

# Finite groups having centralizer commutator product property

Gülin Ercan

Received: 28 November 2014 / Accepted: 3 February 2015 / Published online: 11 February 2015 © Springer-Verlag Italia 2015

Abstract Let  $\alpha$  be an automorphism of a finite group G and assume that  $G = \{ [g, \alpha] : g \in G \} \cdot C_G(\alpha)$ . We prove that the order of the subgroup  $[G, \alpha]$  is bounded above by  $n^{\log_2(n+1)}$  where n is the index of  $C_G(\alpha)$  in G.

Keywords Automorphism · Commutator · Fixed point subgroup · Centralizer

Mathematics Subject Classification 20D10 · 20D15 · 20D45

## 1 Introduction

Let *A* be a finite group that acts on the finite group *G*. In the case where (|G|, |A|) = 1, there are several very useful relations between the groups *G* and *A*, some of which are as follows: (i)  $G = [G, A] \cdot C_G(A)$ , (ii) [G, A, A] = [G, A] and (iii)  $C_{G/N}(A) = C_G(A)N/N$  for any *A*-invariant normal subgroup *N* of *G*. Almost all of the research papers studying this kind of action concerned with the situations where the fixed point subgroup  $C_G(A)$  has a restricted structure. However, Parker and Quick [1] considered a dual situation by assuming that the index of  $C_G(A)$  is bounded. As this assumption clearly gives no restriction to  $C_G(A)$ , they focused their attention on the group [G, A] and proved that  $|[G, A]| \leq n^{\log_2(n+1)}$  if  $|G : C_G(A)| \leq n$ .

We consider here a special noncoprime action in view of [1]:

Let  $\alpha$  be an automorphism of the finite group G such that for every  $x \in G$ ,  $x = [g, \alpha] \cdot z$ for some  $g \in G$  and  $z \in C_G(\alpha)$ .

In the literature a finite group G admitting such an automorphism  $\alpha$  is called an  $\alpha$ -CCP group where the acronym CCP stands for "*centralizer commutator product*". Lemma 2.1 below shows that nice relations indicated above which are valid in the case of a coprime action also survive in the setting of  $\alpha$ -CCP groups. The study of  $\alpha$ -CCP groups was started

G. Ercan (🖂)

Department of Mathematics, Middle East Technical University, Ankara, Turkey e-mail: ercan@metu.edu.tr

by Stein [2] who proved that the subgroup  $[G, \alpha]$  is solvable. The goal of the present paper is to give an upper bound for the order of  $[G, \alpha]$  in terms of the index of  $C_G(\alpha)$  in G. Namely, we prove the following:

**Theorem A** Let G be an  $\alpha$ -CCP group such that  $|G : C_G(\alpha)| \leq n$ . Then  $|[G, \alpha]| \leq n^{\log_2(n+1)}$ .

An internal reformulation of Theorem A can be stated as

**Theorem B** Let *H* be a finite group containing an element *x* such that  $H = \{[h, x] : h \in H\} \cdot C_H(x)$ . If  $|H : C_H(x)| \leq n$  then  $|[H, x]| \leq n^{\log_2(n+1)}$ .

Theorem A is the  $\alpha$ -CCP analogue of [1, TheoremA]. The key lemma in our proof is Lemma 3.1 which we obtain as the  $\alpha$ -CCP analogue of [1, Lemma 2.1]. The rest of the paper contains the proof of Theorem A and some technical results pertaining to the proof of Theorem A; all of which are proven in a similar fashion as in the proofs of [1, Proposition 2.2], [1, Corollary 2.3] and [1, TheoremA] with obvious changes, namely using Lemma 3.1 instead of [1, Lemma 2.1]. For the sake of completeness we present a proof here for each of them.

In Sect. 2 we state and prove some preliminary facts about  $\alpha$ -CCP groups. Section 3 is concerned with our key lemma, namely Lemma 3.1, and its consequences. We prove our main result Theorem A and its equivalent Theorem B in Sect. 4.

All groups are assumed to be finite. The notation and terminology are standard.

