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Abstract This paper deals with the complete controllability of semilinear stochastic sys-
tem with delay under the assumption that the corresponding linear system is completely
controllable. The control function for this system is suitably constructed by using the con-
trollability operator. With this control function, the sufficient conditions for the complete
controllability of the proposed problem in finite dimensional are established. The results are
obtained by using Banach fixed point theorem. Finally, one example is provided to illustrate
the application of the obtained results.
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1 Introduction

Controllability concepts play a vital role in deterministic control theory. It is well known
that controllability of deterministic equation is widely used in many fields of science and
technology. But in many practical problems such as fluctuating stock prices or physical
system subject to thermal fluctuations, Population dynamics etc, some randomness appear,
so the system should be medelled stochastic form.

In setting of deterministic systems: Kalman [1] introduced the concept of controllability
for finite dimensional deterministic linear control systems. The basic concepts of control the-
ory in finite dimensional spaces has been introduced in [2]. In [3] Naito established sufficient
conditions for approximate controllability of deterministic semilinear control system domi-
nated by the linear part using Schuder’s fixed point theorem. Balachandran et al. [4] obtained
results for controllability of nonlinear systems in Banach spaces. In [5,6] Wang extended
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the results of [3] and established sufficient conditions for delayed deterministic semilinear
systems using Schauder’s fixed point theorem and concept of fundamental solution. In [7,8]
Sukavanam et al. obtained the results for approximate controllability of a delayed semilinear
control system with growing nonlinear term using Schauder’s fixed point theorem.

In setting of stochastic systems: in [9] Bashirov et al. provides some concepts for con-
trollability of linear stochastic systems. Using these concepts Mahmudov [10] established
sufficient conditions for controllability of linear stochastic systems in Hilbert spaces. In [11–
15] Klamka obtained some sufficient conditions for controllablity of delay linear systems
in finite dimensional using Rank theorem. In [16,17] Mahmudov obtained results for con-
trollability of semilinear stochastic systems using Banach fixed point theorem. Shen et al.
[18] extended the results of [12] in infinite dimensional using technique of [16] and obtained
sufficient conditions for Relative controllability of stochastic nonlinear systems with delay
in control. In [19] Sukavanam et al. obtained some results for stochastic controllability of an
abstract first order semilinear control system using Schauder’s fixed point theorem. Recently
Shukla et al. [20] obtained some sufficient conditions for approximate controllability of
retarded semilinear stochastic system with non local conditions using Banach fixed point
theorem. However in best of our knowledge, there is no result on complete controllability
of semilinear stochastic system with delay as treated in this paper. In this paper results are
obtained in L2 norm and delay is considered in both state and control term simultaneously
which in not previously discussed up to now in the literature.

In this paper we adopt the following notations:

(i) (�, �, P):Let � be the σ algebra generated by � ⊂ Rn and P : � → [0, 1] be the
probability measure on �. Then the triple (�, �, P) is called a probability space.

(ii) Let ω be the Wiener process and {�t |t ∈ [0, T ]} is the filtration generated by {ω(s) :
0 ≤ s ≤ t}.

(iii) L2(�, �T , Rn)=the Hilbert space of all �T -measurable square integrable variables
with values in Rn .

(iv) L�

P ([0, T ], Rn) is the Banach space of all p-integrable and �t -measurable processes
with values in Rn , for p ≥ 2.

(v) X2=the Banach space of all square integrable and�t -adapted processes ϕ(t)with norm

||ϕ||2 =
(∫ t

−h
E||ϕ(t)||2

)
, where E is Expected value.

(vi) L(X, Y ) is the space of all linear bounded operators from a Banach space X in to a
Banach space Y .

(vii) Let set of admissible controls is Uad = L�

2 ([0, T ], Rm). ��
Complete controllability of linear stochastic system with control delay

dx(t) = [Ax(t) + B0u(t) + B1u(t − h)]dt + σdω(t) (1.1)

given the initial condition as a random function

x(0) = x0 ∈ L2(�, �T , R
n) and u(t) = 0 f or t ∈ [−h, 0)

has been studied by various authors under Supremum norm. (see Klamka [12] and the refer-
ences there in).

