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Abstract In this note we review some results on the transversality conditions for a smooth
Fredholm map f : X × (0, T ) → Y between two Banach spaces X, Y. These conditions are
well-known in the realm of bifurcation theory and commonly accepted as “generic”. Here
we show that under the transversality assumptions the sections C(t) = {x : f (x, t) = 0} of
the zero set of f are discrete for every t ∈ (0, T ) and we discuss a somehow explicit family
of perturbations of f along which transversality holds up to a residual set. The application of
these results to the case when f is the X-differential of a time-dependent energy functional
E : X × (0, T ) → R and C(t) is the set of the critical points of E provides the motivation
and the main example of this paper.
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102 V. Agostiniani et al.

1 Introduction

Let X, Y be a couple of Banach spaces and let f : X × (0, T ) → Y be a C2-map defined in
the open set X ⊂ X.

In this note, we investigate the so-called transversality conditions for the set S of the
singular points of f , i.e. the subset of the zero set C of f where its (partial) differential Dx f
with respect to x ∈ X is not invertible:

C :=
{
(x, t) ∈ X×(0, T ) : f (x, t) = 0

}
, S :=

{
(x, t) ∈ C : Dx f (x, t) is non invertible

}
.

(1.1)
In particular we will focus on two important features related to transversality. The first one

concerns the topology of the sections C(t) :=
{

x ∈ X : (x, t) ∈ C

}
of C: it is not difficult to

show that for every t ∈ (0, T ) the sets C(t) are discrete, so that each point in C(t) is isolated.
A second property we will discuss in some detail is the generic character of transversality.

We first illustrate our results, and their role for applications, in the simpler finite dimen-
sional setting.

The transversality conditions in the finite-dimensional case Let us consider the case when
X = Y = R

n . The symbol 〈·, ·〉 represents the scalar product in R
n , and M

k×m is the space
of matrixes with k rows and m columns. If K ∈ M

k×m , we denote by N(K ) its null space in
R

k , by R(K ) its range in R
m , and by K ∗ its transposed.

Definition 1.1 (Transversality conditions in R
n) We say that f satisfies the transversality

conditions at a point (x0, t0) ∈ S if

(T1) dim(N(Dx f (x0, t0))) = 1 (and therefore dim(N(Dx f (x0, t0)∗)) = 1).
(T2) If 0 �= w∗ ∈ N(Dx f (x0, t0)∗) then 〈∂t f (x0, t0), w∗〉 �= 0.
(T3) If 0 �= v ∈ N(Dx f (x0, t0)) then 〈D2

x f (x0, t0)[v, v], w∗〉 �= 0.

We say that f satisfies the transversality conditions if they hold at every point of S.

While referring to Definition 2.2 ahead for the precise statement of the transversality con-
ditions in an infinite-dimensional setting, let us point out that there it is crucial, as well as
natural, to require in addition that f (·, t) is a Fredholm map of index 0 for every t ∈ (0, T ).

Conditions (T2) and (T3) look particularly simple when n = 1: in this case they read

∂t f (x0, t0) �= 0, ∂2
xx f (x0, t0) �= 0.

Singular perturbation of gradient flows and the structure of C(t).
Our motivation for getting further insight on the topology of C(t) stems from the study of

the limit as ε ↓ 0 of the differential equation

εx ′(t) + f (x(t), t) = 0, t ∈ (0, T ), (1.2a)

in particular in the case of a gradient flow, when

f = DxE , E : X × (0, T ) → R is a C3 functional. (1.2b)

The study of the singular perturbation problem (1.2a,b) was carried out in finite dimension
in [12], where it was shown that a family {xε}ε of solutions to (1.2a) converges to a piece-
wise regular curve obtained by connecting smooth branches of solutions to the equilibrium
equation

f (x(t), t) = 0, i.e. x(t) ∈ C(t), t ∈ (0, T ), (1.3)
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On the transversality conditions and their genericity 103

by means of heteroclinic solutions of the gradient flow

θ ′(s) + f (θ(s), t) = 0, lim
s→±∞ θ(s) = x±(t) at every jump point t for the limit curvex .

(1.4)
The analysis in [12] hinges on the assumption that f = DxE satisfies the transversality

conditions at its singular points (which are the degenerate critical points of E ). In addition,
a crucial role is played by the condition that at every time t ∈ (0, T ) there exists at most one
degenerate critical point (x, t) in S, D2

xE is positive semidefinite at (x, t) and the (unique)
heteroclinic starting from x ends in a local minimum of E (·, t). This allows the author to
tackle this singular limit by means of refined techniques from bifurcation theory, see also [2],
where the quasistatic limit of a second-order system was addressed in the finite-dimensional
case.

In the forthcoming paper [1], we develop a different variational approach to the limit
ε → 0 of (1.2a), even in the setting of an infinite-dimensional space X. Under general
coercivity assumptions on E , we prove that, up to a subsequence, any family {xε}ε of solutions
to (1.2a) pointwise converges to a curve x fulfilling the equilibrium equation (1.3) and a
variational jump condition. In fact, the crucial property that lies at the core of the analysis in
[1] is that C(t) is discrete for every t ∈ (0, T ).

The next result shows that if f satisfies the transversality conditions then C(t) is a discrete
set for every t ∈ (0, T ).

Theorem 1.2 If f satisfies the transversality conditions then for every t ∈ (0, T ) the set
C(t) only consists of isolated points.

We present here the simple proof in the finite dimensional case, postponing the discussion
of the general case to the next section.

Proof Let us fix x0 ∈ C(t0). If Dx f (x0, t0) is invertible, then the thesis follows immediately
by the implicit function theorem. It is thus sufficient to consider the case when (x0, t0) ∈ S.

Let us first show that N(d f (x0, t0)) has dimension 1 so that the differential of f at (x0, t0)
has rank n and is surjective. If (v, α) ∈ N(d f (x0, t0)), then taking the duality with w∗ as in
(T2) we get

0 = 〈Dx f (x0, t0)[v], w∗〉 + α〈∂t f (x0, t0), w
∗〉

= 〈Dx f (x0, t0)
∗[w∗], v〉 + α〈∂t f (x0, t0), w

∗〉
= α〈∂t f (x0, t0), w

∗〉,
so that α = 0 by (T2). Choosing now an arbitrary vector w∗ ∈ R

n we get v ∈ N(Dx f (x0, t0)),
which has dimension 1 thanks to (T1).