#### 2 Preliminaries on α-CCP groups

**Lemma 2.1** The following hold for any  $\alpha$ -CCP group G.

- (i)  $G = [G, \alpha] \cdot C_G(\alpha)$  and  $[G, \alpha, \alpha] = [G, \alpha]$ . Furthermore  $G = [G, \alpha] \times C_G(\alpha)$  whenever G is abelian.
- (ii) Every  $\alpha$ -invariant subgroup S of G is also an  $\alpha$ -CCP group and we have  $\{[x, \alpha] : x \in S\} = \{[g, \alpha] : g \in G\} \cap S.$
- (iii) G/N is an  $\alpha$ -CCP group for any  $\alpha$ -invariant normal subgroup N of G.
- (iv) If  $[g, \alpha]^f \in C_G(\alpha)$  for some f and g in G, then  $g \in C_G(\alpha)$ .
- (v)  $C_{G/N}(\alpha) = C_G(\alpha)N/N$  for any  $\alpha$ -invariant normal subgroup N of G.
- (vi)  $\{[g, \alpha] : g \in G\}$  is a transversal to  $C_G(\alpha)$ . Furthermore  $\alpha^G$  is a transversal to  $C_H(\alpha^a)$  for any  $a \in G$  in the semidirect product  $H = G(\alpha)$ .

*Proof* This lemma gives almost the same information as in [2, Proposition 2.2] on an  $\alpha$ -CCP group *G*. We need only to show that  $G = [G, \alpha] \times C_G(\alpha)$  when *G* is abelian: Notice that  $[G, \alpha] = \{[g, \alpha] : g \in G\}$  when *G* is abelian and also observe that for any  $[g, \alpha] \in C_G(\alpha)$ , we have  $[g, \alpha] = 1$  by Lemma 2.1(iv).

The following lemma is crucial in proving our key lemma Lemma 3.1.

**Lemma 2.2** Let G be an  $\alpha$ -CCP group and set  $H = G(\alpha)$ . Then

(i) the map f<sub>α<sup>a</sup></sub> : α<sup>G</sup> → α<sup>G</sup> defined by f<sub>α<sup>a</sup></sub>(α<sup>g</sup>) = (α<sup>a</sup>)<sup>α<sup>g</sup></sup> is a bijection for any a ∈ G,
(ii) for any X ≤ H with X ∩ α<sup>G</sup> ≠ φ and for any α<sup>a</sup> ∈ X we have

$$(\alpha^a)^X = (\alpha^a)^{X \cap \alpha^G} = X \cap \alpha^G.$$

🖉 Springer

*Proof*  $\alpha^G$  is a transversal to  $C_H(\alpha^a)$  by Lemma 2.1(vi). If g and h are elements of G such that  $(\alpha^a)^{\alpha^g} = (\alpha^a)^{\alpha^h}$ , then  $\alpha^g (\alpha^h)^{-1} \in C_H(\alpha^a)$  and so  $\alpha^g = \alpha^h$ . This proves (i) since  $\alpha^G$  is finite.

It is straightforward to verify that  $(\alpha^a)^{X\cap\alpha^G} \subseteq (\alpha^a)^X \subseteq X \cap \alpha^G$ . If  $\alpha^y \in X \cap \alpha^G$ , then  $\alpha^y = (\alpha^a)^{\alpha^h}$  for some  $h \in G$  by part (i). This yields  $\alpha^y \in (\alpha^a)^{\alpha^G}$ . Notice that  $f_{\alpha^a}(X \cap \alpha^G) \subseteq X \cap \alpha^G$  as  $\alpha^a \in X$ , and so  $f_{\alpha^a}(X \cap \alpha^G) = X \cap \alpha^G$  since  $f_{\alpha^a}$  is a bijection. Then  $\alpha^h \in X$  and hence  $X \cap \alpha^G \subseteq (\alpha^a)^{X\cap\alpha^G}$  which establishes the claim (ii).

### 3 Some technical lemmas pertaining to the proof of Theorem A

The following results are modifications of Lemma 2.1, Proposition 2.2 and Corollary 2.3 in [1] for  $\alpha$ -CCP groups.

**Lemma 3.1** Let G be an  $\alpha$ -CCP group and let  $\mathcal{O} = \alpha^G$ . If  $I \subseteq \mathcal{O}$  and  $\Theta$  is an orbit of  $\langle I \rangle$  on  $\mathcal{O}$ , then  $\langle I \rangle \leq \langle \Theta \rangle$ . Furthermore if some member of  $\Theta$  is not contained in  $\langle I \rangle$ , then  $\langle I \rangle < \langle \Theta \rangle$ .

