
Journal of Micro and Bio Robotics            (2024) 20:6 
https://doi.org/10.1007/s12213-024-00168-x

RESEARCH

Topology optimization of micro piezoelectric actuators and energy
harvesters at femto-st institute: summary andMATLAB code
implementation

Abbas Homayouni-Amlashi1 · Thomas Schlinquer1,2 · Peter Kipkemoi1,3 · Jean Bosco Byiringiro3 ·
Micky Rakotondrabe4 ·Michael Gauthier1 · Abdenbi Mohand-Ousaid1

Received: 26 January 2024 / Revised: 1 April 2024 / Accepted: 15 April 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
This paper primarily summarize the research efforts conducted within the AS2M department of the FEMTO-ST institute,
focusing on topology optimization of piezoelectric structures. In this regard, the principles and the possibilities offered
by topology optimization with a specific emphasis on the SIMP approach (Solid Isotropic Material with Penalization) are
highlighted. The design processes of piezoelectric micro-actuators and energy harvesters are described, The optimized piezo-
electric structures are presented and the improvements over classical designs are assessed. Moreover, in this paper, we present
the eigenvalue optimization of the piezoelectric energy harvester by tuning the mass of attachment as an optimization vari-
able. The theoretical development is accompanied by the developed MATLAB code to implement the topology optimization
algorithm. This code is the update and extension of the previously published codes by authors for piezoelectric structures
while it will be the first published code of its kind that considers the tuning of the natural frequency of the piezo structure.
Finally, the paper discusses the feasibility and the potential of multi-material topology optimization.

Keywords Piezoelectric micro-actuator · Piezoelectric energy harvester · Topology optimization · Matlab code

1 Introduction

The interest of miniaturized systems is considerable and
well established [1]. Based on smart materials like piezo-
electric materials, they can change their inherent properties
in response to external stimuli in a controllable manner.
Taking this advantage, they are widely used in several appli-
cations such as: biomedical, optics, fluidics, car industry,
energy harvesting, electronics, etc. However, due to their size
and density of integration, their design remains challenging
because it requires taking into account the coupling between
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the structure and its mechanisms through a global design
strategy. This requirement is induced by smart materials that
play a significant role in the technological design of these
systems. To address this challenge, various design method-
ologies have been proposed such as optimal arrangement
of actuators/sensors [2–4], interval method [5, 6] or blocks
method [7, 8]. Nevertheless, most of these methods lack gen-
eralization since they act only on the geometric parameters of
the structure. This limits efficient shape design of the active
mechanisms (actuation and measurement) and consequently
that of the resulting structure.

In this regard, topology optimization [9], and particu-
larly the SIMP (Solid Isotropic Material with Penalization)
method seems to be a promising solution. Unlike classical
optimization methods, it gives rise to efficient structures in
response to requirement specifications. Its principle ismainly
based on optimal material distribution within a specified
design domain. Presented initially by Sigmund et al. [9–11],
this powerful method is suitable for the design of passive
structures. Since becoming a conceptual design tool, it has
been particularly applied to design smart structures based on
piezoelectricmaterials [12]. However, it remains challenging
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to handle due to the non-intuitive and non-unified integration
of piezoelectric materials.

To tackle this limitation, the AS2M department has been
actively working since 2018 to enhance the SIMP method
by extending it to include piezoelectric materials. The objec-
tive is to provide a straightforward strategy for integrating
the physics of the piezoelectric materials within the SIMP
method. This gave rise to several challenges related to: smart
materials modeling, finite-elements formulation, computa-
tional and numerical implementation. All these challenges
have been or are being investigated at AS2M/FEMTO-ST
institute.