Since the differential d f (x0, t0) has rank n, the implicit function theorem implies that
there exists an open neighborhood U of (x0, t0) and a smooth curve

γ : (−ε, ε) → X × (0, T ), s �→ γ (s) = (x(s), t(s)),

such that

(x(0), t(0)) = (x0, t0), γ̇ (s) �= 0 in (−ε, ε), C ∩ U = γ ((−ε, ε)). (1.5)

Differentiating w.r.t s the identity f (x(s), t(s)) = 0 we then obtain

Dx f (x(s), t(s))[ẋ(s)] + ṫ(s)∂t f (x(s), t(s)) = 0 ∀ s ∈ (−ε, ε). (1.6)
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104 V. Agostiniani et al.

Multiplying (1.6) at s = 0 by w∗ we find

0 = 〈Dx f (x0, t0)[ẋ(0)], w∗〉 + ṫ(0)〈∂t f (x0, t0), w
∗〉

= 〈Dx f (x0, t0)
∗[w∗], ẋ(0)〉 + ṫ(0)〈∂t f (x0, t0), w

∗〉 = 0 + ṫ(0)〈∂t f (x0, t0), w
∗〉.

Since 〈∂t f (x0, t0), w∗〉 �= 0, we then have ṫ(0) = 0, which implies ẋ(0) �= 0 by the second
of (1.5). Evaluating (1.6) at s = 0 we therefore get Dx f (x0, t0)[ẋ(0)] = 0, i.e. ẋ(0) ∈
N(Dx f (x0, t0)).

Differentiating w.r.t s twice, we have

D2
x f (x(s), t(s))[ẋ(s), ẋ(s)] +2ṫ(s)∂t Dx f (x(s), t(s))[ẋ(s)] + Dx f (x(s), t(s))[ẍ(s)]

+ṫ(s)2∂2
t f (x(s), t(s))+ ẗ(s)∂t f (x(s), t(s))=0 ∀ s ∈ (−ε, ε).

Multiplying the above relation at s = 0 by w∗ and taking into account that ẋ(0) ∈
N(Dx f (x0, t0)) \ {0} and ṫ(0) = 0, we then conclude

ẗ(0)〈∂t f (x0, t0), w
∗〉 = −〈D2

x f (x0, t0)[ẋ(0), ẋ(0)], w∗〉 �= 0,

thanks to (T3) from Definition 1.1. The above relation then gives

ẗ(0) �= 0.

This yields the existence of a neighborhood V of x0 such that V ∩C(t0) contains only the point
x0, since a simple Taylor expansion of t around s = 0 shows that t(s) �= t0 in a sufficiently
small neighborhood of 0. ��
Genericity of the transversality conditions

As the results from [1,2,12] reveal their crucial role, it is interesting to investigate to what
extent the transversality conditions can be assumed to hold for “generic” vector fields. In
the realm of bifurcation theory, this is commonly accepted, see e.g. [5,6,11]. Nonetheless,
it is not always easy to find, in the literature, an explicit result stating the precise meaning
of genericity, especially in the infinite-dimensional setting (see [10] for a finite-dimensional
version of the genericity result).

We address this issue in Sect. 3. Its main result, Theorem 3.2, states that a certain class
of perturbations of f satisfy the transversality conditions up to a meagre subset (or, in finite
dimension, up to a Lebesgue negligible set). The key idea at the basis of our proof is that the
transversality conditions are equivalent to the property that the “augmented” operator

g : X × (0, T ) × (X \ {0}) → Y × Y g(x, t, v) := ( f (x, t), Dx f (x, t)[v]), (1.7)

has (0, 0) as a regular value, namely that the total differential dg is surjective at each point
of g−1(0, 0). This is proved in Lemma 2.8 below. We will combine this fact with a classical
result from the paper [9]. Theorem 1.1 therein indeed provides conditions ensuring that, up
to a meagre set, the perturbations of a given operator have (0, 0) as a regular value.

Our finite-dimensional genericity result reads

Theorem 1.3 Let f ∈ C3(X × (0, T ); R
n). There exists a meagre (or with zero Lebesgue

measure) set N ⊂ R
n × M

n×n such that for every (y, K ) ∈ (Rn × M
n×n) \ N the map

f̃ : X × (0, T ) → R
n, f̃ (x, t) := f (x, t) + y + K [x] (1.8)

satisfies the transversality conditions of Definition 1.1.
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On the transversality conditions and their genericity 105

The proof of this result, based on the classical Sard’s theorem, and the motivation for the
enhanced regularity requirement on f , are postponed to Sect. 3.1, Remark 3.4.

Plan of the paper In Sect. 2, we analyze the transversality conditions in the setting of
an infinite-dimensional Banach space X. We prove that they imply that the zeroes of f are
isolated (cf. Thm. 2.5). In Sect. 2.3 we also obtain the characterization of the transversality
conditions in terms of the operator g (1.7), which is the milestone for our genericity result,
Theorem 3.2, proved in Sec. 3.1. Finally, in Sect. 3.2, in view of the application to the singular
perturbation problem (1.2a)–(1.2b) we specialize the discussion and our results to the case
when f = DxE , with E : X × (0, T ) → R a smooth energy functional.

2 The transversality conditions in the infinite-dimensional case

In the infinite-dimensional context, it is natural to study the transversality conditions for the
class of vector fields f : X × (0, T ) → Y which are Fredholm maps of index 0 between
two Banach spaces X, Y (see below for a definition). We prove Lemma 2.4 which provides
a characterization of the first two transversality conditions in terms of the surjectivity of the
operator d f . We rely on this in the proof of the main result of this section, viz. Theorem
2.5, which states that the transversality conditions imply that the zeroes of f are isolated.
Finally, in Sect. 2.3, we obtain a characterization of the full set of transversality conditions
in Lemma 2.8. We will exploit this result in order to investigate their genericity in Sect. 3.

2.1 Assumptions and preliminary results

Notation and preliminary definitions Let X be a Banach space; we shall denote by ‖ · ‖X its
norm, by X∗ its dual, and by X∗ 〈·, ·〉X the duality pairing between X∗ and X.

