 and Buck’s u.d. we can restate Theorem 2.9.

Theorem 3.7 Let g be a bijection such that g−1 is uniformly continuous with respect to the
metric ρ. Then g preserves measure density if and only if there exists at least one ν∗-B.u.d.
sequence {xn}n∈N such that {g−1(xn)} is also ν∗-B.u.d.

4 Buck uniform distribution on a free semigroup

Let X = F be an (abstract) free semigroup generated by a countable set of generators
{p1, p2, . . . , pn, . . . }. Let a ∈ F and denote by U(a) the set of all divisors of a. We say that
a set S ⊂ F has a divisor density if and only if there exists

v(S) = lim
n→∞

|S ∩ U(pn1 . . . pnn )|
(n + 1)n

.

We denote by Dv the family of all sets having a divisor density.
It is easy to show that v is a finitely additive probability measure.
Let us consider some examples.
IfF denotes the set of square free elements, then |F ∩U(pn1 . . . pnn )| = 2n , henceF ∈ Dv

and v(F) = 0.
LetFs = {as, a ∈ N}, s = 2, 3, . . . . For n sufficiently largewe have |Fs∩U(pn1 . . . pnn )| =

([n/s] + 1)n . Thus Fs ∈ Dv and v(Fs) = 0.
For r ∈ N, denote byOr the set of all elements of F of the form pβ1

i1
. . . pβs

is
, where βi ≥ r .

It can be easily seen that |Or ∩ U(pn1 . . . pnn )| = (n − r + 1)n . Thus Or ∈ Dv and
v(Or ) = e−r , where e is Euler’s number.
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Proposition 4.1 Let S ∈ Dv and a ∈ F. Then aS ∈ Dv and v(aS) = v(S).

Proof It is sufficient to prove the assertion for a = p, one of the generators. Assume that
p occurs in p1, . . . , pn . If d ∈ S ∩ U(pn1 . . . pnn ) and d = p j1

1 . . . p jn
n then pd does not

divide pn1 . . . pnn only in the case when the exponent of p is n. Thus |pS ∩ U(pn1 . . . pnn )| =
S ∩ U(pn1 . . . pnn ) − (n + 1)(n−1). ��
Corollary 4.2 For b ∈ F we have bF ∈ Dv and v(bF) = 1.

For every S ⊂ F, b ∈ F we have that (bF) ∩ S ∈ Dv implies S ∈ Dv and v(S) =
v((bF) ∩ S).

Proposition 4.3 Let H ⊂ F be the semigroup generated by the generators {pα1
1 , . . . , pαk

k ,

pk+1, pk+2, . . . .} (for given positive integers αi ). Then H ∈ Dv and v(H) = 1
α1...αk

.

Proof Let n > αi , i = 1, . . . , k, n > k. Then H ∩ U(pn1 . . . pnn ) contains the elements

ps1α11 , . . . , pskαkk p jk+1
k+1 . . . p jn

n , where siαi ≤ n, i = 1, . . . , k and ji ≤ n, i = k + 1, . . . , n.
Thus

|H ∩ U(pn1 . . . pnn )| = ([n/α1] + 1) . . . ([n/αk] + 1)(n + 1)(n−k).

Thus

lim
n→∞

|H ∩ U(pn1 . . . pnn )|
(n + 1)n

= 1

α1 . . . αk
.

��
A mapping x : F → [0, 1] is called v-uniformly distributed if and only if for every

subinterval I ⊂ [0, 1) the set x−1(I ) belongs to Dv and v(x−1(I )) = 	(I ).
Now we can formulate the following generalization of Weyl’s criterion.

Proposition 4.4 Let Pn = pn1 . . . pnn , n = 1, 2, . . . . A mapping x : F → [0, 1) is v-
uniformly distributed if and only if one of the following conditions holds:

lim
n→∞(n + 1)−nn

∑
d|Pn

f (d) =
∫ 1

0
f (x)dx (4.1)

for every Riemann integrable function f (or for continuous f ) on [0, 1];
lim
n→∞(n + 1)−nn

∑
d|Pn

e2π ihx(d) = 0 (4.2)

for all integers h 
= 0.

Let Fn be the semigroup generated by {pn1 , pn2 , . . . pnn , pn+1, pn+2, . . . }, n = 1, 2, . . . .
Proposition 4.3 implies that aFk ∈ Dv and v(aFk) = 1

kk
.