This paper provides first a comprehensive summary
of the research that has been conducted at the AS2M
department/FEMTO-ST institute, the works that are cur-
rently underway, and the potential directions for future
advancements concerning the design of piezoelectric actu-
ators and energy harvesters. Secondly, we present topology
optimization of piezoelectric energy harvesters in which
the natural frequency of the structure will be tuned with
the help of considering the Mass of attachment as an opti-
mization variable. The theoretical aspects in this regard are
accompanied by the implementation MATLAB code. The
provided MATLAB code is the development of the previ-
ously published codes by author for topology optimization
of piezoelectric structures [13] that were the first topology
optimizationMATLAB codes published in the area of piezo-
electricity. All theMATLABcodes published in the literature
for topology optimization in different physics are reviewed
in [14]. The published code in this paper will be the first pub-
lished MATLAB code in the area of topology optimization
of piezoelectric structure with frequency tuning.

In the last part of the paper, we discuss the possibility
of multi material topology optimization in which both active
(piezo) and passivematerial will be developed and optimized
to obtain more efficient designs.

2 Topology optimization

2.1 SIMP approach

Topology optimization and in particular the SIMP approach
is a mathematical design methodology aiming to find an
optimal layout within a limited design domain [9]. Based
on material distribution, the method allows minimizing or
maximizing an objective function while subjected to one or
several constraints. Its key principle consists of introducing
a density penalization law. The method is largely integrated
into several design softwares such as COMSOL, ALTAIR
Inspire, Ansys Discovery, SOlIDWORKS, etc. As a global
and systematic approach, it is largely used in the engineering

and design of passive mechanical structures because it offers
several advantages such asweight reductionwhile enhancing
performance and efficiency.

The method has also been applied for the topological
design of active structures in particular piezoelectric struc-
tures [12]. However, the existing methodology lacks some
mathematical development regarding the optimization of the
polarity in addition to the topology. These mathematical
limitations include the explicit formulation of the sensi-
tivity analysis. Moreover, the realization of the optimized
topologies of the piezoelectric structures received a very
little attention in the literature. We addressed these limita-
tions by (i) developing analytical and theoretical aspects of
topology optimization of piezoelectric structures, (ii) devel-
oping algorithms and computer codes and (iii) fabricating
and investigating experimentally the obtained structures.
The common underlying factors in these developments were
piezoelectric material modeling and numerical implementa-
tion.

2.2 Piezoelectric modeling

Our primary investigations focused on planar piezoelectric
structures. Thus, the starting design domain consists of a
piezoelectric layer sandwiched between two electrodes as
illustrated in Fig. 1. Its modeling involves several simplify-
ing assumptions [15, 16] including plan-stress assumption
which enable us to derive a 2D model from the IEEE 3D
model [17] of piezoelectric material. To discretize the design
domain and obtain the finite elementmodeling, the four-node
rectangular element is employed as shown in Fig. 4-(a). With
discretization of the design domain, the global finite element
equilibrium equation can be derived as [18]

[
M 0
0 0

] [
Ü
Φ̈

]
+

[
Kuu Kuφ

Kφu −Kφφ

] [
U
Φ

]
=

[
F
Q

]
(1)

where U and φ are the vectors of the mechanical displace-
ment and electric potential respectively. F and Q are the
applied external mechanical force and electrical charge. M ,
Kuu , Kuφ , Kφφ are the global mass matrix, mechanical
stiffness matrix, piezoelectric coupling matrix and piezo-
electric permittivity matrix respectively. The global matrices
are formed by assembling the elemental matrices [13]. The
global equilibrium Eq. 1 can be normalized to avoid the
numerical instabilities and can be re-written based on the
normalization which is provided in Ref. [13]. The normaliza-

upper electrode
piezoelectric material

lower electrode

Fig. 1 Piezoelectric material sandwiched between two electrodes

123



Journal of Micro and Bio Robotics             (2024) 20:6 Page 3 of 22     6 

tion starts by factorizing the highest value of each elemental
matrix,

k̃uu = kuu/k0, k̃uφ = kuφ/α0

k̃φφ = kφφ/β0, m̃ = m/m0 (2)

where k0, α0, β0,m0 are the highest values of the correspond-
ing matrices. Then, the new FEM equation for piezoelectric
actuator, can be written as

K̃uuŨ + K̃uφΦ̃ = F̃ (3)

