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Abstract By constructing a Lyapunov functional, we obtain some sufficient conditions
which guarantee the stability and boundedness of solutions for some nonlinear differen-
tial equations of third order with delay. Our result improve and generalize existing results in
the relevant literature of nonlinear third order differential equations.
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1 Introduction

We consider nonlinear third order delay differential equation of the form
[W()xT" +a@®x” +bO @)X+ c(t) f(x(t — 1)) = e(t), (1.1)

where r > 0, and the functions a(t), b(t), c(t), e(t), f(x), W¥(x), and ®(x) are continu-
ous in their respective arguments and f'(x), W'(x), ®'(x) exist and are continuous for all
X.

The asymptotic property of solutions of third order differential equations has received a
considerable amount of attention. In numerous places in the literature, for example [1-21],
the authors dealt with the problems by considering Lyapunov functions or functionals and
obtained the criteria for the stability.
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448 M. Remili, D. Beldjerd

In 1974, Hara [8] investigated the asymptotic behavior of solutions of the differential
equation without delay of the form

X" +a®)x" +bt)x" +c@t) f(x) = e(t), (1.2)

and showed that all solutions of the Eq. (1.2) are uniformly bounded and satisfy x(t) —
0, x'(t) = 0and x"(r) — 0. More recently in 2005, Sadek in [13] establishes conditions
under which all solutions of third order differential equation with delay of the form,

X" +a®)x” +b0)x' +c@) f(x(t —r) =0

tend to the zero solution as t — oco. Our objective in this paper is to extend the results verified
by Sadek [13] to obtain sufficient conditions for the stability and the boundedness of solutions
of delay differential equation (1.1) for the cases e(t) = 0 and e(¢) # 0. Clearly the equation
discussed in Sadek [13] is a special case of Eq. (1.1) when W (x) = ®(x) = 1. We shall use
appropriate Lyapounov function and impose suitable conditions on the functions f(x), W (x)
and ®(x). On the other hand, we can find the same result for the Eq. (1.1) without delay by
putting r = 0, witch is generalization of Hara [8] results.

2 Preliminaries

First, we will give some basic definitions and important stability criteria for the general
non-autonomous delay differential system. We consider

x'=ft,x), x0)=xt+0), —r<60<0,1t>0, 2.1)

where f : I x Cy — R" is a continuous mapping, f(t,0) = 0, Cy = {¢p €
(C[—r,0], R") : |l¢ll < H}, and for H; < H, there exists L(H;) > 0, with | f(¢, ¢)| <
L(Hy) when | @] < H;.

Definition 2.1 [5] Anelement iy € C isin the w — limit set of ¢, say Q(¢), if x(¢, 0, @) is
defined on [0, 4+-00) and thereis a sequence {1, }, 1, — 00,asn — oo, with [lx;, (¢)—v || — 0
as n — oo where x;, (¢) = x(t, +6,0,¢) for —r <6 <0.

Definition 2.2 [5] A set O C Cg is an invariant set if for any ¢ € Q, the solution of (2.1),
x(t, 0, @), is defined on [0, co) and x,(¢p) € Q fort € [0, 00).

Lemma 2.3 [3] If ¢ € Cpis such that the solution x,(¢) of (2,1) with xo(¢p) = ¢ is defined
on [0, 00) and ||x;(p)|| < H1 < H fort € [0, 00), then Q(¢p) is a non-empty, compact,
invariant set and

dist(x;(¢), Q()) — 0 as t — oo.
Lemma 2.4 [3] let V(t,¢) : I x Cyg — R be a continuous functional satisfying a local

Lipschitz condition. V (t,0) = 0, and such that:

@ Wi(l¢O)]) = V(. ¢) = Wa(ll@ll) where Wi(r), Wa(r) are wedges.
(i) V1) (t.¢) <0, for ¢ € Cy.