Let D0 be the system of all subsets of F of the form a1Fn ∪ · · · ∪ akFn , where a j ∈
{p j1

1 p j2
2 . . . p jn

n , 0 ≤ ji < n}. Put �(A) = v(A) for A ∈ D0. For S ⊂ F the value

ν∗
e (S) = inf{�(A); S ⊂ A, A ∈ D0}

is called divisor measure density of the set S. We denote by Dνe the system of measurable
sets. It can be easily deduced that Dνe ⊂ Dv and v(S) = νe(S) for S ∈ Dνe .
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Let us consider again F , the set of all square free elements of F. This set has non-empty
intersection only with the sets aFn , n = 1, 2, . . . and a = pi11 pi22 . . . pinn , where i j = 0, 1.
Hence, ν∗

e (F) ≤ 2n
nn , and for n → ∞ we get ν∗

e (F) = 0. This yields ν∗
e (F \ F) = 1. So F

is measurable and νe(F) = 0. Let us remark that the set of square free integers is not Buck
measurable, its Buck measure density is 6

π2 , and its complement has Buck measure density

1. However, the set of square free numbers has asymptotic density 6
π2 .

Example 4.5 For the set F we have
∫

χFdνe = 0. However, this function is discontinuous
at each point a ∈ F .

Denote by [S : Fn] the number of sets a jFn such that S∩a jFn 
= ∅. Theorem 2.1 implies

Proposition 4.6 Let {bk} be a sequence of positive integers such that for every d ∈ N there
exists k0 such that for k > k0 d|bk. Then for S ⊂ F

ν∗
e (S) = lim

k→∞
[S : Fbk ]

bbkk
.

In the sequel {bk} will be a sequence as in Proposition 4.6. Denote Fs = {as; s ∈ F} for
s ∈ N. Suppose that s|bk . Then the intersection Fs with p j1

1 p j2
2 . . . p

jbk
bk

Fbk is non-empty only
if s| ji for all i = 1, . . . , bk . Therefore

ν∗(Fs) = lim
k→∞

(bk/s)bk

bbkk
= lim

k→∞
1

sbk

and so for s > 1 we get ν∗
e (F

s) = 0.

Let F′ be the semigroup generated by p j1 , p j2 , . . . , p jn , . . . . Then p j1
1 p j2

2 . . . p
jbk
bk

Fbk ∩
F

′ 
= ∅ if and only if the exponents ji 
= 0 are exactly the generators occurring in the sequence
of generators of F′. Denote by R(k) the number of rn belonging to 1, 2, . . . , bk . Then

ν∗
e (F

′) = lim
k→∞

(
bk R(k)

bbkk

)
,

thus if R(k) < bk then ν∗
e (F

′) = 0.
For a given positive integer r let Or denote the set of all elements of F of the form

pβ1
i1

. . . pβs
is

where βi ≥ r . Then Or ∩ p j1
1 . . . p jn

n Fn 
= ∅ only when ji > r or ji = 0.
Thus for n > r we have [Or : Fn] = (n − r)n . By application of Proposition 4.6 we get
ν∗
e (Or ) = e−r , e is Euler’s number. On the other hand, (F \ Or ) ∩ p j1

1 . . . p jn
n Fn 
= 0 for all

cases. Thus ν∗
e (F \ Or ) = 1, Or is not measurable.

Choose a sequence of positive integers {nk} with nnkk |nnk+1
k+1 , in the same way as in [22,

page 42]. It can be proved that νe has the Darboux property on Dνe , (see also [21]). Thus
{νe(A); A ∈ Dνe } = [0, 1].

The following result follows immediately from Definition 3.5.

Proposition 4.7 A real valued function f defined on F is Riemann integrable if and only
if there exists a real number α such that for every system of finite sequences {a(n)

i ; i =
1, . . . , bbnn } with a(n)

i ∈ aiFbn

lim
n→∞ b−bn

n

bbnn∑
i=1

f (a(n)
i ) = α
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holds. In this case α = ∫
f dνe.

A mapping x : F → [0, 1] is called uniformly divisor measurable if and only if for every
subinterval I ⊂ [0, 1) the set x−1(I ) belongs to Dνe and νe(x−1(I )) = 	(I ).

Thementionedmapping is a real valued net defined on F (considered as a partially ordered
set).

From the definition it follows immediately: If {yn} is νe-B.u.d. sequence in F and x : F →
[0, 1] is a uniformly divisor measurable map, then {x(yn)} is a B.u.d. sequence in [0, 1].