In Eq. 3, ( ˜ ) stands for the normalized quantities and

F̃ = F/ f0, Ũ = U/u0, Φ̃ = Φ/φ0

u0 = f0/k0, φ0 = f0/α0 (4)

and the new FEM equation for energy harvesting is derived
as

[
K̃uu − M̃Ω̃2 K̃uφ

K̃φu −γ K̃φφ

] [
Ũ
Φ̃

]
=

[
F̃
0

]
(5)

where

Ω̃2 = Ω2m0/k0, γ = k0β0/α
2
0 (6)

In Eq. 5, B is a Boolean matrix to apply the equipotential
condition on the electrodes with dimension Ne × NP where
Ne is the number of nodes and NP is the number of potential
electrodes where for 2D case NP = 1. �̃ is the normal-
ized excitation frequency (�), Vp is the generated voltage
by mechanical vibration and γ is the normalized factor that
keeps the solution of the system equal before and after apply-
ing the normalization.

After solving the FEM , we need to rollback the normal-
ization and calculate the real outputs of the system (i.e. φ and
U ). In actuation mode, the input of the system is potential
and hence the value of Φ0 is assumed by user a priory. As
such, the real value of displacement can be calculated by

U = U0Ũ = Φ0α0Ũ/k0 (7)

In the energy harvesting case, the force is the input and
the value of f0 is assumed by user a priory. Therefore, the
real value of potential can be calculated by

Φ = Φ0Φ̃ = f0Φ/α0 (8)

With the developed finite element model, it is possible to
formulate the optimization problem for piezoelectric actua-
tors and energy harvesters.

3 Piezoelectric micro-actuators

The use of piezoelectric materials to actuate microbotics sys-
tems is of particular interest. As a smart material, they have
several advantages such as: high displacement resolution,
large output force, high dynamics response and significant
scaling-down possibilities [19]. However, due to their crys-
talline arrangement, they provide a low relative deformation
(0.1% of actuator’s size) that limits their stroke [20]. To over-
come this limitation, we employed topology optimization
framework [16] to optimize both the topology and the polar-
ity of the actuator. This simultaneous optimization allows
combining material expansion and compression in order to
increase the stroke of the actuator without using any passive
amplification mechanism. This enables the miniaturization
of the optimal design. Two 1D actuators were designed
starting from a full domain considered as a basic reference
piezoelectric actuator. The first design considered only the
optimization of topology while the second one took into
account the optimization of the topology and polarization
profile simultaneously. This section recaps the problem for-
mulation, the optimization and the main results of this study.
To find out more theoretical details, readers can refer to [15,
16].

3.1 Problem formulation

To formulate the topology optimization problem, we use the
SIMP (Solid Isotropic Material with Penalization) approach.
In this approach, optimization variables are attributed to each
element in the design domain to relax the physical properties
from binary values to continuous values [21]. The exten-
sion of SIMP approach for piezoelectric materials known as
"Piezoelectric Material with Penalization and Polarization
(PEMAP-P)" can be expressed as follows [22, 23]:

k̃uu(x) = (
Emin + x puu (E0 − Emin)

)
k̃uu

k̃uφ(x, P) = (emin + x puφ (e0 − emin))(2P − 1)pP k̃uφ

k̃φφ(x) = (εmin + x pφφ (ε0 − εmin))k̃φφ

m̃(x) = xm̃ (9)

where Emin , emin and εmin are small numbers to define
the minimum values for stiffness, coupling and dielectric
matrices while E0, e0 and ε0 are equal to one to define the
maximum values of the respected matrices. The definition
of minimum values are provided to avoid the singularities
during the optimization iterations. x is the density ratio of
each element which has a value between zero and one. P is
the polarization variable which also has the value between
zero and one and determines the direction of polarization.
puu , puφ , pφφ and pP are penalization coefficients for the
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stiffness, coupling, dielectric matrices and polarization value
respectively. It is obvious that in Eq. 9, the normalized form
of piezoelectricmatrices are used.However, the interpolation
function is true for non-normalized matrices as well.