The problem of controllability of semi-linear stochastic system

dx(t) = [Ax(t) + Bu(t) + f (t, x(t))]dt + σ(t, x(t))dω(t)

x(0) = x0 ∈ Rn
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Complete controllability of semi-linear stochastic system 211

has been studied by various authors under Supremum norm. (see Mahmudov [16] and Suka-
vanam [8])

In this paper we examine the complete controllability of the following semi-linear sto-
chastic system with delay in L2 norm:

dx(t) = (Ax(t) + B0u(t) + B1u(t − h) + f (t, xt ))dt + σ(t, xt )dω(t) for t ∈ (0, T ]
(1.2)

x(t) = ψ(t), f or t ∈ [−h, 0], x(0) = ψ(0) = x0(let) (1.3)

u(t) = 0, f or ∈ [−h, 0] (1.4)

where the state x(t) ∈ L2(�, �t , Rn) = X and the control u(t) ∈ L�

2 ([0, T ], Rm) = U , A
is n × n constant matrix, B0 and B1 are an n × m constant matrices .xt ∈ L2([−h, 0], Rn)-
valued stochastic processes and defined as xt (s) = {x(t + s)| − h ≤ s ≤ 0|} and ψ =
{ψ(s)| − h ≤ s ≤ 0} ∈ L2([−h, 0], Rn)-valued stochastic processes and h ≥ 0 is the
upper bound for the time delay.Moreover, the functions f (., .), σ (., .) are defined as σ :
[0, T ] × L2([−h, 0], Rn) → Rn×n , f : [0, T ] × L2([−h, 0], Rn) → Rn are nonlinear
functions and ω is a n-dimensional Wiener process.

2 Preliminaries

It is well known [8,16] that for given initial conditions (1.3), (1.4), any admissible control
u ∈ Uad , for t ∈ [−h, T ] and suitable nonlinear functions f (t, xt ) and σ(t, xt ) there exists
unique solution x(t; x0, u) ∈ L2(�, �t , Rn) of the semilinear stochastic differential state
equation (1.2) which can be represented in the following integral form

x(t; x0, u) =

⎧⎪⎨
⎪⎩
exp(At)x0 + ∫ t

0 exp(A(t − s))(B0u(s) + B1u(s − h) + f (s, xs))ds

+ ∫ t
0 exp(A(t − s))σ (s, xs)dω(s) for t > 0

ψ(t) for t ∈ [−h, 0]
(2.1)

Since u(t) = 0 for t ∈ [−h, 0] therefore solution for t ∈ [0, h] has the following form

x(t; x0, u) = exp(At)x0 +
∫ t

0
exp(A(t − s))(B0u(s) + f (s, xs)ds

+
∫ t

0
exp(A(t − s))σ (s, xs)dω(s) (2.2)

for t > h we have

x(t; x0, u) = exp(At)x0 +
∫ t

0
exp(A(t − s))(B0u(s) + f (s, xs))ds

+
∫ t−h

0
exp(A(t − s − h))B1u(s)ds

+
∫ t

0
exp(A(t − s))σ (s, xs)dω(s)
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or equivalent

x(t; x0, u) = exp(At)x0 +
∫ t−h

0
(exp(A(t − s))B0 + exp(A(t − s − h))B1)u(s)ds

+
∫ t

t−h
exp(A(t − s))B0u(s)ds

+
∫ t

0
exp(A(t − s)) f (s, xs)ds +

∫ t

0
exp(A(t − s))σ (s, xs)dω(s) (2.3)

for T > h, let us introduce the following operators and sets.
LT ∈ L((L�

2 ([0, T ]), Rm), L2(�, �T , Rn)), defined by

LT u =
∫ T−h

0
(exp(A(T − s))B0 + exp(A(T − s − h))B1)u(s)ds

+
∫ T

T−h
exp(A(T − s))B0u(s)ds

Then it can be seen that the adjoint operator L∗
T ∈ L2(�, �T , Rn) → L�

2 ([0, T ]), Rm) is
given by

L∗
T z =

{
(B∗

0 exp(A
∗(T − t)) + B∗

1 exp(A
∗(T − t − h)))E{z|�t } for t ∈ [0, T − h]