Given two Banach spaces X and Y, we denote by L(X; Y) the space of linear bounded
operators from X to Y and by Lk(X; Y) the space of the continuous k-linear forms from Xk

to Y. If L ∈ L(X; Y) we denote by L∗ its adjoint operator in L(Y∗; X∗). We also set

kernel of L : N(L) = {
x ∈ X : Lx = 0

}
, range of L : R(L) = {

Lx : x ∈ X
}
. (2.1)

A subspace R ⊂ Y has finite codimension if there exists a finite-dimensional space S ⊂ Y
such that R+S = Y. In this case R is closed and we can always choose S so that S∩R = {0};
the codimension of R is then defined as codim(R) := dim(S). Moreover, R(L∗) is closed
and we have the adjoint relations

R(L)⊥ = N(L∗), N(L)⊥ = R(L∗). (2.2)

We recall that L ∈ L(X; Y) is a Fredholm operator if

dim(N(L)), codim(R(L)) are finite.

Since the Fredholm operator L is bounded, its range is closed (see [4, Chapter 6]). The index
of the operator L is defined as

ind(L) := dim(N(L)) − codim(R(L)). (2.3)

For Fredholm operators (2.2) yields

ind(L) = 0 ⇐⇒ dim(N(L)) = dim(N(L∗)), codim(R(L)) = codim(R(L∗)). (2.4)

The stability theorem shows that the collection of all Fredholm operators is open in L(X; Y)

and the index ind is a locally constant function. Let X ⊂ X be a connected open subset of X.
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106 V. Agostiniani et al.

A map f ∈ C1(X; Y) is a Fredholm map if for every x ∈ X the differential D f (x) ∈ L(X, Y)

is a Fredholm operator. The index of f is defined as the index of D f (x) for some x ∈ X . By
the stability theorem and the connectedness of X this definition is independent of x .

In this infinite-dimensional context, our basic assumption on the vector field f : X ×
(0, T ) → Y is the following.

Assumption 2.1 We require that f ∈ C2(X × (0, T ); Y), and that

f (·, t) : X → Y is a Fredholm map of index 0 for every t ∈ (0, T ). (2.5)

We shall denote by Dx f : X × (0, T ) → L(X; Y) and by ∂t f : X × (0, T ) → Y the partial
Gâteau derivatives of f , whereas d f is the total differential of f . As usual, the second order
(partial) differential D2

x f : X × (0, T ) → L2(X; Y) at a point (x, t) is identified with its
canonical bilinear form. As in the previous section we set

C :=
{
(x, t) ∈ X ×(0, T ) : f (x, t) = 0

}
, S :=

{
(x, t) ∈ C : Dx f (x, t) is not invertible

}
,

(2.6)
and we denote by C(t) and S(t) their sections at the time t ∈ (0, T ). Let us now state the
infinite-dimensional version of Definition 1.1.

Definition 2.2 [Transversality conditions in the infinite-dimensional case] Let f comply
with Assumption 2.1. We say that f satisfies the transversality conditions at a point (x0, t0) ∈
S if

(T1) dim(N(Dx f (x0, t0))) = 1;
(T2) If 0 �= �∗ ∈ N(Dx f (x0, t0)∗) then Y∗ 〈�∗, ∂t f (x0, t0)〉Y �= 0;
(T3) If 0 �= v ∈ N(Dx f (x0, t0)) then Y∗ 〈�∗, D2

x f (x0, t0)[v, v]〉Y �= 0.

If the above properties hold at every (x0, t0) ∈ S, we say that f satisfies the transversality
conditions.

Remark 2.3 Thanks to (2.4) and (2.5), the above condition (T1) yields that N(Dx f (x0, t0)∗)
has also dimension 1. Note that Assumption 2.1 implies that f : X × (0, T ) → Y is a
Fredholm map of index 1 with respect to the variable (x, t). Indeed,

d f (x, t)[v, τ ] = Dx f (x, t)[v] + τ∂t f (x, t); (2.7)

if ∂t f (x, t) ∈ R
(
Dx f (x, t)

)
then codim

(
R(d f (x, t))

) = codim
(
R(Dx f (x, t))

)
but

dim
(
N(d f (x, t))

) = dim
(
N(Dx f (x, t))

) + 1. On the other hand, if ∂t f (x, t) �∈
R

(
Dx f (x, t)

)
then codim

(
R(d f (x, t))

) = codim
(
R(Dx f (x, t))

)−1 and dim
(
N(d f (x, t))

)
= dim

(
N(Dx f (x, t))

)
.

Let us now get further insight into the transversality conditions (T1) and (T2).

Lemma 2.4 Suppose that f : X × (0, T ) → Y satisfies Assumption 2.1 and let (x0, t0) ∈ S

be fixed. Then conditions (T 1) and (T 2) of Definition 2.2 hold if and only if d f (x0, t0) is
onto.

Proof Let us suppose that d f (x0, t0) is onto. The inequality dim(N(Dx f (x0, t0))) ≤ 1
follows immediately by Remark 2.3 and from the fact that codim

(
d f (x0, t0)

) = 0, because
N

(
Dx f (x0, t0)

)×{0} ⊆ N
(
d f (x0, t0)

)
. Since (x0, t0) ∈ S, we conclude that (T1) holds.

Suppose now that 0 �= �∗ ∈ N
(
Dx f (x0, t0))∗

)
and let ξ ∈ Y be such that Y∗ 〈�∗, ξ 〉Y �= 0.

Since d f (x0, t0) is onto, there exists (v, τ ) ∈ X × R such that

ξ = Dx f (x0, t0)[v] + τ∂t f (x0, t0).
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On the transversality conditions and their genericity 107

Therefore

0 �= Y∗ 〈�∗, ξ 〉Y = Y∗ 〈�∗, Dx f (x0, t0)[v]〉Y + τY∗ 〈�∗, ∂t f (x0, t0)〉Y

= X∗ 〈Dx f (x0, t0)
∗[�∗], v〉X + τY∗ 〈�∗, ∂t f (x0, t0)〉Y = 0 + τY∗ 〈�∗, ∂t f (x0, t0)〉Y,

(2.8)

so that Y∗ 〈�∗, ∂t f (x0, t0)〉Y �= 0.
In order to prove the converse implication, let us suppose that (T1-2) hold and let �∗ ∈

R
(
dF(x0, t0)

)⊥ ⊂ Y∗. Since for every v ∈ X and τ ∈ R

Y∗ 〈�∗, Dx f (x0, t0)[v] + τ∂t f (x0, t0)〉Y = 0,

by choosing τ = 0 we immediately get �∗ ∈ R(Dx f (x0, t0))⊥ = N(Dx f (x0, t0)∗); property
(T2) then yields �∗ = 0, so that d f (x0, t0) is onto.

