
Rend. Circ. Mat. Palermo (2014) 63:447–455
DOI 10.1007/s12215-014-0169-3

On the asymptotic behavior of the solutions of third order
delay differential equations

Moussadek Remili · Djamila Beldjerd

Received: 16 March 2014 / Accepted: 17 September 2014 / Published online: 25 September 2014
© Springer-Verlag Italia 2014
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1 Introduction

We consider nonlinear third order delay differential equation of the form

[�(x)x ′]′′ + a(t)x ′′ + b(t)�(x)x ′ + c(t) f (x(t − r)) = e(t), (1.1)

where r > 0, and the functions a(t), b(t), c(t), e(t), f (x), �(x), and �(x) are continu-
ous in their respective arguments and f ′(x), � ′(x),�′(x) exist and are continuous for all
x .

The asymptotic property of solutions of third order differential equations has received a
considerable amount of attention. In numerous places in the literature, for example [1–21],
the authors dealt with the problems by considering Lyapunov functions or functionals and
obtained the criteria for the stability.
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In 1974, Hara [8] investigated the asymptotic behavior of solutions of the differential
equation without delay of the form

x ′′′ + a(t)x ′′ + b(t)x ′ + c(t) f (x) = e(t), (1.2)

and showed that all solutions of the Eq. (1.2) are uniformly bounded and satisfy x(t) →
0, x ′(t) → 0 and x ′′(t) → 0. More recently in 2005, Sadek in [13] establishes conditions
under which all solutions of third order differential equation with delay of the form,

x ′′′ + a(t)x ′′ + b(t)x ′ + c(t) f (x(t − r)) = 0

tend to the zero solution as t → ∞. Our objective in this paper is to extend the results verified
by Sadek [13] to obtain sufficient conditions for the stability and the boundedness of solutions
of delay differential equation (1.1) for the cases e(t) ≡ 0 and e(t) �= 0. Clearly the equation
discussed in Sadek [13] is a special case of Eq. (1.1) when �(x) = �(x) = 1. We shall use
appropriate Lyapounov function and impose suitable conditions on the functions f (x),�(x)
and �(x). On the other hand, we can find the same result for the Eq. (1.1) without delay by
putting r = 0, witch is generalization of Hara [8] results.

2 Preliminaries

First, we will give some basic definitions and important stability criteria for the general
non-autonomous delay differential system. We consider

x ′ = f (t, xt ), xt (θ) = x(t + θ), −r ≤ θ ≤ 0, t ≥ 0, (2.1)

where f : I × CH → R
n is a continuous mapping, f (t, 0) = 0, CH := {φ ∈

(C[−r, 0], R
n) : ‖φ‖ ≤ H}, and for H1 < H , there exists L(H1) > 0, with | f (t, φ)| <

L(H1) when ‖φ‖ < H1.

Definition 2.1 [5] An element ψ ∈ C is in the ω− limit set of φ, say �(φ), if x(t, 0, φ) is
defined on [0,+∞) and there is a sequence {tn}, tn → ∞, as n → ∞, with ‖xtn (φ)−ψ‖ → 0
as n → ∞ where xtn (φ) = x(tn + θ, 0, φ) f or −r ≤ θ ≤ 0.

Definition 2.2 [5] A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the solution of (2.1),
x(t, 0, φ), is defined on [0,∞) and xt (φ) ∈ Q for t ∈ [0,∞).

Lemma 2.3 [3] If φ ∈ CH is such that the solution xt (φ) of (2,1) with x0(φ) = φ is defined
on [0,∞) and ‖xt (φ)‖ ≤ H1 < H for t ∈ [0,∞), then �(φ) is a non-empty, compact,
invariant set and

dist (xt (φ),�(φ)) → 0 as t → ∞.

Lemma 2.4 [3] let V (t, φ) : I × CH → R be a continuous functional satisfying a local
Lipschitz condition. V (t, 0) = 0, and such that:

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖) where W1(r), W2(r) are wedges.
(ii) V ′

(2,1)(t, φ) ≤ 0, for φ ∈ CH .