B∗
0 exp(A

∗(T − t))E{z|�t } for t ∈ (T − h, T ]
The set of all states reachable in time T from initial state x(0) = x0 ∈ L2(�, �T , Rn), using
admissible controls is defined as

RT (Uad) = {x(T ; x0, u) ∈ L2(�, �T , Rn) : u ∈ Uad}
where x(T ; x0, u)= exp(At)x0+LT u+

∫ T

0
exp(A(T−s))( f (s, xs)ds+σ(s, xs)dω(s))

Now we introduce the linear controllability operator �T
0 ∈ L(L2(�, �T , Rn), L2(�, �T ,

Rn)) as follows:

�T
0 {.} = LT (LT )∗{.}

=
∫ T−h

0
(exp(A(T − t))B0B

∗
0 exp(A

∗(T − t)) + exp(A(T − t − h))

× B1B
∗
1 exp(A

∗(T − t − h)))E{.|�t }dt
+

∫ T

T−h
(exp(A(T − t))B0B

∗
0 exp(A(T − t)))E{.|�t }dt

The corresponding controllability n × n matrix for deterministic model is:

�T
s = LT (s)L∗

T (s)

=
∫ T−h

s
(exp(A(T − t))B0B

∗
0 exp(A

∗(T − t)) + exp(A(T − t − h))

× B1B
∗
1 exp(A

∗(T − t − h)))dt

+
∫ T

T−h
exp(A(T − t))B0B

∗
0 exp(A

∗(T − t))dt

123



Complete controllability of semi-linear stochastic system 213

Definition 2.1 A control system is said to be completely controllable in the interval I =
[0, T ] if for every initial state x0 and desired final state x1, there exists a control u(t) such
that the solution x(t) of the system corresponding to this control u satisfies x(T ) = x1.

Remark 2.1 For dynamical system (1.2) it is possible to define many different concepts of
controllability. Using this admissible controls in [21,22] Klamka obtained complete control-
lability with constrained admissible controls of nonlinear systems. It is generally assumed
that the control values are in a convex and closed cone with vertex at zero, or in a cone
with nonempty interior. Klamka obtained sufficient conditions for constrained exact local
controllability using the generalized open mapping theorem. LetU0 ⊂ U be a closed convex
cone with nonempty interior. The set of admissible controls for the system (1.2) is given by
Uad = L∞([0, T ],U0) (for more detail see [21,22]).

In this paper some sufficient conditions for complete controllability with unconstrained
admissible controls of system (1.2) is obtained. Unconstrained admissible control for the
system (1.2) in this paper is defined in notation (vii).

3 Main results

Lemma 1 Assume that the operator �T
0 is invertible. Then for arbitrary xT ∈ L2(�, �T ,

Rn), f (., .) ∈ L�

2 ([0, T ], Rn),σ(., .) ∈ (L�

2 ([0, T ], Rn×n), the control

u(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B∗
0 exp(A

∗(T − t))

×E

{
(�T

0 )−1
(
xT −exp(AT )x0−

∫ T−h
0 exp(A(T−s))( f (s, xs )ds+σ(s, xs )dω(s))

)
|�t

}
for t ∈[0, h]

(B∗
0 exp(A

∗(T − t)) + B∗
1 exp(A

∗(T − h − t)))

×E

{
(�T

0 )−1
(
xT −exp(AT )x0−

∫ T
T−h exp(A(T−s))( f (s, xs )ds+σ(s, xs )dω(s))

)
|�t

}
for t ∈(h, T ]

transfers the system (2.1) from x0 ∈ Rn to xT at time T and

x(t) = exp(At)x0 + �t
0[exp(A∗(T − t))(�T

0 )−1 × (xT − exp(AT )x0

−
∫ T

0
exp(A(T − r)) f (r, xr )dr −

∫ T

0
exp(A(T − r))σ (r, xr )dω(r))]

+
∫ t

0
exp(A(t − s)) f (s, xs)ds +

∫ t

0
exp(A(t − s))σ (s, xs)dω(s) (3.1)

provided the solution of (3.1) exists.