2.2 The transversality conditions imply that the zeroes are isolated

We are now in the position to state and prove the analogue of Theorem 1.2:

Theorem 2.5 Suppose that f satisfies Assumptions 2.1 and the transversality conditions of
Definition 2.2. Then, for every t ∈ (0, T ) the set C(t) := {x ∈ X : f (x, t) = 0} consists of
isolated points.

The proof follows the same outline as for Theorem 1.2. Indeed, we first of all observe
that, for t0 ∈ (0, T ) fixed, non-singular points x (i.e., such that N(Dx f (x, t0)) is trivial) are
isolated. In the singular case, after some preliminary discussion we again apply the implicit
function theorem in order to deduce that, in a neighborhood of (x0, t0) with x0 (singular) zero,
the zero set of f is the image of a suitable function. This allows us to exploit the transversality
conditions and deduce by the same arguments as in the finite-dimensional case, that x0 is
isolated.

Proof Let us fix (x0, t0) ∈ C and consider first the case when N(Dx f (x0, t0)) = {0}. Since
Dx f (x0, t0) is a Fredholm operator of index 0, Dx f (x0, t0) is invertible and we can apply
the infinite-dimensional version of the implicit function theorem (see e.g. [3, Theorem 2.3])
and conclude that x0 is isolated in C(t0).

Now suppose that N0 := N
(
Dx f (x0, t0)

)
is non-trivial. Then, by (T1) of Definition 2.2,

N0 = span(n0) for some n0 ∈ X \ {0}, so that we can write X = Z + N0, where
Z is a topological supplement of N0 in X. Thus, every x ∈ X can be uniquely expressed as

x = z + sn0, with z ∈ Z and s ∈ R. In particular, it is not restrictive to assume x0 = z0 + n0,
z0 ∈ Z.

Let us now consider the function f̃ (z, s, t) := f (z + sn0, t) defined in a neighborhood of
(z0, 1, t0) in Z×R×R. In analogy to the proof of Theorem 1.2, we now show that the differ-
ential of the function (z, t) → f̃ (z, 1, t) at the point (z0, t0), denoted by D(z,t) f̃ (z0, 1, t0),
is invertible. Let us note first that by construction and Lemma 2.4

R
(
D(z,t) f̃ (z0, 1, t0)

) = R
(
d f (x0, t0)

) = Y. (2.9)

To check injectivity of D(z,t) f̃ (z0, 1, t0), suppose that (v, τ ) ∈ N
(
D(z,t) f̃ (z0, 1, t0)

) ⊆ Z×R,
i.e.

0 = Dz f̃ (z0, 1, t0)[v] + τ∂t f̃ (x0, 1, t0) = Dx f (x0, t0)[v] + τ∂t f (x0, t0).
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108 V. Agostiniani et al.

Taking the duality with 0 �= �∗ ∈ N
(
Dx f (x0, t0)∗

) = R
(
Dx f (x0, t0)

)⊥ and recalling (T2)
we get τ = 0. Then Dx f (x0, t0)[v] = 0 so that v ∈ Z ∩ N0 = {0}. This concludes the proof
of the injectivity of D(z,t) f̃ (z0, 1, t0).

Since D(z,t) f̃ (z0, 1, t0) is invertible, we can now apply the implicit function theorem:
there exists a neighborhood U of (x0, t0), an open interval I � 0, and a C2-curve (z, t) : I →
Z × (0, T ) such that setting γ (s) := (z(s) + (1 + s)n0, t(s)) we have

γ (0) = (x0, t0), U ∩ C = γ (I ). (2.10)

Differentiating the identity f (γ (s)) = 0 w.r.t. s and evaluating at s = 0 we obtain

0 = Dx f (x0, t0)[ż(0) + n0] + ṫ(0)∂t f (x0, t0). (2.11)

Testing by 0 �= �∗ ∈ N
(
Dx f (x0, t0)∗

) = R
(
D f (x0, t0)

)⊥ and recalling (T2) as well as
ż ∈ Z, we then obtain

ṫ(0) = 0, ż(0) = 0. (2.12)

A further differentiation w.r.t. s gives at s = 0

0 = D2
x f (x0, t0)[n0, n0] + Dx f (x0, t0)[z̈(0)] + ẗ(0)∂t f (x0, t0),

also in view of (2.12). Testing the last expression by �∗ as before, we have

0 = Y〈Dx f (x0, t0)[n0, n0], �∗〉Y∗ + ẗ(0)Y〈∂t f (x0, t0), �
∗〉Y∗ .

From (T3) we deduce that ẗ(0) �= 0 and we conclude that 0 is the only solution of the equation
t(s) = t0 in a small neighborhood of 0, so that x0 is an isolated point in C(t0) by (2.10). ��

It is interesting to note that when f is analytic then conditions (T1–T2) of Definition 2.2
are still sufficient to provide a useful property of C(t).

Theorem 2.6 Suppose that f is an analytic map satisfying Assumptions 2.1 and (T1–T2) of
Definition 2.2, and that any connected component of C(t) is compact. Then the set C(t) is the
disjoint union of a discrete set and of an analytic manifold of dimension 1, whose connected
components are compact curves. Moreover, for every connected curve C ⊂ C(t) there exist
ε > 0 and an open neighborhood V such that C(s) ∩ V = ∅ for every s ∈ (0, T ) with
0 < |t − s| < ε.