*Proof* To ease the notation set  $K = \langle I \rangle$  and let  $\Theta = (\alpha^x)^K$ . It should be noted that  $K \langle \Theta \rangle$  is a subgroup of *G* because *K* normalizes  $\langle \Theta \rangle$ . Set now  $L = K \langle \Theta \rangle$ . Since  $L \cap \alpha^G \neq \phi$  and  $\alpha^x \in L$ , we have

$$(\alpha^{x})^{L} = (\alpha^{x})^{L \cap \alpha^{G}} = L \cap \alpha^{G}$$

by Lemma 2.2(ii). Then, for any generator  $\alpha^{y}$  of K, we have

$$\alpha^{y} \in L \cap \alpha^{G} = (\alpha^{x})^{K\langle \Theta \rangle} \subseteq \langle (\alpha^{x})^{K} \rangle = \langle \Theta \rangle$$

This completes the proof.

**Lemma 3.2** When G is an  $\alpha$ -CCP group the group  $\langle \alpha^G \rangle$  can be generated by  $\log_2\left(\frac{2(n+p-1)}{p}\right)$  conjugates of  $\alpha$  where p is the smallest positive divisor of the order of  $\alpha$  and  $|G: C_G(\alpha)| \leq n$ .

*Proof* We let  $\mathcal{O} = \alpha^G$  and consider the action of  $\langle \alpha \rangle$  on  $\mathcal{O}$  by conjugation. Suppose first that  $\langle \alpha \rangle$  has a fixed point  $\alpha^x$  which is different from  $\alpha$ . Then  $[\alpha, x] \in C_G(\alpha)$  and hence  $[\alpha, x] = 1$  by Lemma 2.1(iv). This contradiction shows that  $\alpha$  is the only fixed point of  $\langle \alpha \rangle$  in its action on  $\mathcal{O}$ .

Define  $K_0 = 1$ ,  $K_1 = \langle \alpha \rangle$  and for j > 1,  $K_j = \langle K_{j-1}, \alpha_j \rangle$  where at each stage  $\alpha_j \in \mathcal{O}$ is chosen to maximize the order of  $K_j$ . Since *G* is finite, there exists *k* such that  $K_k = \langle \alpha^G \rangle$ and  $K_{k-1} \neq \langle \alpha^G \rangle$ . Now  $\langle \alpha^G \rangle = \langle \alpha_1, \alpha_2, \dots, \alpha_k \rangle$  where  $\alpha_1 = \alpha$ . Fix  $j \in \{1, \dots, k\}$  and let  $I = \{\alpha_1, \alpha_2, \dots, \alpha_j\}$ . Now  $K_j = \langle I \rangle$ . Choose an orbit  $\Theta$  of  $K_j$  with representative *B* where  $B \nleq K_j$ . Then  $K_j < \langle \Theta \rangle$  by Lemma 3.1. If  $\Theta$  were also an orbit of  $K_{j-1}$ , then we would have

$$K_j < \langle B^{K_j} \rangle = \langle B^{K_{j-1}} \rangle \leqslant \langle B, K_{j-1} \rangle$$

contradicting the choice of  $\alpha_j$ . Therefore  $\Theta$  is a union of at least two orbits of  $K_{j-1}$  on  $\mathcal{O}$ . Notice also that  $B \nleq K_i$  for each i = 1, ..., j. Thus  $\Theta$  is a union of at least  $2^{j-1}$  orbits of  $\langle \alpha \rangle$  on  $\mathcal{O}$ , each of which has length at least p. Since  $\alpha_j \leqslant K_j$  for  $i \leqslant j$  we see that the set  $\Omega = \{\alpha_1\} \cup \{\alpha_2^{K_1}\} \cup \ldots \cup \{\alpha_i^{K_{i-1}}\}$  is contained in  $K_j$ . Therefore  $\Omega \cap \alpha_{i+1}^{K_i}$  is empty as

 $\alpha_{i+1} \nleq K_i$ . Then  $\mathcal{O} \supseteq \{\alpha_1\} \cup \{\alpha_2^{K_1}\} \cup \ldots \cup \{\alpha_k^{K_{k-1}}\}$  and the right hand side is a disjoint union. So

$$n \ge |\mathcal{O}| \ge 1 + p(1 + 2 + \dots + 2^{k-2}) = 1 + p(2^{k-1} - 1).$$

Consequently we have  $k - 1 \leq \log_2\left(\frac{n+p-1}{p}\right)$  as claimed.