Now, the optimization problem can be formulated by def-
inition of objective function, constraints and optimization
variables. The objective function can be defined using the
compliant mechanism analysis in which the goal is to max-
imize the deflection of a structure in a particular direction.
Different objective functions can be considered for compli-
ant mechanisms which are reviewed in [24]. Here, a simple
objective function is chosen with a modeled spring to simu-
late the stiffness of the target object as it is illustrated in the
Fig. 2-(a). Moreover, a constraint on the volume of the mate-
rial can be defined to minimize the consumed material and to
increase the flexibility of structure in favor of higher displace-
ment. The optimization variables also defined in the material
interpolation schemeEq. 9. Therefore, the optimization prob-
lem for piezoelectric micro-actuators can be formulated as
follows

minimize Jact = −LT Ũ

Subject to V (x) =
NE∑
i=1

xivi ≤ V

0 < xi ≤ 1

0 ≤ Pi ≤ 1 (10)

where L is a Boolean vector with a value of one that corre-
sponds to the output displacement node and zero otherwise.
V is the target volume which is a fraction of the overall vol-
ume of the design domain while vi is the volume of each
element and NE is the total number of elements and i is the
number of each element in the design domain.

3.2 Sensitivity analysis

To solve the optimization problem, we use the gradient based
solvers like Optimality Criteria (OC) and method of mov-
ing asymptotes (MMA) [25, 26]. As such, the sensitivity

of objective function with respect to optimization variables
should be calculated. Based on the material interpolation
scheme Eq. 9, we have two optimization variables known as
density (x) and polarization (P). The sensitivity with respect
to (x) is calculated by using the adjoint method as

∂ J

∂xi
= λT

i
∂ k̃uu
∂xi

ũi + λT
i

∂ k̃uφ

∂xi
φ̃i (11)

where λ is the adjoint vector at elemental level. λ is intro-
duced to avoid taking the derivative of displacement with
respect to design variable i.e. ∂ ũi

∂x . The sensitivitywith respect
to polarization is

∂ J

∂Pi
= λT

i
∂ k̃uφ

∂Pi
φ̃i (12)

The following adjoint equation should be solved to find
the adjoint vectores,

−LT + �T K̃uu = 0 (13)

Where � is the adjoint vector at system level (global level).
Based on Eqs. 11 and 12, the derivative of piezoelectric

stiffness and coupling matrices with respect to design vari-
ables are required which can be derived with the help of Eq. 9
as

∂ k̃uu
∂xi

= puu(E0 − Emin)x
puu−1
i k̃uu

∂ k̃uφ

∂xi
= puφ(e0 − emin)x

puφ−1
i (2Pi − 1)pP k̃uφ (14)

∂ k̃uφ

∂Pi
= 2pP (e0 − emin)(2Pi − 1)pP−1x

puφ

i k̃uφ (15)

When the sensitivity analysis is provided, the SIMP algo-
rithm can be developed. Beforehand, the design domain and
application should be defined.

Fig. 2 Topology optimization of a piezoelectric micro-actuators. a) Problem definition, b) Problem formulation, c) Optimized layout without
polarity, d) Simulated layout without polarity, e) Optimized layout with polarity, f) Simulated layout with polarity
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Table 1 Summary of simulation
and experimental results [16] Simulation ( Input voltage = 5V )

Full plate Opt without pol Opt with pol

Displacement (nm/V) 57 81 161

Displacement gain w.r.t.f.p - 1.42 2.82

Blocking force (N) 2.56 0.21 0.18

Blocking force gain w.r.t.f.p - 0.08 0.07

Energy density (J/m3) 4.55 1.81 3.10

Energy density gain w.r.t.f.p - 0.39 0.68

Experiment ( Input voltage = 5V )

Full plate Opt without pol Opt with pol

Displacement (nm/V) 62 86 174

Displacement gain w.r.t.f.p - 1.38 2.8

* w.r.t.f.p : with respect to full plate

3.3 Definition of design domain and application

Figure 2-(a,b) illustrates the definition and the mechanical
formulation of 1D piezoelectric actuator. The bottom side of
the domain is clamped while the middle point of the top side
is considered as the actuator output. In addition, the actuator-
object interaction is modeled as a spring that modulates the
actuator displacement: a lower stiffness value results in a
higher displacement and vice versa. Using this configuration,
two optimized designs are obtained where the difference lies
in whether or not the polarization is optimized. In both cases,
the volume fraction is set to 0.3, meaning that only 30% of
the initial domain is used for the optimized designs.