Proof Let us keep the same notation of the proof of Theorem 2.5 and let x0 be a singular
point of C(t0). Since f is analytic, the curve γ parameterizing the set C in the neighborhood
U of the singular point (x0, t0) is analytic. If x0 is an accumulation point of C(t0) then the
t-component of γ takes the value t0 in a set accumulating at 0, so that t has to be identically
constant. It follows that γ (I ) is contained in C(t0) so that we conclude that the connected
component C of C(t0) containing x0 is a (non-degenerate) compact analytic curve. The last
assertion follows by the fact that every point of C ⊂ C(t0) has a neighborhood U in X ×(0, T )

such that C ∩ U ⊂ C × {t0} and that C is compact. ��
2.3 A characterization of the transversality conditions

Lemma 2.4 sheds light onto the relation between the first two transversality conditions, and
the surjectivity of the operator d f (x0, t0). In order to get a characterization of the full set
of transversality conditions of Definition 2.2, one has to bring into play the “augmented”
operator

g : X × (0, T ) × X → Y × Y g(x, t, v) := ( f (x, t), Dx f (x, t)[v]). (2.13)
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Let us first prove a preliminary result.

Lemma 2.7 If f : X ×(0, T ) → Y satisfies Assumption 2.1, then g(·, t, ·) : X ×X → Y×Y
is a Fredholm map of index 0 for every t ∈ (0, T ).

Proof In order to simplify the notation, we omit to indicate the explicit dependence on the
time variable. For a fixed (x, v) ∈ X × X, we can write

dg(x, v)[x̃, ṽ] = (H [x̃], K [x̃] + H [ỹ]) for every (x̃, ṽ) ∈ X × X,

where

H := Dx f (x), K := D2
x f (x)[v, ·].

Thus the thesis follows if we show that for every Fredholm operator H ∈ L(X; Y) of index
0 and for every K ∈ L(X; Y) the operator

A : L(X × X; Y × Y), A[x1, x2] = (H [x1], H [x2] + K [x1])
is a Fredholm operator of index 0.

We first observe that

(x1, x2) ∈ N(A) ⇔ x1 ∈ N(H), K [x1] = −H [x2],
so that, by introducing the finite-dimensional space

M :=
{

x ∈ N(H) : K [x]s ∈ R(H) = (
N(H∗)

)⊥}
,

it is easy to check that

dim
(
N(A)

) = dim M · dim(N(H)) < ∞. (2.14)

Let now S be a finite-dimensional subspace of Y such that S + R(H) = Y. it is immediate
to check that (S × S) + R(A) = Y × Y so that codim(R(A)) is finite and A is a Fredholm
operator.

We consider now the continuous perturbation [0, 1] � ϑ �→ Aϑ := (H, H + ϑ K ):
every Aϑ is a Fredholm operator so that the index of A = A1 coincides with the index of
A0 = (H, H) since the index is a continuous function. On the other hand it is straightforward
to check that A0 has index 0.

Let us now consider the restriction (still denoted by g) of g from (2.13) to the open domain

� := X × (0, T ) × (
X \ {0}) (2.15)

and notice that

g−1(0, 0) =
{
(x, t, v) ∈ � : (x, t) ∈ S, v ∈ N

(
Dx f (x, t)

)}
. (2.16)

According to the common terminology, we say that (0, 0) is a regular value of g if dg is
surjective at each point of g−1(0, 0).

Lemma 2.8 Let us suppose that f satisfies Assumption 2.1 and let g : � → Y × Y be
defined as in (2.13), (2.15). Then f satisfies the transversality conditions if and only if (0, 0)

is a regular value of g.
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Proof A direct calculation shows that dg(x0, t0, v0)[x̃, t̃, ṽ] = (y1, y2) if and only if

{
y1 = Dx f (x0, t0)[x̃] + t̃∂t f (x0, t0) = d f (x0, t0)[x̃, t̃]
y2 = D2

x f (x0, t0)[v0, x̃] + t̃ Dx∂t f (x0, t0)[v0] + Dx f (x0, t0)[ṽ]. (2.17)

Let us first suppose that (0, 0) is a regular value of g, let (x0, t0) ∈ S and 0 �= v0 ∈
N

(
Dx f (x0, t0)

)
.

It follows that (x0, t0, v0) ∈ g−1(0, 0) so that dg(x0, t0, v0) is onto and, in view of Lemma
2.4, conditions (T1-2) hold.

Let us now choose 0 �= �∗ ∈ N
(
Dx f (x0, t0)∗

)
, y2 ∈ Y such that Y∗ 〈�∗, y2〉Y �= 0, y1 = 0,

and a solution (x̃, t̃, ṽ) of (2.17). From the first line of (2.17) we get

0 = Y∗ 〈�∗, Dx f (x0, t0)[x̃]〉Y + t̃ Y∗ 〈�∗, ∂t f (x0, t0)〉Y = 0 + t̃Y∗ 〈�∗, ∂t f (x0, t0)〉Y

so that t̃ = 0, since Y∗ 〈�∗, ∂t f (x0, t0)〉Y �= 0. The same relation then yields x̃ ∈
N

(
Dx f (x0, t0)

)
, whence x̃ = λv0, for some λ ∈ R.

From the second line of (2.17)
we obtain (taking into account that t̃ = 0)

0 �= Y∗ 〈�∗, y2〉Y = λ Y∗ 〈�∗, D2
x f (x0, t0)[v0, v0]〉Y + Y∗ 〈�∗, Dx f (x0, t0)[ṽ]〉Y

= λ Y∗ 〈�∗, D2
x f (x0, t0)[v0, v0]〉Y + 0.

Therefore Y∗ 〈�∗, D2
x f (x0, t0)[v0, v0]〉Y �= 0, which shows the validity of condition (T3).

Let us now prove the converse implication. We assume the validity of (T1-2-3), we choose
a point (x0, t0, v0) ∈ g−1(0, 0) and we want to prove that dg(x0, t0, v0) is onto; equivalently,
if (�∗

1, �
∗
2) ∈ (

R(dg(x0, t0, v0))
)⊥ then �∗

1 = �∗
2 = 0.

The fact that �∗
1 = 0 is an immediate consequence of the surjectivity of d f (x0, t0), which

is the first component of dg(x0, t0, v0) as showed by (2.17).
Choosing x̃ = 0, t̃ = 0 and an arbitrary ṽ in the second component of (2.17) we see that

�∗
2 ∈ (

R(Dx f (x0, t0))
)⊥ = N

(
Dx f (x0, t0)∗

)
. Choosing now ṽ = 0, t̃ = 0, and x̃ = v0 we

get Y∗ 〈�∗
2, D2

x f (x0, t0)[v0, v0]〉Y = 0. Since 0 �= v0 ∈ N
(
Dx f (x0, t0)

)
, (T3) yields �∗

2 = 0.