Then the zero solution of (2.1) is uniformly stable.
IfZ ={¢p € Cy : V(/z,l)(t’ @) = 0}, then the zero solution of (2.1) is asymptotically
stable, provided that the largest invariant set in Z is Q = {0}.
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3 Assumptions and main results

First, we state some assumptions on the functions that appeared in (1.1). Suppose that there
are positive constants aop, bg, co, Yo, ¥1, ¢o, ¢1, A, B, C, N1, do, and §; such that the
followings conditions are satisfied

() 0<ap<a(®) <A;0<by<b(t) <B;0<cy=<c(t) <C,t>0,
(1) 0 < Yo <V¥(x) <yYpand0 < ¢g < O(x) < ¢; for all x,

(iii) £(0) =0, @ >80 >0 (x #0), and | f'(x)| < 81, for all x,
+00 +oo

(iv) / |V’ ()| du < ooand/ | (u)| du < oo,

(v) / |c'(s)|ds < Ni < oo and ¢/(t) — Oast — oo.
0

For the case e(t) = 0, the following result is introduced.

Theorem 3.1 In addition to conditions (i)—(v) being satisfied, suppose that the following
conditions hold

Y1 C
(HI) ——381 < p < ao,
bogo

8
(H2) pa'(t) + W (x)P(x)b (1) — ‘I’Z(X)EIC’U) < pubogo — Y1 Cé1.
Then every solution of (1.1) is uniformly asymptotically stable, provided that

| 26a0— ) v (ubogo — Y1C81)
r < min S .
v1C81 " YICs (n + w¥r§ + Yo)

Proof We use the following differential system which is equivalent to Eq. (1.1)

.
YT um”
y =z, 3.1)
;o a@ a®W'(x) , _b@x)y
TTve T v vy COS®
d fl(x(s))
+/,_r YO )

The proof depend on some fundamental properties of a continuously differentiable Lyapunov
functional V = V (¢, x, y, z) defined as
1b()P(x) , pa(t) 5

V(t7x17 Yt» Zl) = MC(t)F(.x) +C(t)f(x)y + 5 \Il(x) y 2\p2(x)y

+ M +12+x/0/1 2(&)ded
Z —Z S,
v T2 Y

such that F(x) = fé‘ f(u)du, and A is a positive constant which will be determined later in
the proof. To show that V is a positive function, we rewrite V above thus

0 pt
V(t, X, v, 2) = pe()G(x, y) + Vi + Vo + k/ / Y ()dkds, (3.2)
—r Jit+s

where
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81
G(x,y) = F(x) + w0)+ 2

1 c(t)d1 b(t)(D(x) )

Vi = Vi, x¢, yr, == |- )
1 1(2, x¢, yes 2t) 2|: 1 W(x) :I)’
pna(t) , 12 L,

Vo = Valt, x¢, yr, = .
2= Valt, x, yi, 1) 20200 + (x)YZ+ 54

By using hypotheses, we obtain

3 81 m SR B
ne(®)G(x, y) = pe(r) [F(X) + 22 (y + gf(x)) - ﬁf (x)}

ZﬁwU)LAx(L—f(m)f()d{

V» can be rearranged as the following

Lpat) 5
292 T e

2
1 v\ o1 W, 1 pa()
_§(Z+\p(x)y) T2 T 2wy

1
Valt, xi, yi, 21) = yz+ =22

a(t)pu w2

— > 0, it follows that there is a
W2(x)  W2(x)

from hypothesis (H;), ap — i > 0, then

positive constant k; such that
2 2
Vo(t, xi, yi, 20) = ki (y* +z2°),

from which we deduce that V; is positive definite. Furthermore, from hypotheses (i) and (ii),
we obtain
bogor — 1P1C51] )
—_— [y~
I

Hence, it is evident from (H1) and the terms contained in the last inequality, that there exist
sufficiently small positive constant k3, such that

Vit xe, ye,2) = 5 |:

Vit Vo= ka(y” +29).
Using (3.2) we get
V > oG, y) + ko (y* + 2%). 3.3)
Therefore we can find a continuous function Wy (|¢(0)|) with
Wi(le(0)]) >0 and Wi(le0)]) < V(z, ¢).