Proof By substituting u(t) in (2.2) and (2.3), we can easily obtain the following
For t ∈ [0, h]

x(t; x0, u) = exp(At)x0 +
∫ t

0
exp(A(t − s))B0B

∗
0 exp(A

∗(t − s))

× E

{
(�T

0 )−1
(
xT − exp(AT )x0 −

∫ T−h

0
exp(A(T − s))( f (s, xs)ds

+ σ(s, xs)dω(s))

)
|�s

}
ds +

∫ t

0
exp(A(t − s)) f (s, xs)ds

+
∫ t

0
exp(A(t − s))σ (s, xs)dω(s)
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For t ∈ (h, T ]

x(t; x0, u) = exp(At)x0 +
∫ t−h

0
(exp(A(t − s))B0B

∗
0 exp(A

∗(t − s))

+ exp(A(T − h − s))B1B
∗
1 exp(A

∗(T − h − s)))

× E

{
(�T

0 )−1
(
xT − exp(AT )x0 −

∫ T

T−h
exp(A(T − s))( f (s, xs)ds

+ σ(s, xs)dω(s))) |�s

}
ds +

∫ t

t−h
exp(A(t − s))B0B

∗
0 exp(A

∗(T − s))

× E

{
(�T

0 )−1
(
xT − exp(AT )x0 −

∫ T−h

0
exp(A(T − s))( f (s, xs)ds

+ σ(s)dω(s, xs))) |�s

}
ds +

∫ t

0
exp(A(t − s)) f (s, xs)ds

+
∫ t

0
exp(A(t − s))σ (s, xs)dω(s)

Thus, taking into account of the form of the operator �T
0 [12,19] we have

x(t; x0, u) = exp(At)x0 + �t
0

[
exp(A∗(T − t))(�T

0 )−1
(
xT − exp(AT )x0

−
∫ T

0
exp(A(T − s))( f (s, xs)ds + σ(s, xs)dω(s))

)]

+
∫ t

0
exp(A(t − s)) f (s, xs)ds +

∫ t

0
exp(A(t − s))σ (s, xs)dω(s)

Substitute t = T in above equation we get

x(T ; x0, u) = exp(AT )x0 + �T
0

[
(�T

0 )−1

×
(
xT −exp(AT )x0−

∫ T

0
exp(A(T−s))( f (s, xs)ds+σ(s, xs)dω(s)

) ]

+
∫ T

0
exp(A(T − s)) f (s, xs)ds +

∫ T

0
exp(A(T − s))σ (s, xs)dω(s)

x(T ; x0, u) = xT

Remark 3.1 In Theorem 3.1 sufficient condition are given for the existence and uniqueness
of solution of (3.1).

Lemma 2 (See [23]) For every z ∈ L2(�, �T , Rn), there exists a process ϕ(.) ∈
L2([0, T ], Rn×n) such that

z = Ez +
∫ T

0
ϕ(s)dω(s)

�T
0 z = �T

0 Ez +
∫ T

0
�T
s ϕ(s)dω(s)

Moreover

E ||�T
0 z||2 ≤ ME ||E{z|�T }||2

≤ ME ||z||2, z ∈ L2(�, �T , Rn)
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Complete controllability of semi-linear stochastic system 215

Note that if the assumption (A3) holds, then for some γ > 0

E〈�T
0 z, z〉 ≥ γ E ||z||2, f or all z ∈ L2(�, �T , Rn)

consequently

E ||(�T
0 )−1||2 ≤ 1

γ
= l4

Now let us assume the following conditions

(A1) ( f, σ ) satisfies the Lipschitz condition with respect to x i.e.,
|| f (t, xt )− f (t, yt )||2 ≤ L1||xt − yt ||2, ||σ(t, xt )−σ(t, yt )||2 ≤ L2||xt − yt ||2 for
all xt , yt ∈ L2([−h, 0], Rn), 0 < t ≤ T

(A2) ( f, σ ) is continuous on [0, T ] × Rn and satisfies
|| f (t, xt )||2 ≤ L3(||xt ||2 + 1), ||σ(t, xt )||2 ≤ L4(||xt ||2 + 1)

(A3) The linear system (1.1) is completely controllable.