Example 4.8 Let F = N and {bk} fulfilling additionally the relations bbkk |bbk+1
k+1 for k ∈ N.

Consider the following partition of the unit interval

[0, 1) =
b
bk
k⋃

j=1

I (k)
j , I (k)

j =
[
j − 1

bbkk
,

j

bbkk

)

for k = 1, 2, . . . .
Suppose that the sequence {yn} of elements [0, 1) satisfies:

yn ∈ I (k)
j ⇐⇒ n ∈ a j Fbk .

Then y−1(I (k)
j ) = A({yn}, I (k)

j ) = a j Fbk . Thus A({yn}, I (k)
j ) ∈ Dνe and νe(A({yn}, I (k)

j ))

= 	(I (k)
j ). The set { j

b
bk
k

; j = 1, . . . , bbkk , k = 1, 2, . . . } is dense in [0, 1) and so {yn} is

uniformly divisor measurable. For the details see [12].

For every mapping x : F → [0, 1] we have χx−1(I )(a) = χI (x(a)) for every a and
I ⊂ [0, 1). We can state the generalization of Weyl’s criterion in this case.

Proposition 4.9 A mapping x : F → [0, 1) is uniformly divisor measurable if and only for
every system of finite sequences {a(n)

i ; i = 1, . . . , bbnn } with a(n)
i ∈ aiFbn

lim
n→∞ b−bn

n

bbnn∑
i=1

f (x(a(n)
i )) =

∫ 1

0
f (x)dx

holds for every Riemann integrable function f on [0, 1].
Proposition 4.10 Let H ⊂ F be the semigroup generated by the generators {pα1

1 , . . . , pαk
k ,

pk+1, pk+2, . . . }, αi > 0. Then H ∈ Dνe and νe(H) = 1
α1...αk

.

Proof Consider n > k and n divisible by all αi . The Fn ⊂ H and

H =
⋃

p j1α1
1 . . . p jkαk

k p jk+1
k+1 . . . p jn

n Fn

where j1α1 < n, . . . , jkαk < n, jk+1 < n, . . . , jn < n. Thus H ∈ Dνe and

νe(H) = n

α1
. . .

n

αk
n(n−k) · n−n = 1

α1 . . . αk
.

��
Proposition 4.11 Let S ∈ Dνe and a ∈ F. Then aS ∈ Dνe and νe(aS) = νe(S).
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Proof It is sufficient to prove this statement for a = pi , one of the generators. Let n > i . If
the exponent of pi in b does not exceed n − 1 then pibFn ∈ Dνe . If b = pn−1

i b′ and pi not
occurring in b′, then pibFn ⊂ b′Fn . Thus ν∗

e (pibFn) ≤ n−n .
Suppose that for ε > 0 there exists n > i such that

k⋃
j=1

a j Fn ⊂ S ⊂
s⋃

j=1

a j Fn,
s − k

nn
< ε.

Then

k⋃
j=1

pia j Fn ⊂ pi S ⊂
s⋃

j=1

pib j Fn .

The sequences a j , j = 1, . . . , k and b j , j = 1, . . . , s contain at most nn−1 elements divisible
by pn−1

i . Thus

ν∗
e

( s⋃
j=1

pib j Fn \
k⋃
j=1

pia j Fn

)
≤ s + nn−1

nn
− k − nn−1

nn
< ε + 2

n
.

��
Let g be a bijection on the set of generators. We can extend this mapping to an automor-

phism of F. Propositions 4.6 and 4.7 provide that g fulfills condition (2) of Corollary 2.13.We
have proved that g preserves divisors measure density. On the other hand each automorphism
F is uniquely determined by its values on the set of generators. Thus each automorphism on
F preserves divisor measure density or νe does not depend on the order of generators.

Corollary 4.12 For b ∈ F it holds bF ∈ Dνe and νe(bF) = 1. If S ⊂ F and b ∈ F then
S ∈ Dνe if and only if (bF) ∩ S ∈ Dνe . In this case νe(S) = νe(bF ∩ S).
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28. Volčič, A.: A generalization of Kakutani’s splitting procedure. Ann. Mat. Pura Appl. (4) 190(1), 45–54

(2011)
29. Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77, 313–352 (1916)

123


	Measure density for set decompositions and uniform distribution
	Abstract
	1 Introduction and notation
	2 General results
	3 Buck uniform distribution mod 1
	4 Buck uniform distribution on a free semigroup
	Acknowledgments
	References