**Lemma 3.3** Let G be an  $\alpha$ -CCP group. Suppose that G is a p-group for some prime p with  $|G: C_G(\alpha)| \leq p^m$ . Then  $|[G, \alpha]| \leq p^{\frac{m^2+m}{2}}$ .

*Proof* Firstly we handle the case where *G* is of class at most two by induction on the order of *G*. By Lemma 2.1(i) we have  $[G, \alpha] = [G, \alpha, \alpha]$  and  $G/G' = [G/G', \alpha] \times C_{G/G'}(\alpha)$ . Then  $G = [G, \alpha]$  by induction and hence  $C_{G/G'}(\alpha) = 1$ , that is  $C_G(\alpha) \leq G'$ . Thus  $|G:G'| \leq p^m$ . In this case the proof is in a similar fashion as in the proof of [1, Proposition 3.1]. For the sake of completeness we present it here. Let the abelian group  $\overline{G} = G/G'$  be the direct product of nontrivial cyclic subgroups  $\langle \overline{x_i} \rangle$  for  $i = 1, \ldots, d$  where  $|\overline{x_i}| = p^{m_i}$ . We have  $G = \langle x_1, \ldots, x_d \rangle$  since  $G' \leq \Phi(G)$ . It is straightforward now to verify that  $G' = \langle [x_j, x_i] : 1 \leq i < j \leq d \rangle$  since  $G' \leq Z(G)$ . Set  $H_i = \langle x_{i+1}, \ldots, x_d, G' \rangle$ . Then  $G' = \prod_{i=1}^{d-1} [H_i, x_i]$  for  $i = 1, \ldots, d-1$ . We have  $|[H_i, x_i]| \leq |H_i/G'| = p^{m_{i+1}+\cdots+m_d}$ due to the fact that  $h \mapsto [h, x_i]$  defines a homomorphism from  $H_i/G'$  onto  $[H_i, x_i]$ . Thus  $|G| \leq \prod_{i=1}^d p^{m_i} \prod_{i=1}^{d-1} |[H_i, x_i]| \leq p^M$  where  $M = \sum_{i=1}^d im_i$ . It can be proven by induction on *d* that  $M \leq (m^2 + m)/2$ . This completes the proof when *G* is of class at most two.

Suppose now that *G* has class *c* with  $c \ge 3$ . Again assume |G| minimal, therefore  $G = [G, \alpha]$ . The proof in this case is in a very similar fashion as in the proof of [1, Theorem B]. Note that  $\gamma_{c-1}(G)$  is abelian. We also observe that  $[\gamma_{c-1}(G), \alpha] \ne 1$ , because otherwise  $[\gamma_{c-1}(G), \alpha, G] = 1 = [G, \gamma_{c-1}(G), \alpha]$  and hence  $\gamma_{c-1}(G) \le Z(G)$  by the Three Subgroup Lemma. Let now *N* be of minimal order among all normal  $\alpha$ -invariant subgroups of *G* contained in  $\gamma_{c-1}(G)$  and are not centralized by  $\alpha$ . Let  $|G/N : C_{G/N}(\alpha)| = p^r$ . As  $C_{G/N}(\alpha) = C_G(\alpha)N/N$  by Lemma 2.1(v) we have  $|G : C_G(\alpha)N| = p^r$ . Note that G/N and

*N* are both  $\alpha$ -CCP groups by Lemma 2.1(i). It follows by induction that  $|[G/N, \alpha]| \leq p^{\frac{r^2+r}{2}}$ .

As  $[G/N, \alpha] = [G, \alpha]N/N = G/N$  we have  $|G/N| \leq p^{\frac{r^2+r}{2}}$ . Let now  $|N : C_N(\alpha)| = p^s$ . Since *N* is abelian we have  $N = [N, \alpha] \times C_N(\alpha)$  and so  $|[N, \alpha]| = p^s$ . It remains to bound  $|N/[N, \alpha]|$  suitably. As *N* is contained in  $\gamma_{c-1}(G)$  we have  $[N, G] \leq \gamma_c(G) \leq Z(G)$ . Hence for  $g \in G$  the map  $x \mapsto [x, g]$  for  $x \in N$ , is a homomorphism with kernel  $C_N(g)$ , in particular [N, G] lies in the kernel and  $|N : C_N(g)| = |[N, g]|$ . Set now  $H = [N, \alpha][N, G]$ . Observe that  $1 \neq [N, \alpha] = [N, \alpha, \alpha] \leq [H, \alpha]$  by Lemma 2.1(i). It follows by minimality of *N* that H = N. Thus

$$|[N,g]| = |N: C_N(g)| \le |N: [N,G]| = |[N,\alpha][N,G]: [N,G]| \le |[N,\alpha]|.$$