Let S be an operator defined as

S(x)(t)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ(t) f or t ∈ [−h, 0]
exp(At)x0 + �t

0

[
exp(A∗(T − t))

(
(�T

0 )−1 ×
(
xT − exp(AT )x0

− ∫ T
0 exp(A(T − r)) f (r, xr )dr − ∫ T

0 exp(A(T − r))σ (r, xr )dω(r)

))]

+ ∫ t
0 exp(A(t−s)) f (s, xs)ds+

∫ t
0 exp(A(t−s))σ (s, xs)dω(s) f or t ∈ [0, T ]

From Lemma 1, the control u(t) transfer the system (3.1) from the initial state x0 to
the final state xT provided that the operator S has a fixed point. So, if the operator
S has a fixed point then the system (1.2) has a unique mild solution and completely
controllable.

Now for convenience, let us introduce the notation

l1 = max ||exp(At)||2 : t ∈ [0, T ], l2 = max(||B0||2, ||B1||2)
l3 = E ||xT ||2, M = max ||�T

s ||2 : s ∈ [0, T ]

Theorem 3.1 Assume that the conditions (A1), (A2) and (A3) hold. In addition if the inequal-
ity

(
4l1L(Ml1l4 + 1)(T + 1)T 2

) 1
2

< 1 (3.2)

holds, then the system (1.2) is completely controllable.

Proof As mentioned above, to prove the complete controllability it is enough to show that S
has a fixed point in X2. To do this, we use the contraction mapping principle. To apply the
contraction mapping principle, first we show that S maps X2 into itself.

Now by Lemma 1 we have
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E

∣∣∣∣
∣∣∣∣(Sx)(t)

∣∣∣∣
∣∣∣∣
2

= E

∣∣∣∣
∣∣∣∣ψ(t) + exp(At)x0 + �t

0

[
exp(A∗(T − t)) × (�T

0 )−1(xT − exp(AT )x0

−
∫ T

0
exp(A(T − r)) f (r, xr )dr −

∫ T

0
exp(A(T − r))σ (r, xr )dω(r))

]

+
∫ t

0
exp(A(t − s)) f (s, xs)ds +

∫ t

0
exp(A(t − s))σ (s, xs)dω(s)

∣∣∣∣
∣∣∣∣
2

≤ 5||ψ(t)||2+5||exp(At)x0||2+5E

∣∣∣∣
∣∣∣∣�t

0[exp(A∗(T−t)) × (�T
0 )−1(xT −exp(AT )x0

−
∫ T

0
exp(A(T − r)) f (r, xr )dr −

∫ T

0
exp(A(T − r))σ (r, xr )dω(r))]

∣∣∣∣
∣∣∣∣
2

+5t
∫ t

0
||exp(A(t − r))||2E || f (r, xr ||2dr + 5

∫ t

0
||exp(A(t − r))||2E ||σ(r, xr )||2dr

≤ 5||ψ(t)||2 + 5l1||x0||2L2[−h,0] + 20Ml1l4

(
l3 + l1||x0||2 + T l1

∫ T

0
E || f (r, xr )||2dr

+l1

∫ T

0
E ||σ(r, xr )||2dr

)
+ 5l1

∫ t

0

(
T E || f (r, xr )||2 + E ||σ(r, xr )||2

)
dr

≤ B1 + B2

(∫ T

0

(
T E || f (r, xr )||2 + E ||σ(r, xr )||2

)
dr

)

where B1 > 0 and B2 > 0 are suitable constants. It follows from the above and the condition
(A2) that there exists C1 > 0 such that

E

∣∣∣∣
∣∣∣∣(Sx)(t)

∣∣∣∣
∣∣∣∣
2

≤ C1

(
1 +

∫ T

0
E ||xr ||2dr

)

= C1

(
1 +

(∫ T

0
E

∫ 0

−h
||x(r + s)||2dsdr

))

= C1

(
1 +

(∫ T

0
E

∫ r

r−h
||x(v)||2dvdr

))