Then the zero solution of (2.1) is uniformly stable.
If Z = {φ ∈ CH : V ′

(2,1)(t, φ) = 0}, then the zero solution of (2.1) is asymptotically
stable, provided that the largest invariant set in Z is Q = {0}.
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Stability and boundedness 449

3 Assumptions and main results

First, we state some assumptions on the functions that appeared in (1.1). Suppose that there
are positive constants a0, b0, c0, ψ0, ψ1, φ0, φ1, A, B, C, N1, δ0, and δ1 such that the
followings conditions are satisfied

(i) 0 < a0 ≤ a(t) ≤ A; 0 < b0 ≤ b(t) ≤ B; 0 < c0 ≤ c(t) ≤ C , t ≥ 0,
(ii) 0 < ψ0 ≤ �(x) ≤ ψ1 and 0 < φ0 ≤ �(x) ≤ φ1 for all x,

(iii) f (0) = 0,
f (x)

x
≥ δ0 > 0 (x �= 0), and | f ′(x)| ≤ δ1, for all x,

(iv)
∫ +∞

−∞
∣∣� ′(u)

∣∣ du < ∞ and
∫ +∞

−∞
∣∣�′(u)

∣∣ du < ∞,

(v)
∫ ∞

0

∣∣c′(s)
∣∣ ds ≤ N1 < ∞ and c′(t) → 0 as t → ∞.

For the case e(t) ≡ 0, the following result is introduced.

Theorem 3.1 In addition to conditions (i)–(v) being satisfied, suppose that the following
conditions hold

(H1)
ψ1C

b0φ0
δ1 < μ < a0,

(H2) μa′(t)+�(x)�(x)b′(t)−�2(x)
δ1

μ
c′(t) < μb0φ0 − ψ1Cδ1.

Then every solution of (1.1) is uniformly asymptotically stable, provided that

r < min

{
2(a0 − μ)

ψ1Cδ1
,
ψ3

0 (μb0φ0 − ψ1Cδ1)

ψ2
1 Cδ1(μ+ μψ2

0 + ψ0)

}
.

Proof We use the following differential system which is equivalent to Eq. (1.1)

x ′ = 1

�(x)
y,

y′ = z, (3.1)

z′ = − a(t)

�(x)
z + a(t)� ′(x)

�3(x)
y2 − b(t)�(x)y

�(x)
− c(t) f (x)

+
∫ t

t−r
y(s)

f ′(x(s))
�(x(s))

.

The proof depend on some fundamental properties of a continuously differentiable Lyapunov
functional V = V (t, x, y, z) defined as

V (t, xt , yt , zt ) = μc(t)F(x)+ c(t) f (x)y + 1

2

b(t)�(x)

�(x)
y2 + μa(t)

2�2(x)
y2

+ μ

�(x)
yz + 1

2
z2 + λ

∫ 0

−r

∫ t

t+s
y2(ξ)dξds,

such that F(x) = ∫ x
0 f (u)du, and λ is a positive constant which will be determined later in

the proof. To show that V is a positive function, we rewrite V above thus

V (t, xt , yt , zt ) = μc(t)G(x, y)+ V1 + V2 + λ

∫ 0

−r

∫ t

t+s
y2(ξ)dξds, (3.2)

where
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G(x, y) = F(x)+ 1

μ
y f (x)+ δ1

2μ2 y2,

V1 = V1(t, xt , yt , zt ) = 1

2

[
−c(t)δ1

μ
+ b(t)�(x)

�(x)

]
y2,

V2 = V2(t, xt , yt , zt ) = μa(t)

2�2(x)
y2 + μ

�(x)
yz + 1

2
z2.

By using hypotheses, we obtain

μc(t)G(x, y) = μc(t)

[
F(x)+ δ1

2μ2

(
y + μ

δ1
f (x)

)2

− 1

2δ1
f 2(x)

]

≥ μc(t)

[∫ x

0

(
1 − f ′(u)

δ1

)
f (u)du

]
≥ 0.