We also observe that [N, G'] = 1 by the three subgroup Lemma as [N, G, G] = 1 = [G, N, G]. This gives that  $NC_G(\alpha) \leq G' \leq C_G(N)$ . As  $N \leq \gamma_{c-1}(G) \leq G'$  we get  $NC_G(\alpha) \leq G' \leq C_G(N)$ . Therefore  $|G : C_G(N)| \leq p^r$ . Let Y be a minimal generating set for G modulo  $C_G(N)$ . Then  $|Y| \leq r$ . Since  $[N, G] \leq Z(G)$  we also see that  $[N, G] = \prod_{y \in Y} [N, y]$ . Thus  $|[N, G]| \leq |[N, \alpha]|^{|Y|} \leq p^{sr}$ . So  $|N| = |[N, G][N, \alpha]| \leq p^{s(r+1)}$  whence  $|G| = |G/N| \cdot |N| \leq p^{(r^2+r)+s(r+1)}$ . This establishes the claim as

$$\frac{1/2((r^2+r)+s(r+1))}{\leqslant 1/2(r^2+r)+1/2(s^2+s)+sr}$$
  
$$\leqslant 1/2((r+s)^2+r+s) \leqslant 1/2(m^2+m).$$

Deringer

#### 4 Proof of the main results

In this section we present a proof of Theorem A and deduce Theorem B.

*Proof of Theorem A* Let G be a minimal counterexample to the theorem. Then  $G = [G, \alpha]$ by induction as  $[G, \alpha] = [G, \alpha, \alpha]$  by Lemma 2.1(i). As a consequence  $C_G(\alpha) \leq G'$ , and G is nonabelian. The main result of [2] gives that the group G is solvable and hence  $F(G) \neq 1$ . If  $[F(G), \alpha] = 1$ , then  $G \leq C_G(F(G)) = Z(F(G))$  by the Three Subgroup Lemma, which is a contradiction as G is nonabelian. Thus  $[F(G), \alpha] \neq 1$  and hence there is a prime p dividing |F(G)| such that  $[O_p(G), \alpha] \neq 1$ . Notice that if  $[Z_2(O_p(G)), \alpha] = 1$ , then  $Z_2(O_p(G)) \leq Z(G)$  by the Three Subgroup Lemma as  $[G, \alpha] = G$ . This forces  $O_p(G) = Z_2(O_p(G)) = Z(O_p(G))$  which contradicts the fact that  $|O_p(G), \alpha| \neq 1$ . Let Q be minimal element of the set  $\{S : S \text{ is a normal } \alpha \text{-invariant subgroup of } G \text{ which is } A \in \mathbb{R}^{d}$ contained in  $Z_2(O_p(G))$  such that  $[S, \alpha] \neq 1$ . Clearly  $[Q', \alpha] = 1$  by the minimality of Q and so  $Q' \leq Z(G)$  by the Three Subgroup Lemma. Set now  $Q_0 = \langle [Q, \alpha]^G \rangle$ . Note that both Q and |G/Q| are  $\alpha$ -CCP groups. So we have  $[Q, \alpha] = [Q, \alpha, \alpha]$  by Lemma 2.1(*i*). Thus  $1 \neq [[Q, \alpha]] \leq [Q_0, \alpha]$  and hence  $Q = Q_0$  by the minimality of Q. Now  $|QC_G(\alpha) : C_G(\alpha)| = |Q : C_O(\alpha)| = p^m$  for some m. Let  $|G : QC_G(\alpha)| = r$ . Then  $r \leq \frac{n}{p^m}$ . We observe by Lemma 3.3 that  $|[Q, \alpha]| \leq p^{\frac{m^2+m}{2}}$ . Set  $R = C_{[Q,\alpha]}(\alpha)$ . Then  $R \leq [Q, \alpha]' \leq Q'$  and hence  $R \leq Z(G)$ . Now

$$|[Q,\alpha]/R| = |[Q,\alpha]C_Q(\alpha):C_Q(\alpha)| = |Q:C_Q(\alpha)| = p^m.$$

So  $|R| = \frac{|[Q,\alpha]|}{p^m} \leq p^{\frac{m^2-m}{2}}$ . It remains to bound |G/R| suitably.