≤ C1

(
1 +

(∫ T

0
E

∫ T

−h
||x(v)||2dvdr

))

≤ C1

(
1 + T

(∫ T

−h
E ||x(v)||2dv

))

taking L2 norm both side

(∫ T

−h
E ||(Sx)(t)||2dt

)1/2

≤
(∫ T

−h
C1

(
1 + T

(∫ T

−h
E ||x(v)||2dv

))
dt

)1/2

≤ √
C1

√
T + h

(
1 + T

(∫ T

−h
E ||x(t)||2dt

))1/2

for all t ∈ [−h, T ]. Therefore Smaps X2 into itself. Secondly, we show that S is a contraction
mapping. Indeed
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Complete controllability of semi-linear stochastic system 217

E

∣∣∣∣
∣∣∣∣(Sx)(t) − (Sy)(t)

∣∣∣∣
∣∣∣∣
2

= E

∣∣∣∣
∣∣∣∣�t

0[exp(A∗(T − t))(�T
0 )−1 ×

(∫ T

0
exp(A(T − s))( f (s, ys) − f (s, xs))

)
ds

+
∫ T

0
exp(A(T − s))(σ (s, ys) − σ(s, xs)))dω(s))]

+
∫ t

0
exp(A(t − s))( f (s, xs) − f (s, ys))ds

+
∫ t

0
exp(A(t − s))(σ (s, xs) − σ(s, ys))dω(s)

∣∣∣∣
∣∣∣∣
2

≤ 4Ml21 l4(T
∫ T

0
E || f (s, xs) − f (s, ys)||2ds +

∫ T

0
E ||σ(s, xs) − σ(s, ys)||2ds)

+4l1(T
∫ t

0
E || f (s, xs) − f (s, ys)||2ds +

∫ t

0
E ||σ(s, xs) − σ(s, ys)||2ds)

= 4Ml21 l4L(T + 1)
∫ T

0
E ||xs − ys)||2ds + 4l1L(T + 1)

∫ t

0
E ||xs − ys ||2ds

≤ 4l1L(Ml1l4 + 1)(T + 1)
∫ T

0
E ||xs − ys ||2ds

= 4l1L(Ml1l4 + 1)(T + 1)

(∫ T

0
E

∫ 0

−h
||x(t + s) − y(t + s)||2dtds

)

= 4l1L(Ml1l4 + 1)(T + 1)

(∫ T

0
E

∫ s

s−h
||x(v) − y(v)||2dvds

)

≤ 4l1L(Ml1l4 + 1)(T + 1)

(∫ T

0
E

∫ T

−h
||x(v) − y(v)||2dvds

)

≤ 4l1L(Ml1l4 + 1)(T + 1)T

(∫ T

−h
E ||x(v) − y(v)||2dv

)

taking L2 norm both side we get
(∫ T

−h
E

∣∣∣∣
∣∣∣∣(Sx)(t) − (Sy)(t)

∣∣∣∣
∣∣∣∣
2

dt

)1/2

=
(∫ T

0
E

∣∣∣∣
∣∣∣∣(Sx)(t) − (Sy)(t)

∣∣∣∣
∣∣∣∣
2

dt

)1/2

≤
(∫ T

0
4l1L(Ml1l4 + 1)(T + 1)T

(∫ T

−h
E ||x(v) − y(v)||2dv

)
dt

)1/2

≤
(
4l1L(Ml1l4 + 1)(T + 1)T 2

) 1
2
(∫ T

−h
E ||x(t) − y(t)||2dt

)1/2

Therefore S is a contraction mapping if the inequality (3.2) holds. Then the mapping S has
a unique fixed point x(.) in X2 which is the solution of the Eq. (1.2). Thus the system (1.2)
is completely controllable. The theorem is proved.