V2 can be rearranged as the following

V2(t, xt , yt , zt ) = 1

2

μa(t)

�2(x)
y2 + μ

�(x)
yz + 1

2
z2

= 1

2

(
z + μ

�(x)
y

)2

− 1

2

μ2

�2(x)
y2 + 1

2

μa(t)

�2(x)
,

from hypothesis (H1), a0 − μ > 0, then
a(t)μ

�2(x)
− μ2

�2(x)
> 0, it follows that there is a

positive constant k1 such that

V2(t, xt , yt , zt ) ≥ k1(y
2 + z2),

from which we deduce that V2 is positive definite. Furthermore, from hypotheses (i) and (ii),
we obtain

V1(t, xt , yt , zt ) ≥ 1

2

[
b0φ0μ− ψ1Cδ1

μψ1

]
y2.

Hence, it is evident from (H1) and the terms contained in the last inequality, that there exist
sufficiently small positive constant k2, such that

V1 + V2 ≥ k2(y
2 + z2).

Using (3.2) we get

V ≥ μc0G(x, y)+ k2(y
2 + z2). (3.3)

Therefore we can find a continuous function W1(|ϕ(0)|) with

W1(|ϕ(0)|) ≥ 0 and W1(|ϕ(0)|) ≤ V (t, ϕ).

The existence of a continuous function W2(‖ϕ‖) which satisfies the inequality V (t, ϕ) ≤
W2(‖ϕ‖), is easily verified.

The derivative of the Lyapunov functional V (t, xt ,yt ,zt ), along a solution (x(t), y(t), z(t))
of the system (3.1), with respect to t is after simplifying
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V ′
(3.1) = μc′(t)F(x)+ c′(t)y f (x)+ c′(t)δ1

2μ
y2 + (a(t)− μ)α(t)zy

+b(t)

2
β(t)y2 +

(
c(t) f ′(x)
�(x)

− μb(t)�(x)

�2(x)

)
y2

+
(

1

2

μa′(t)
�2(x)

+ b′(t)�(x)
2�(x)

− c′(t)δ1

2μ

)
y2 +

(
μ− a(t)

�(x)

)
z2 + λry2

+c(t)

(
z + μ

�(x)
y

) ∫ t

t−r
y(s)

f ′(x(s))
�(x(s))

ds − λ

∫ t

t−r
y2(ξ)dξ,

where

α(t) = � ′(x(t))
�2(x(t))

x ′(t), β(t) = �(x)�′(x)−�(x)� ′(x)
�2(x)

x ′(t).

By the assumptions (i)–(iii), (H1)–(H2), and using the Schwartz inequality 2|uv| ≤ u2 + v2

we find

V ′
(3.1) ≤ μc′(t)

[
F(x)+ 1

μ
y f (x)+ δ1

2μ2 y2
]

+ 1

ψ1
(μ− a0)z

2 +
[
ψ1Cδ1 − μb0φ0

ψ2
1

+ λr

]
y2

+1

2
((A − μ) |α(t)| + B |β(t)|) (y2 + z2)

+ 1

2ψ2
1

[
μa′(t)+ b′(t)�(x)�(x)−�2(x)

c′(t)δ1

μ

]
y2

+c(t)

(
z + μ

�(x)
y

) ∫ t

t−r
y(s)

f ′(x(s))
�(x(s))

ds − λ

∫ t

t−r
y2(ξ)dξ.

Taking k3 = 1
2 max{A − μ, B} then

V ′
(3.1) ≤ μc′(t)G(x, y)+

[
ψ1Cδ1 − μb0φ0

�2(x)
+ λr

]
y2

+ 1

2ψ2
1

[
μa′(t)+ b′(t)�(x)�(x)−�2(x)

δ1

μ
c′(t)

]
y2

+ 1

ψ1
(μ− a0)z

2 + k3(|α(t)| + |β(t)|)(y2 + z2)

+c(t)

(
z + μ

�(x)
y

) ∫ t

t−r
y(s)

f ′(x(s))
�(x(s))

ds − λ

∫ t

t−r
y2(ξ)dξ.