Notice that for (x0, t0) ∈ S the operator dg(x0, t0, 0) cannot be onto, since the second
component of (2.17) reduces to Dx f (x0, t0)[·] whose range has codimension 1.

3 On the genericity of the transversality conditions

In this section we discuss the genericity of the transversality conditions of Definition 2.2. In
the following Sect. 3.1, we give our main result in this direction, Theorem 3.2. It states that,
up to a small (in the topological sense) set of operators within a certain class, it is always
possible to perturb a (suitably smooth) map f : X × (0, T ) → Y with such operators, in
such a way as to obtain a map f̃ which complies with Definition 2.2. The proof of Theorem
3.2 relies on the characterization of the transversality conditions provided in Sect. 2.3, and
on a well-known genericity result from the seminal paper [9]. In Sect. 3.2 we revisit the
genericity result, as well as Theorem 2.5, in the case where f is the space differential of a
time-dependent energy functional.

Notice that the genericity of conditions (T1–T2) of Definition 2.2 with respect to a simpler
class of perturbations is a direct consequence of the results of [9].
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3.1 The genericity results

In order to make precise in which sense we are going to prove that the transversality conditions
hold “generically”, let us recall that a set N in a topological space T is said to be nowhere
dense if the interior of its closure is empty. Equivalently, its complement T \ A has dense
interior, i.e. A is contained in the complement of an open and dense set.

A set is said to be meagre if it is contained in a countable union of nowhere dense sets.
Conversely, a set is residual if it is the complement of a meagre set, i.e. it contains the
intersection of a countable collection of open and dense sets.

We will suppose that

X, Y, Z are separable Banach spaces, X ⊂ X, 0 ∈ Z ⊂ Z open and connected, (3.1)

and we will deal with a sufficiently large class of additive perturbations of the map f :
X × (0, T ) → Y of the type

f̃ (x, t) := f (x, t) + y + j (x, z), y ∈ Y, z ∈ Z , (3.2)

obtained by means of j : X × Z → Y of class C2 with j (x, 0) = 0. We will suppose that
for every x ∈ X, t ∈ (0, T ), z ∈ Z and v ∈ X \ {0} the following admissibility conditions
are satisfied by j :

Dx f̃ (x, t) = Dx f (x, t) + Dx j (x, z) is a Fredholm operator in L(X; Y), (J1)

(ṽ, z̃) �→ Dx f̃ (x, t)[ṽ] + D2
xz j (x, z)[v, z̃] is surjective, (J2)

i.e. for everyw ∈ Y there exist ṽ, z̃ ∈ X × Z such that

Dx f (t, x)[ṽ] + Dx j (x, z)[ṽ] + D2
xz j (x, z)[v, z̃] = w. (J2’)

Notice that when j is a bilinear map, (J2′) takes the simpler form

Dx f (t, x)[ṽ] + j (ṽ, z) + j (v, z̃) = w. (3.3)

In Example 3.1 below, we exhibit a particular case of admissible mapping j , with values
in a suitable space of compact operators.

Example 3.1 Let us consider a separable Banach space K continuously included in L(X; Y)

such that

every K ∈ K is a compact operator, (K1)

for every v ∈ X \ {0}, w ∈ Y there exists K ∈ K : K [v] = w. (K2)

As a typical example, we can choose K to be the closure in L(X, Y) of the nuclear operators
of the form

K [x] =
N∑

n=1
X∗ 〈�n, x〉X yn, �n ∈ X∗

0, yn ∈ Y.

where X∗
0 is a separable subspace of X∗ that separates the points of X. Observe that condition

(K2) holds. Indeed, whenever v ∈ X \ {0}, w ∈ Y are given, by choosing � ∈ X∗
0 so that

X∗ 〈�, v〉X = 1 we can simply set

K [x] := X∗ 〈�, x〉X w. (3.4)
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Hence, we let Z := K and take as j the bilinear map

j : X × K → Y, j (x, K ) := K [x] (3.5)

Then, condition (J1) is satisfied, since for every K ∈ K the differential Dx j (x, K ) = K is
a compact operator and thus, when added to a Fredholm operator, gives rise to a Fredholm
operator with the same index. It is immediate to check that (K2) guarantees the validity of
(J2), since D2

xz j (x, K )[ṽ, K̃ ] = K̃ [ṽ].
We then have the following theorem.

Theorem 3.2 Let us assume that (3.1) and the admissibility conditions (J1-2) hold, for a
map f ∈ C3(X × (0, T ); Y) complying with Assumption 2.1 and for j ∈ C2(X × Z; Y).

Every open neighborhood U of the origin in Y × Z contains a residual subset Ur such
that for every (y, z) ∈ Ur the map

f̃ : X × (0, T ) −→ Y f̃ (x, t) := f (x, t) + y + j (x, z). (3.6)

satisfies the transversality conditions of Definition 2.2.

Proof First of all, it is useful to pass from f to the functional

F : X × (0, T ) × Y × Z −→ Y F(x, t, y, z) := f (x, t) + y + j (x, z),

which incorporates the perturbation terms, so that the map f̃ of (3.6) coincides with
F(·, ·, y, z).

In accord with (2.13), we consider the augmented functional G : � × Y × Z → Y × Y
(recall that � := X × (0, T ) × (

X \ {0}))

G(x, t, v, y, z) :=
(

F(x, t, y, z)
DxF(x, t, y, z)[v]

)
=

(
f (x, t) + y + j (x, z)
Dx f (x, t)[v] + Dx j (x, z)[v]

)
, (3.7)

which for every (y, z) ∈ Y × Z gives raise to the perturbed functionals

g̃(x, t, v)=G(x, t, v, y, z)=
(

f (x, t)+y + j (x, z),
(
Dx f (x, t) + Dx j (x, z)

)[v]
)
. (3.8)

By Lemma 2.8, f̃ satisfies the transversality conditions if and only if (0, 0) is a regular value
for g̃. We conclude by applying the next result.

Proposition 3.3 Under the same assumptions of Theorem 3.2, the set

R := {(y, z) ∈ Y × Z : (0, 0) is a regular value of the map (x, t, v) �→ G(x, t, v, y, z)}
is residual in Y × Z.