After performing the sensitivity analysis, and defining the
constraint, the topology optimization algorithmcan be imple-
mented.

3.4 Algorithm, optimization and simulation

Following the modeling and formulation of the problem,
an optimization algorithm was developed and implemented
underMATLAB [15]. The application of this algorithm leads
to the designs depicted in Fig. 2-(c,e). Layout (c) comprises
a uniform electrode while layout (e) comprises two differ-
ent electrodes with opposite polarities. The second design

comprises two regions with inverse polarities. When one
region retracts the other extends resulting in a considerable
improvement of output displacement. This analysis is con-
firmed by FEA simulations illustrated in Fig. 2-(d,f) where
the obtained results show that the displacement of the design
with optimized polarity is almost twice the displacement of
the design with uniform polarity. More comparison results
between the full actuator plate (reference actuator) and the
optimized designs are reported in Table 1.

3.5 Fabrication and experimental validation

Starting from a piezoelectric plate, the three prototypes
shown in Fig. 3 were fabricated. The fabrication process
started by cutting the designs from piezoelectric plates (com-
mercial piezoelectricmaterial PSI-5H4E fromPiezoSystems
Inc) using a laser machine (Siro Lasertec GmbH, Pforzheim,
Germany). Then, the wires are glued to the electrodes of the
PZT plates. Moreover, to follow the polarization profile, the
top electrode is divided into two sections to avoid charge
cancellation. An experimental bench was set and a series of
measurements were performed under a maximum excitation
voltage of 5V which respects the linear assumption of the
piezoelectricmodel. The resulting average displacements are
reported in Table 1. As expected, there is a satisfying agree-
ment between the experimental and the simulation results. In

Fig. 3 Fabricated prototypes, a)
Full plate (reference actuator),
b) Prototype without polarity
optimization, c) Prototype with
polarity optimization
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addition, the superiority of the optimized designs versus the
full piezoelectric plate in terms of stroke is observed.

3.6 Discussion

The developed algorithm reduces drastically the material
amount while enhancing the actuator energy density and
stroke. Indeed, only 30% of the material was optimally dis-
tributed in order to provide a displacement greater than the
displacement of an actuator with a uniform polarization.
Although the actuator output force decreased, the opti-
mization led to a compact and economical design. This is
particularly interesting in the context ofminiaturization since
the non-occupied space can be utilized to implement addi-
tional functionalities such as sensors or electronic circuits.

4 Piezoelectric energy harvesters

In parallel to actuation, piezoelectric materials are widely
used in energy harvesting applications. Converting vibration
to electrical energy, these devices, i.e, Piezoelectric Energy
Harvesters (PEHs) offer a potential alternative to batteries
in low-power-wireless devices such as wireless sensors [27],
small-scale robots [28], etc. Thanks to the direct effect of
piezoelectricity, they can convert mechanical to electrical
energies with a simple mechanism. This simplicity makes
the piezoelectric energy harvester more efficient than their
rivals like electromagnetic and triboelectric at small scales.
AtAS2Mdepartment, wemainlyworked on the optimization
of the mechanical structures of PEHs.