Remark 3.2 In this paper the sufficient conditions for complete controllability are obtained
in Theorem (3.1) for the system (1.2)–(1.4) using L2 norm. In [21] Mahmudov et al.
have considered a particular case of system (1.2)–(1.4) by taking B1 = 0, f (t, xt ) =
f (t, x(t)), σ (t, xt ) = σ(t, x(t)) and obtained the results using L∞ (supremum) norm.
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Remark 3.3 In [12] Balachandran et al. have considered a particular case of system (1.2)–
(1.4) for deterministic system by taking B1 = 0, f (t, xt ) = f (t, x(t)), σ (t, xt ) = 0 and
obtained the results using L∞ (supremum) norm.

Remark 3.4 Inequality (3.2) is fulfilled if L is sufficiently small.

4 Example

Example 1 Consider a two-dimensional semi-linear stochastic systemwith delay in state and
control terms

dx(t) = [A0x(t) + B0u(t) + B1u(t − h) + f (t, xt )]dt + σ(t, xt )dω(t)

for t ∈ [0, T ] (4.1)

with initial condition (1.3)
where ω(t) is a one dimensional Wiener process and

A0 =
[

−1 1

−1 −1

]
, B0 =

[
1 0

0 1

]
, B1 =

[
0 −1

1 0

]

f (t, xt ) = 1

a

[
sin xt

xt

]
, σ (t, xt ) = 1

b

[
xt 0

0 cos xt

]

If we take Euclidean norm then

|| f (t, xt ) − f (t, yt )||2 ≤ 2

a2
||xt − yt ||2 and

||σ(t, xt ) − σ(t, yt )||2 ≤ 2

b2
||xt − yt ||2 so,

|| f (t, xt ) − f (t, yt )||2 + ||σ(t, xt ) − σ(t, yt )||2 ≤ L||xt − yt ||2 (4.2)

where L =
(

2

a2
+ 2

b2

)
(4.3)

||A0|| = 2, ||B0|| = √
2, ||B1|| = √

2

We can see that conditions of Theorem 3.1 with the help definition of M and Lemma 2
for sufficiently small L [using Eq. (4.3)] for any time T are satisfied. So system (4.1) is
completely controllable.

Example 2 In particular let us consider the system (1.2) without any delay means B1 = 0,
f (t, xt ) = f (t, x(t)) and σ(t, xt ) = σ(t, x(t))

dx(t) = [Ax(t) + Bu(t) + f (t, x(t))]dt + σ(t, x(t))dω(t)

x(0) = x0 ∈ Rn (4.4)

A=
[

−1 1

−1 −1

]
, B=

[
1 0

0 1

]
, f (t, x(t))=

[
sin x(t)

x(t)

]
, σ (t, x(t))=

[
x(t) 0

0 cos x(t)

]

Here f (t, x(t)) and σ(t, x(t)) are satisfying conditions (A1) and (A2). For x = (x1, x2)with
the initial value x0 and final point xT ∈ R2. For this system the controllability matrix is

�t
s = 1

2

[
1 − exp−2(t−s) 0

0 1 − exp−2(t−s)

]
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If we take Euclidean norm then

||A|| = 2, ||B|| = √
2, ||�t

s || = 1 − exp−2(t−s)

√
2

> 0 ∀ 0 ≤ s < t;

In [16] obtained sufficient condition for controllability of system (4.4) in L∞ (supremum)
norm as below

4l1L(Ml1l4 + 1)(T + 1)T < 1

In this paper sufficient condition for controllability of system (4.4) is obtained in L2 norm
as below

(
4l1L(Ml1l4 + 1)(T + 1)T 2

)1/2

< 1

Suppose C = (4l1L(Ml1l4 + 1)) then sufficient condition for controllability for [16] will be
C(T + 1)T < 1. Substitute T (time) = 5 unit then C ∈ (0, 1/30). For all these values of
C system will be controllable. Now in this paper Left hand side for sufficient condition is√
C(T + 1) T = C1 (let) substitute values of C and T we get C1 ∈ (0,

√
5). It means C1

can be greater than 1 for some cases. For these cases sufficient condition of Theorem (3.1)
is not satisfied but the system (4.4) is completely controllable form [16] in L∞ norm.

But if we proceed in similar manner as above and suppose the sufficient conditions of this
paper are satisfied for some values of T < 1 then sufficient conditions of [16] paper may not
be satisfied.
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