From (iii) | f ′(x)| ≤ δ1, and using the Schwartz inequality again we have

μc(t)

�(x)
y
∫ t

t−r

y(s)

�(x)
f ′(x(s))ds ≤ Cδ1μr

2ψ0
y2 + Cμδ1

2ψ3
0

∫ t

t−r
y2(ξ)dξ,

and

c(t)z
∫ t

t−r

y(s)

�(x)
f ′(x(s))ds ≤ Cδ1r

2
z2 + Cδ1

2ψ2
0

∫ t

t−r
y2(ξ)dξ,

from which we deduce that
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V ′
(3.1) ≤ μc′(t)G(x, y)+ 1

2ψ2
1

[
μa′(t)+ b′(t)�(x)�(x)−�2(x)

δ1

μ
c′(t)

]
y2

+
[
ψ1Cδ1 − μb0φ0

ψ2
1

+ λr + Cδ1μr

2ψ0

]
y2 +

[
1

ψ1
(μ− a0)+ Cδ1r

2

]
z2

+k3(|α(t)| + |β(t)|)(y2 + z2)+
[

Cδ1

2ψ2
0

(
1 + μ

ψ0

)
− λ

]∫ t

t−r
y2(ξ)dξ.

Choosing
Cδ1

2ψ2
0

(
1 + μ

ψ0

)
= λ, and using condition (H1) we get

V ′
(3.1) ≤ μc′(t)G(x, y)−

[
μb0φ0 − ψ1Cδ1

2ψ2
1

− Cδ1

2ψ0

(
μ+ 1

ψ1
+ μ

ψ2
0

)
r

]
y2

−
[

a0 − μ

ψ1
− Cδ1r

2

]
z2 + k3(|α(t)| + |β(t)|)(y2 + z2).

We define the Lyapounov functional W = W (t, xt , yt , zt ) as

W (t, xt , yt , zt ) = (exp −η(t))V (t, xt , yt , zt ) = (exp −η(t))V,
where

η(t) =
∫ t

0

[
1

γ
(|α(s)| + |β(s)|)+ 1

c0
|c′(s)|

]
ds,

and γ is a positive constant which will be determined later in the proof. It is easily verified
that

W ′
(3.1)(t, xt , yt , zt ) = (exp −η(t))

[
V ′
(3.1) −

(
1

γ
(|α(t)| + |β(t)|)+ 1

c0
|c′(t)|

)
V

]
,

from conditions (ii) and (iv) we obtain∫ t

0
|α(s)ds| =

∫ t

0

∣∣∣∣�
′(x(s))

�2(x(s))
x ′(s)

∣∣∣∣ ds

=
∫ ω2(t)

ω1(t)

∣∣∣∣�
′(u)

�2(u)

∣∣∣∣ du ≤ 1

ψ2
0

∫ ω2(t)

ω1(t)
|� ′(u)|du

<
1

ψ2
0

∫ +∞

−∞
|� ′(u)|du ≤ N2 < ∞,

where ω1(t) = min{x(0), x(t)}, ω2(t) = max{x(0), x(t)}. We get also∫ t

0
|β(s)ds| ≤

∫ t

0

∣∣∣∣�(x(s)) �
′(x(s))

�2(x(s))
x ′(s)

∣∣∣∣ ds +
∫ t

0

∣∣∣∣�
′(x(s))x ′(s)
�(x(s))

∣∣∣∣ ds

=
∫ ω2(t)

ω1(t)

∣∣∣∣�(u) �
′(u)

�2(u)

∣∣∣∣ du +
∫ ω2(t)

ω1(t)

∣∣∣∣�
′(u)
�(u)

∣∣∣∣ du

≤ φ1

ψ2
0

∫ ω2(t)

ω1(t)
|� ′(u)|du + 1

ψ0

∫ ω2(t)

ω1(t)
|�′(u)|du

<
φ1

ψ2
0

∫ +∞

−∞
|� ′(u)|du + 1

ψ0

∫ +∞

−∞
|�′(u)|du ≤ N3 < ∞.

Using the inequality (3.3) we have
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V ′
(3.1) −

(
1

γ
(|α(t)| + |β(t)|)+ 1

c0
|c′(t)|

)
V

≤ −
[
μb0φ0 − ψ1Cδ1

2ψ2
1

− Cδ1

2ψ0

(
μ+ 1

ψ0
+ μ

ψ2
0

)
r

]
y2 −

[
a0 − μ

ψ1
− Cδ1r

2

]
z2

+
[(

k3 |α(t)| − k2

γ
|α(t)|

)
+

(
k3 |β(t)| − k2

γ
|β(t)|

)]
(y2 + z2).