The existence of a continuous function W>(||l¢||) which satisfies the inequality V (¢, ¢) <
Wa(llelD, is easily verified.

The derivative of the Lyapunov functional V (¢, x;,y;,z;), along asolution (x (), y(¢), z(t))
of the system (3.1), with respect to ¢ is after simplifying
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()6
Vg = 1e (0F(x) + ¢ (0)yf (x) + %yz + (@) — Wa()zy

+?,B(t)y2 N (C(t)f/(X) _ Mb(I)CD(X)) 2

W(x) W2(x)
N
et (z " ﬁy) / i y(s)’\;gg))i ds — / i V),
where
a(t) = :52((’; ((tt))))x/(t), B(1) = W(X)CD/(’“;;()C(I)’(XW(X)x/(t).

By the assumptions (i)—(iii), (H1)—(H2), and using the Schwartz inequality 2|uv| < u? + v>

we ﬁnd
Vi H= wc' (1) | F(x) + IYf(x) + il y2
3.1 = L 2112

1 Y1C81 — ubodo 2
+—(p — a))> + | ————— +Ar |y
Y1 vl

1
+5 (A= la@®]+ BIBOD 423
1 ()8
2y}

+— |:,ua’(t) +b' ()P (X)W (x) — \Ilz(x)T] y?

iz ! f(x(s)) L,
+c(t) (z + my) /tir y(s) TG ds — A/t yo(&)dE.

—r

Taking k3 = 1 max{A — u, B} then

Y1C81 — nbogo
Vi S ud G, y) + |:—\112(x) +ar | y?

1 / ’ 2 61 / 2
R — [Ma () + b (X)W (x) — W (x)—c (r)] y
21//1 Hn
1
+%w —ap)z* + k3 (e ()| + 1B (Y + 2°)

0 ! ffaxts)y o,
el (”\If(x)y)/,_ry(s)\wxu))ds k/t y

—r

From (iii) | f'(x)| < 81, and using the Schwartz inequality again we have

pue(@) [ y(s)

(§)dé.

, Céiur 5, Cués /’ 2
\Ij(x)y - r(x)f(X(S))dS§ 2o y+ 207 t_ry (§)d§,
and
Loy Céir , C& [T ,
C(l‘)Z/t_r mf (x(s))ds < ) 7+ — y (S)dg,

295 Ji—r
from which we deduce that
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1 b
Visgy < me' (G (x, ) + e [ua/(r) + b0 ()P x)W(x) — \yz(x)ic’(r)] y?
1

Cé1 — ub, Cour 1 Cor
+|:¢1 i M0¢0+Ar+ 1Mi|y2+[(u_ao)+ 1:|Z2

v} 2y Vi 2

Hha(la®)] + BODG? +22) + [ZC;O (1 4 %) —X} /t_r V(E)dE.

Céy
Choosing — ( + —) = A, and using condition (H1) we get
2955 Yo

e wboto = ncs o 1w ]
VG'”EM)G(X’”_[ 27 wo(“*w]*wo)}y

] 2+ Is(le®)] + 1BONG? + 2.

|:a0 —n  Cér
Y1 2

We define the Lyapounov functional W = W (¢, x;, y;, z;) as
W@, xt, v, 20) = (exp—n(O)V(t, x¢, yr, 21) = (exp —n()V,

where
i 1,
n(t)z/ [—(|a(s)|+|ﬁ(s)|)+—|c (S)I] ds,
0 Y (€]

and y is a positive constant which will be determined later in the proof. It is easily verified
that

1 1
W1y (2 32, yis 20) = (exp —n(1) [vgw ~ (;(|a<r>| +IBOD + %'C/(’)') V} :

from conditions (ii) and (iv) we obtain

t t /
/ lee(s)ds]| :/ v (x(s))x/(s)’ds
0 0

W2(x(s))
(1) 1 ()
-/ <L / |9 ()ldu
i (1) Wo wy (1)