Mostly known and still used configuration for the vibra-
tional PEH is the cantilever configurationwith tip attachment
due to its largely produced strains and feasibility of fabrica-
tion. Considering this configuration as the first approach to
increase the efficiency of the cantilever PEH, we proposed
to have in-span attachments in addition to tip attachment in
order to harvest the energy from higher modes and reso-
nance frequencies [31]. Based on an analytical approach to
find the output voltage, we proposed a neural network-based
genetic algorithm (GA) approach to optimize the placement
and geometry of the in-span attachments. However, themajor
problem with cantilever configuration is that it is one degree
of freedom configuration, which can absorb the energy from
one direction of excitation. This will restrict the possible
applications of the cantilever PEHs, where the excitation
can come from different directions. There are some designs
for multi-directional PEHs in the literature [32, 33]. How-
ever, the miniaturization of these mechanism-based designs
is challenging. To tackle this problem, we employed SIMP
topologyoptimization to obtain newandpreviously unknown
configurations for the PEH.

4.1 Single-layer piezoelectric energy harvester

4.1.1 Modeling & problem formulation

Utilizing the piezoelectric constitutive equations, first, a 2D
finite element model of a single piezoelectric plate sandwiched
between two electrodes (Fig. 1) is developed. The plan-stress
assumption is employed to derive the constitutive equation.
The normalized equilibrium equation is mentioned in Eq. 5.

TO formulate the problem, objective function is defined
as the weighed sum of the mechanical and electrical energy.
Similar to actuation case, a constraint is defined on the vol-
umeof thematerial and optimization variables are considered
as density and polarization. Therefore, the problem is formu-
lated as follows,

minimize JEH = w j

S − (1 − w j )


E

Subject to V (x) =
NE∑
i=1

xivi ≤ V

0 < xi ≤ 1

0 ≤ Pi ≤ 1 (16)


E and
S are electrical andmechanical energies respec-
tively which are defined in the following form [22, 34]


S = (
1

2
)Ũ T KuuŨ , 
E = (

1

2
)V T

p KφφVp

Kuu =
[
K̃uu − M̃Ω̃2

]
bc

, Kφφ = γ BT K̃φφB (17)

In optimization Eq. 16, w j is the weighing factor which
has the value between 0 and 1 and will be found by using trial
and error approach. The basis for choosing this value can be
the maximum energy conversion factor of the plate under the
same force.

4.2 Sensitivity analysis

After defining the mechanical and electrical energies, the
sensitivity of each energy with respect to density ratio x can
be found as [29, 30, 34]

∂
S

∂xi
= (

1

2
ũTi + λT

1,i )
∂(k̃uu − m̃Ω̃2)

∂xi
ũi+

λT
1,i

∂ k̃uφ

∂xi
φ̃i + μT

1,i
∂ k̃φu

∂xi
ũi − μT

1,i
γ ∂ k̃φφ

∂xi
φ̃i (18)

∂
E

∂xi
= 1

2
φ̃T
i

γ ∂ k̃φφ

∂xi
φ̃i − μT

2,i
γ ∂ k̃φφ

∂xi
φ̃i+

λT
2,i

∂(k̃uu − m̃Ω̃2)

∂xi
ui + λT

2,i
∂ k̃uφ

∂xi
φ̃i + μT

2,i
∂ k̃φu

∂xi
ũi (19)
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in which μ and λ are the elemental adjoint vectors which are
calculated by the following global coupled system

[
Kuu Kuφ

Kφu −Kφφ

] [
�1

ϒ1

]
=

[−KuuŨ
0

]
[
Kuu Kuφ

Kφu −Kφφ

] [
�2

ϒ2

]
=

[
0

−KφφVp

]
(20)

where � and ϒ , are the global adjoint vectors which need to
be disassembled to form the elemental adjoint vectors

[λ1]bc = �1, [λ2]bc = �2, [μ1] = Bϒ1, [μ2] = Bϒ2 (21)

Now, the sensitivities with respect to polarization (P) is
calculated as well [29, 30]

∂
S

∂Pi
= λT

1,i
∂ k̃uφ

∂Pi
φ̃i + μT

1,i
∂ k̃φu

∂Pi
ũi

∂
E

∂Pi
= λT

2,i
∂ k̃uφ

∂Pi
φ̃i + μT

2,i
∂ k̃φu

∂Pi
ũi (22)