Putting γ = k2

k3
we obtain

W ′
(3.1) ≤−K

([
μb0φ0−ψ1Cδ1

2ψ2
1

− Cδ1

2ψ0

(
μ+ 1

ψ0
+ μ

ψ2
0

)
r

]
y2−

[
a0−μ
ψ1

− Cδ1r

2

]
z2

)

where K = exp −
(

k3(N2 + N3)

k2
+ N1

c0

)
. If we take

r < min

{
2(a0 − μ)

ψ1Cδ1
,
ψ3

0 (μb0φ0 − ψ1Cδ1)

ψ2
1 Cδ1(μ+ μψ2

0 + ψ0)

}

then

W ′
(3.1)(t, xt , yt , zt ) ≤ −L(y2 + z2), for some L > 0.

It can also be followed that the largest invariant set in Z is Q = {0}, where

Z = {φ ∈ CH : W ′
(3.1)(φ) = 0}.

That is, the only solution of system (3.1) for which W ′
(3.1)(t, xt , yt , zt ) = 0 is the solution

x = y = z = 0. The above discussion guarantees that the null solution of Eq. (1.1) is
uniformly asymptotically stable.

The proof of the theorem is now completed. �
Example We consider the following third order delay differential equation

[(
cos(x)

1 + x2 + 4

)
x ′(t)

]′′
+ (cos t + 15)x ′′(t)

+
(

5

2
− 1

2
e−2t

) (
sin(x)

1 + x2 + 11

)
x ′(t)

+
(

sin
t

2
+ 3

)[
x(t − r)+ x(t − r)

1 + x2(t − r)

]
= 0. (3.4)

It can be seen that

14 = a0 ≤ a(t) = cos t + 15 ≤ 16, −1 ≤ a′(t) = − sin t ≤ 1, t ≥ 0,

2 = b0 ≤ b(t) = 5

2
− 1

2
e−2t ≤ 5

2
, 0 ≤ b′(t) = e−2t ≤ 1, t ≥ 0,

2 ≤ c(t) = sin
t

2
+ 3 ≤ 4 = C, −1

2
≤ c′(t) = 1

2
cos

t

2
≤ 1

2
, t ≥ 0,

1 ≤ f (x)

x
= 1 + 1

1 + x2 with x �= 0, ‖ f ′(x)| ≤ δ1 = 2 andμ = 8,
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3 ≤ �(x) = cos(x)

1 + x2 + 4 ≤ 5,

10 = φ0 ≤ �(x) = sin(x)

1 + x2 + 11 ≤ 12.

An easy computations show that conditions (H1) and (H2) are satisfied. Indeed,

ψ1C

b0φ0
δ1 = 2 < μ < a0 = 14.

We have also

μa′(t)+�(x)�(x)b′(t)−�2(x)
δ1

μ
c′(t) ≤ μ+ 60 + 25

μ
= 71.12

< μb0φ0 − ψ1Cδ1 = 120.

It is straightforward to verify that
∫ +∞

−∞
∣∣� ′(u)

∣∣ du ≤
∫ +∞

−∞

[∣∣∣∣ sin u

1 + u2

∣∣∣∣ +
∣∣∣∣ 2u cos u

(1 + u2)2

∣∣∣∣
]

du

≤ π + 2.

Similarly,
∫ +∞

−∞
∣∣�′(u)

∣∣ du ≤
∫ +∞

−∞

[∣∣∣∣ cos u

1 + u2

∣∣∣∣ +
∣∣∣∣ 2u sin u

(1 + u2)2

∣∣∣∣
]

du

≤ π + 2.

Thus all the assumptions of Theorem 3.1. hold, this shows that every solution of (3.4) is
uniformly asymptotically stable.

In the case e(t) �= 0 we have the following result:

Theorem 3.2 If the assumptions of Theorem 3.1 hold true, and in addition
∫ t

0
e(s)ds ≤ e0 < ∞ for all t ≥ 0,

then all solutions of the Eq. (1.1) are bounded.

Proof The remaining of this proof follows the strategy indicated in the proof of Theorem 2
in [12] and hence it omitted. �
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