W (u)
1 +00
< —2/ W' (u)|du < Np < oo,
Yy J—oe

W2 (u)

where w1 () = min{x(0), x(#)}, w2(r) = max{x(0), x(¢)}. We get also

t t ! t / /
/0 Bs)ds| < /0 <I>(x(s))$2((x((s))))x/(s)‘ds+ /0 L) (\;j‘g)();;)(”
(1) W/ (u) /wz(t) D' (u)
/an(t) v )‘IJZ( ) o1 | Y ()

¢1 w2 (1) 1 (1)
< — W' (u)|du + — | (u)|du
3
Vs Jor) Yo Joi (1)

_h
7
Using the inequality (3.3) we have

/ [V (u)|du + 7/ |®'(u)|du < N3 < oo.
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1 1
Vi - (—(la(z)| +1BOD + —lc/(r)|) v
v €0
N ST AN [ SR TR
= [ 207 21,,0(“+¢0+¢,3)f}y 2 )°

k k
+ [(ks ()] — ;2 |a<z)|) + (ks 1B(1)] — f lﬂ(t)l)] 2+ 2.

k
Putting y = k—z we obtain
3

bopo—v1C8;  C8 1 _ Cs
2Vi 2v0 LU V1 2

k3 (N- N N
where K = exp — (w + —1) If we take
2 (&0}
| 2@a0 — ) Y (mbodo — Y1C81)
r < min N 2 5
YIC81 T YEC8 (1 + g + Yo)

then
Wis (@ Xe, e, 20) < —L(y*+7%), forsome L > 0.
It can also be followed that the largest invariant set in Z is Q = {0}, where
Z=1{peCn:Wsy@) =0}

That is, the only solution of system (3.1) for which W(’“)(t, Xt, ¥, 2t) = 0 is the solution
x =y = z = 0. The above discussion guarantees that the null solution of Eq. (1.1) is

uniformly asymptotically stable.
The proof of the theorem is now completed. O

Example We consider the following third order delay differential equation

[(cos(x) n 4) x’(t):| + (cost + 15)x"(¢)

1+ x2
5 1 sin(x) ,
- — = 11 t
+(2 5¢ )<1+x2+ )x()
Lt x(t—r)
sin — + 3 t— —— [ =0. 34
+(s1n2+ )[x( r)+1+x2(t—r)] 349
It can be seen that
14=ayp<a(t)=cost+15<16, —1<d(t)=—sint<1,t>0,

5 1 5

2=by<b(t)==—-e <, 0<b(t)=e P <1,t>0

o_()22€ _2,_()6_,_,

2 < c(t) =si t+3<4 C 1<’(t) ! t<1t>0
C = Sin — = , — T =< C = —-COS - = —, — Y,
- 2 - 2 2 2 2
fo) _

1
1+ —— withx #0, | f/(x)] <8 =2andu = 8,

1<
- 1+ x2
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3<w) = B0 L4
x) = ,

- 1+ x2 -

sin(x)
10 =g < ®(x) = 11 <12.
$o = ©(x) T2 T

An easy computations show that conditions (H1) and (H2) are satisfied. Indeed,
Y C
—6 =2<pu<ap=14.
bogo

‘We have also

IA

) 25
wa' (1) + W (x)Dx)b'(t) — \Ilz(x)ﬁlc/(t) u~+ 60 + m =71.12
< ubopo — Y1CS; = 120.

It is straightforward to verify that

foo TOT] sinu 2u cosu
|V ()| du < 5 5 | | du
oo S 14+u 1+ u?)
<m+2.
Similarly,
too T | cosu 2usinu
|’ ()| du < > 5| | du
o0 o 1+u (14 u?)
<m+2.

Thus all the assumptions of Theorem 3.1. hold, this shows that every solution of (3.4) is
uniformly asymptotically stable.

In the case e(f) # 0 we have the following result:

Theorem 3.2 [f the assumptions of Theorem 3.1 hold true, and in addition
t
/ e(s)ds < ey < ooforallt >0,
0
then all solutions of the Eq. (1.1) are bounded.

Proof The remaining of this proof follows the strategy indicated in the proof of Theorem 2
in [12] and hence it omitted. O
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