Proof We are going to apply [9, Theorem 1.1, Remark A.1] and thus check that the corre-
sponding assumptions hold, namely

(a) the space Y × Z is separable;
(b) G ∈ C2(� × Y × Z; Y × Y) and for every (y, z) ∈ Y × Z the map (x, t, v) �→

G(x, t, v, y, z) is Fredholm with index 1;
(c) (0, 0) is a regular value for G.
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Condition (a) clearly holds since we have assumed Y and Z separable.
As for (b), clearly G is of class C2 thanks to the enhanced C3-regularity required of f and

to the C2-regularity of j . Moreover, condition (J1), Lemma 2.7, and the same argument of
Remark 2.3 yield that every perturbed functional g̃ as in (3.8) is Fredholm of index 1.

Let us now focus on the last property (c), and let us set h(t, x, z) := f (t, x)+ j (z, x). We
have to check that, if G(x0, t0, v0, y0, z0) = (0, 0), then dG(x0, t0, v0, y0, z0) is onto, namely
that for every (w1, w2) ∈ Y × Y there exists (x̃, t̃, ṽ, ỹ, z̃) ∈ X × R × X × Y × Z such that

w1 = Dx h(x0, t0, z0)[x̃] + t̃ ∂t f (x0, t0) + ỹ + Dz j (x0, z0)[z̃], (3.9a)

w2 = D2
x h(x0, t0, z0)[v0, x̃] + t̃ ∂t Dx f (x0, t0)[v0]

+ Dx h(x0, t0, v0)[ṽ] + D2
xz j (x0, z0)[v0, z̃]. (3.9b)

For this, we choose x̃ = 0, t̃ = 0 and we use condition (J2) to find ṽ ∈ X and z̃ ∈ Z such
that (3.9b) is satisfied. In order to fulfill (3.9a), we take ỹ := w1 − D j (z0)(z̃)[x0]. With this,
we conclude that (c) holds.

Remark 3.4 (The finite-dimensional case) Our genericity result in the finite-dimensional
setting of Sect. 1, Theorem 1.3, derives from Theorem 3.2. Indeed, the perturbed map f̃ in
(1.8) is of the form (3.6), where we have taken as admissible perturbation j the mapping
(3.5) from Example 3.1. We accordingly introduce the finite-dimensional analogues of the
functionals F and G, to which Lemma 2.8 clearly applies. In this case, the set � defined
in (2.15) reduces to X × (0, T ) × (Rn \ {0}) and K is M

n×n . Also, note that since f ∈
C3(X × (0, T ); R

n), then G is of class C2. Proceeding as in the proof of [9, Theorem 1.1] it
is possible to show that proving that the set

R := {(y, K ) ∈ R
n × M

n×n : (0, 0) is a regular value of the map G(·, ·, ·, y, K )} (3.10)

has full Lebesgue measure, is equivalent to proving that the set V of the regular values of the
function π : G−1(0, 0) → R

n × M
n×n has full Lebesgue measure in R

n × M
n×n , where π is

the projection onto the last two components in �×R
n ×M

n×n . This property follows from the
regularity of G, the fact that (0, 0) is a regular value of G so that π is a C2 map, and the classical
Sard’s Theorem, since 2 > dim(G−1(0, 0))−dim(Rn ×M

n×n) = n2 +n +1−(n +n2) = 1.
Once (3.10) is established, we can conclude as done in the proof of Theorem 3.2.

3.2 Critical points of an energy functional

In this last section we consider the particular case when

X ⊂ H, Y ⊂ H∗ with continuous and dense inclusions,

H is a separable Hilbert space and f is the space differential of a time-dependent functional
E : X × (0, T ) → R, i.e.

f = DxE , E ∈ C3(X × (0, T )), X ⊂ X connected and open. (3.11)

We are thus assuming that the differential of the energy takes values (and is regular) in a
possibly smaller Banach space Y contained in X∗. On the other hand (see [9, Remark 1.1])
for every (x, t) ∈ X × (0, T ) we will suppose that the linear operator L associated with the
second order differential D2

xE admits a unique continuous extension L̃ ∈ L(H, H∗) satisfying

D(L̃; Y) = {
h ∈ H : L̃h ∈ Y

} ⊂ X. (3.12)
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Notice that for every v,w ∈ X

H∗ 〈Lv,w〉H = D2
xE (x, t)[v,w] = D2

xE (x, t)[w, v] = H∗ 〈Lw, v〉H,

so that L̃ is selfadjoint. In this setting, C is the set of critical points of E and S is the
corresponding singular subset

C :=
{
(x, t)∈ X ×(0, T ) : DxE (x, t) = 0

}
, S :=

{
(x, t)∈C : D2

xE (x, t) is not invertible.
}
.

(3.13)
We will assume that DxE is a Fredholm map of index 0. In particular we can identify the
kernel N = N(D2

xE (x, t)) in X with N∗ = N(D2
xE (x, t)∗) in Y∗: it is in fact easy to check

that the canonical inclusion X ⊂ Y∗ induced by the scalar product of H yields N ⊂ N∗,
since (still using the notation L for the second order differential D2

xE ), Lv = 0 and v ∈ X
yield

X∗ 〈L∗v,w〉X = H〈v, Lw〉H∗ = H∗ 〈Lv,w〉H = 0 if v ∈ N(L).

This implies that N(L) and N(L∗) coincide, since they have the same dimension by the index
property. The transversality conditions read

Definition 3.5 (Transversality conditions for a time-dependent functional) We say that E
satisfies the transversality conditions at a point (x0, t0) ∈ S if

(E1) dim(N(D2
xE (x0, t0))) = 1;

(E2) If 0 �= v ∈ N(D2
xE (x0, t0)) then X∗ 〈∂t DxE (x0, t0), v〉X �= 0;

(E3) If 0 �= v ∈ N(D2
xE (x0, t0)) then D3

xE (x0, t0)[v, v, v] �= 0.

The functional E satisfies the transversality conditions if (E1-2-3) hold for every (x0, t0) ∈ S.

Theorem 2.5 immediately yields:

Corollary 3.6 If E ∈ C3(X × (0, T )) is a time-dependent functional with Fredholm dif-
ferentials DEx (·, t) which satisfies the transversality conditions (E1-2-3), then the sets
C(t) := {

x ∈ X : DxE (x, t) = 0
}

are discrete for every t ∈ (0, T ).