Set  $\overline{G} = G/R$ . The group  $\overline{Q}$  is the product of at most  $log_2(r + 1)$  of the conjugates of  $[\overline{Q}, \alpha]$  in  $\overline{G}$ : To see this let  $H = G \rtimes \langle \alpha \rangle$ . Note that  $Q \rtimes H$  and  $C_G(\alpha) \langle \alpha \rangle Q \leq N_H(Q \langle \alpha \rangle)$ . Set  $\widetilde{H} = H/Q$ . Now  $|\widetilde{H} : N_{\widetilde{H}}(\langle \widetilde{\alpha} \rangle)| \leq |H : Q \langle \alpha \rangle C_G(\alpha)| = r$ . By Lemma 3.2  $\langle \langle \widetilde{\alpha} \rangle^{\widetilde{H}} \rangle$  can be generated by at most  $k = log_2(r + 1)$  conjugates of  $\langle \widetilde{\alpha} \rangle$ . That is  $\langle (\langle \widetilde{\alpha} \rangle)^{\widetilde{H}} \rangle = \langle \widetilde{\alpha}_1, \ldots, \widetilde{\alpha}_k \rangle$  where each  $\alpha_i$  is a conjugate of  $\alpha$  and  $\alpha_1 = \alpha$ . Note that  $H = [G, \alpha] \langle \alpha \rangle = \langle \alpha^H \rangle C_G(\alpha) = MQC_G(\alpha)$  where  $M = \langle \alpha_1, \ldots, \alpha_k \rangle C_G(\alpha)$ . Therefore

$$\langle [\mathcal{Q},\alpha]^G \rangle = \langle [\mathcal{Q},\alpha]^M \rangle = [\mathcal{Q},\alpha][\mathcal{Q},\alpha,M] \leqslant [\mathcal{Q},M] = \prod_{i=1}^k [\mathcal{Q},\alpha_i].$$

We are now ready to complete the proof of Theorem A. By the above paragraph we have  $|\bar{Q}| = |\langle [\bar{Q}, \alpha]^{\bar{G}} \rangle| \leq |[\bar{Q}, \alpha]|^k = p^{mk}$  and so  $|Q| \leq p^{mk + (\frac{m^2 - m}{2})}$ . Notice that  $|G/Q| \leq r^k$  by induction. Thus

$$|G| = |G/Q||Q| \leqslant r^k p^{mk + \frac{m^2 - m}{2}} = r^k (p^m)^{k + \frac{m-1}{2}} \leqslant r^k (p^m)^{\log_2(n+1)} \leqslant n^{\log_2(n+1)}.$$

This contradiction completes the proof of Theorem A.

*Remark 4.1* As indicated in the introduction one can reformulate Theorem A as Theorem B. Their equivalence can be easily seen as follows:

Suppose that Theorem A is true. Set  $H = G \rtimes \langle \alpha \rangle$  and  $x = \alpha$  in H. Then  $[G, \alpha] = [H, x]$ and  $\{[g, \alpha] : g \in G\} = \{[h, x] : h \in H\}$  and  $|G : C_G(\alpha)| = |H : C_H(x)| = n$ . Therefore  $|[G, \alpha]| = |[H, x] \leq n^{\log_2(n+1)}$  by Theorem A. Conversely suppose that Theorem B is true and let H be a finite group containing an element x such that  $H = \{[h, x] : h \in H\}C_H(x)$ holds. Set G = H and let  $\alpha$  denote the inner automorphism of G induced by x. Then by applying Theorem B we have  $|[H, x]| \leq n^{\log_2(n+1)}$  as desired.

Acknowledgments The author thanks the referee for his/her careful reading and some corrections.

## References

- 1. Parker, C., Quick, M.: Coprime automorphisms and their commutators. J. Algebra 244, 260-272 (2001)
- 2. Stein, A.: A conjugacy class as a transversal in a finite group. J. Algebra 239, 365–390 (2001)