Based on sensitivity equations in Eqs. 19 and 22, the
derivative of all piezoelectric matrices with respect to the
design variables are required. The derivative of stiffness
and coupling matrices are found in Eqs. 14 and 15. Here,
the derivative of dielectric matrix and mass matrix is also
required which are

∂ k̃φφ

∂xi
= pφφ(ε0 − εmin)x

pφφ−1
i k̃φφ

∂m̃

∂xi
= m̃i (23)

In addition to derivative of piezoelectric matrices with
respect to density, derivation of the piezoelectric coupling
matrix with respect to polarization variable is also required

∂ k̃uφ

∂Pi
= 2pP (2Pi − 1)pP−1x

puφ

i k̃uφ (24)

After calculation of sensitivities, the optimization vari-
ables can be updated in each iteration of optimization with
the help of gradient-based optimizers like optimality criteria
(OC) and Method Moving Asymptotes (MMA) [26].

For the single layer piezoelectric plate, the goal is to design
a two degrees of freedom energy harvester that can harvest
the energy from external in-plane harmonic force coming
from different directions. In this regard, the configuration of
load and boundary conditions in Fig. 4-(a) is proposed. The
most challenging problem in this case is the charge cancel-
lation due to a combination of tension and compression in
different parts of the plate. However, optimization of polar-
ization profile overcomes the problem of charge cancellation.
Moreover, low volume fraction (optimized design volume/-
full plate volume) decreases the stiffness of the piezoelectric
plate against in-plane forces.

4.2.1 Numerical results, simulation & experiment

In panels (b) and (c) of the same figure, the final optimized
layout and polarization profile for PZT plate under excitation
of two harmonic forces in two directions can be seen [29]. In
panel (c), the red color and blue color represent positive and
negative polarization in the z direction.

To analyze the performance of the optimized design,
COMSOL multiphysics is used to compare the performance
of the optimized design with the full plate. The simulation
results proved the superiority of the optimized designs over

Fig. 4 Piezoelectric EnergyHarvesters designed by topology optimiza-
tion. a) single-layer piezo plate modeled by 2D finite element method
[29]. b) Optimized topology, c) Optimized polarity, d) Fabricated pro-

totype, e) Bi-morph piezo plate modeled by 3D finite element method
[30], f) Optimized topology without polarization optimization, g) Opti-
mized topology with polarization optimization
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the classical full plate while having less amount of material
[29]. On the other hand, the amount of produced voltage and
electrical power is not the same for every direction of the
force. This is due to the fact that the stiffness of the plate in
different directions is not the same. For the sake of brevity,we
do not present the simulation results here. Interested readers
are referred to the published paper [29].

The fabrication process is similar to what has been
explained for the piezoelectric actuators. The difference here
is that magnets are attached at the tip of the beam to generate
vibrations force when excited by an electromagnet as it is
shown in Fig. 4-(d). The magnets are attached in two differ-
ent directions so they can excite the designs in two different
directions.

Experimental results demonstrated that for an excitation
frequency equal to 20 Hz, the voltage and power of the opti-
mized design are 8.75 and 7.54 times higher than the full
plate. These improvements are due to the fact that the opti-
mized design is having better strain distribution and more
importantly, it has separated electrodes that avoid charge can-
cellation.

4.3 Bi-morph piezoelectric energy harvester

In the next phase of our research, a bi-morph piezoelectric
plate instead of the single-layer piezoelectric plate is consid-
ered as a design domain to consider out-of-plane forces and
deformations [30].

4.3.1 Modeling & problem formulation

Similar objective and constraints from single-layer PEH
are considered in the optimization problem of the multi-
directional Bi-morph PEH i.e. reduction of weight while
maximizing the efficiency of the harvested energy from
excitation coming from different directions. In the case of
bi-morph PEH, the configuration of the boundary condition
remains the same while a 3-load case is applied at the tip
of the structure (Fig. 4-(e)). The bi-morph plate consists of
3 electrodes on the top, middle and bottom surfaces of the
plate. The finite element modeling of the system is done by
discretizing the design domain with a finite number of 3D
hexahedron elements.