We now address the genericity of the transversality conditions from Definition 3.5. In
Corollary 3.7 below we rephrase, in terms of the functional E , the statement of Theorem
3.2, considering here only the simple case of Example 3.1. Accordingly, we consider the set
Nsym obtained by taking the closure in L2(X; R) of all the symmetric bilinear forms of the
type

K (x, y) =
n∑

j=1

X∗ 〈� j , x〉X X∗ 〈� j , y〉X . (3.14)

Corollary 3.7 Let E ∈ C4(X × (0, T )) be a time-dependent functional with Fredholm
differentials. Every open neighborhood U of the origin in X∗ × Nsym contains a residual
subset Ur such that for every (�, K ) ∈ Ur the functionals

Ẽ (x, t) = E (x, t) + X∗ 〈�, x〉X + 1

2
K (x, x) (3.15)

satisfy the transversality conditions (E1-2-3).

Proof We apply Theorem 3.2: notice that the perturbations (3.15) of E correspond to the
family of perturbations for f = DxE

f̃ (x, t) = f (x, t) + � + K [x], (3.16)
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where K ∈ L(X, X∗) is associated with K by

X∗ 〈K x1, x2〉X = K (x1, x2), for every x1, x2 ∈ X. (3.17)

Clearly, the collection of all such operators satisfies the admissibility conditions (K1-2); in
order to check (K3), we fix x ∈ X \ {0}, � ∈ X∗, and we consider the bilinear forms

K (x1, x2) = X∗ 〈�, x1〉X X∗ 〈�, x2〉X

X∗ 〈�, x〉X
if X∗ 〈�, x〉X �= 0,

K (x1, x2) = X∗ 〈�, x1〉X X∗ 〈x∗, x2〉X + X∗ 〈x∗, x1〉X X∗ 〈�, x2〉X if X∗ 〈�, x〉X = 0,

where x∗ ∈ X∗ satisfies X∗ 〈x∗, x〉X = 1. It is immediate to check that the associate linear
operator K satisfies K [x] = �.

We conclude by exhibiting an integral energy functional E , whose critical points (i.e. the
zeroes of its space differential) solve a semilinear elliptic equation on a bounded domain �.
Therefore, as customary we will use the letter x to denote the points in �, and write E (u, t)
in place of E (x, t).

Example 3.8 Let � be a bounded connected open set in R
d , d ≤ 3, and let

X = H2(�) ∩ H1
0 (�), Y = L2(�),

and

E (u, t) :=
∫

�

(
1

2
|∇u(x)|2 + W(u(x)) − �(t)u(x)

)
dx

with � ∈ C4(0, T ; L2(�)) and W the usual double-well potential W(u) = (u2 − 1)2/4.
Observe that E ∈ C4(X × (0, T )) thanks to the continuous imbedding of X in L∞(�). We
have that

f = DuE : X × (0, T ) → Y is given by f (u, t) = Au + W′(u) − �(t)

with A : H2(�) ∩ H1
0 (�) → L2(�) the Laplacian operator with homogeneous Dirichlet

boundary conditions. Note that A is Fredholm with index 0. It follows from [8, Thm. 5.26,
p. 238] that also f (·, t) is a Fredholm map with index 0 for every t ∈ (0, T ). We have that

Du f (u0, t0)[v] = Av + W′′(u0)v for all v ∈ X.

Let us now construct an explicit perturbation of f to which Theorem 3.2 applies. We take

Z = C(�) and j : Z × X → Y defined by j (u, z) := zu, (3.18)

so that j (u, z) is a bilinear operator. Observe that the perturbed field f̃ (u, t) = f (u, t)+y+zu
is the space differential of the perturbed energy

Ẽ (u, t) = E (u, t) +
∫

�

y u dx + 1

2

∫

�

z u2 dx . (3.19)

It follows again from [8, Thm. 5.26, p. 238] that f̃ (·, t) is a Fredholm map of index 0 for
every t ∈ (0, T ).

In order to check that Theorem 3.2 applies in this setting, it would remain to verify that j
in (3.18) complies with condition (J2’) in the form (3.3).

Therefore, for given u0 ∈ X, t0 ∈ (0, T ), v0 ∈ X \ {0} and z0 ∈ C(�) we want to show
that for every w ∈ L2(�) the equation

Aṽ + (W ′′(u0) + z0)ṽ + v0 z̃ = w (3.20)
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admits at least a solution ṽ ∈ X, z̃ ∈ C(�).
Since the operator ṽ �→ Aṽ + (W ′′(u0) + z0)ṽ is Fredholm of index 0 from X to Y (and

thus its range is closed with finite codimension), it is sufficient to prove that the only element
ξ ∈ L2(�) such that

∫

�

ξ
(

Aṽ + (W ′′(u0) + z0)ṽ + v0 z̃
)

dx = 0 for every ṽ ∈ X, z̃ ∈ C(�)

is ξ ≡ 0. Choosing z̃ = 0 and an arbitrary ṽ we get
∫

�

ξ
(

Aṽ + (W ′′(u0) + z0)ṽ
)

dx = 0 for every ṽ ∈ X,

so that ξ ∈ X and
Aξ + (W ′′(u0) + z0)ξ = 0. (3.21)

On the hand, choosing ṽ = 0 and arbitrary z̃ we get ξ = 0 on the set ω = {x ∈ � :
v0(x) �= 0}, which is open and not empty since v0 ∈ C(�) �= 0.

Then, (3.21) and the unique continuation principle (see e.g. [7]) imply that ξ = 0. There-
fore, condition (3.20) is satisfied

Theorem 3.9 Every open neighborhood U of the origin in L2(�)×C(�) contains a (dense)
residual set Ur such that the functional Ẽ defined by (3.19) satisfies the transversality condi-
tions for every (y, z) ∈ Ur . In particular, for every t ∈ (0, T ) and (y, z) ∈ Ur the solutions
u ∈ H2(�) ∩ H1

0 (�) of the equation

−�u + W‘′(u) + zu = y + �(t) in �, u = 0 on ∂�, (3.22)

are isolated in H2(�) ∩ H1
0 (�).
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