4.3.2 Algorithm & optimization

The sensitivity analysis and optimization algorithm for 3D
and 2D finite element modeling is formulated similarly.
However, the implementation MATLAB code changes con-
siderably to include the third dimension and application of

electrical boundary conditions regarding the existence of sev-
eral electrodes.

4.3.3 Numerical results, simulation & experiment

The results of the optimization for two cases are shown in Fig.
4-(f,g) [30]. The optimized design (1) is the result of opti-
mization without optimizing the polarity and design (2) is
the result of optimization with optimizing polarity. In design
(1), in the case of planar forces, there will be charge cancel-
lation due to compression and tension in different parts of
the layer. To remedy, in design (2), the polarity is optimized
as well. For the realization of this polarization profile, the
top and bottom electrodes are divided into two sections to
simulate the polarization profile. As such, the design has 2
electrodes on top, 2 electrodes on bottom and one electrode
in the middle.

To assess experimentally the performance of the opti-
mized designs, their electrical to mechanical efficiency is
compared with a classical full plate. By COMSOL simula-
tion, we demonstrated how the designs harvested the energy
coming from different excitation in 3D space and the superi-
ority of the optimized designs over the full piezoelectric plate
is demonstrated. The experimental investigation demon-
strated that the optimized design with optimized polarity can
have up to 2 times better voltage output than the piezoelectric
full plate while having less amount of mass [30].

Finally, although optimized designs are multi-directional
harvesters, but they are not excited at their resonance fre-
quency. This is considered in the next stage of our research.

4.4 Frequency tuning & optimization of mass

The best efficiency of a vibrational PEH can be obtained
when it is excited at its resonance frequency. Frequency
matching is therefore very crucial for every PEH since
only 2% deviation of resonance frequency from excitation
frequency will drop the electrical output power by 50%.
Moreover, the available excitation frequency in real appli-
cations is generally between 10 to 30 Hz, which is below the
normal resonance frequency of the PEHs. The classical and
conventional method to match the resonance frequency with
the low excitation frequency is to attach a lumped mass at
the tip of the cantilever PEH [38].

In our recently published work [37], we combined topol-
ogy optimization and frequency tuning technique to raise
further the efficiency of PEH. The idea consists to define a
constraint on the fundamental frequency of PEH. To tackle
the challenges of eigenfrequency tuning within the topology
optimization approach, we defined the attachment’s mass as

123



Journal of Micro and Bio Robotics             (2024) 20:6 Page 9 of 22     6 

a new optimization variable in addition to the density and
polarity. This will be discussed in the next section.

4.4.1 Modeling & problem formulation

The resonance frequency is the natural frequency of the sys-
tem at short circuit condition. At open circuit condition, the
natural frequencies of the system are the anti-resonance fre-
quency [18]. Therefore the fundamental resonance frequency
at Vp = 0 can be calculated,

[
K̃uu − M̃ω̃2

s

]
�s = 0 (25)

in which ω̃s is the natural frequency at short circuit condi-
tion and�s is the related eigenvector. Now, based on the built
FEM of the piezoelectric plate and the provided resonance
equation, topology optimization algorithm can be applied to
maximize the harvested energy of the bi-morph vPEH by
optimizing the topology and modifying the resonance fre-
quency.

To define the mass of attachment as an optimization vari-
able, we define the mass matrix of the system as follows,

M̃ =
NE∑
i=1

m̃i + y[M̃mass] (0 ≤ y ≤ 1) (26)

in which m̃i is the elemental mass, i is the element number
and y is the optimization variable that stands for the ratio of
maximum possible mass of the attachment. By definition of
y here, we give more freedom to the optimization in terms of
convergence to a perfect solid void material in the final lay-
out. The reason is that the variable y can increase or decrease
the total mass of the vPEH without changing its stiffness.
This optimization variable helps optimization solver to con-
verge to a fully black and white final layout and to avoid the
greyness problem which is a common problem in topology
optimization with frequency tuning [39].

For tuning the resonance frequency, the first interpolation
function defined in Eq. 9 for the stiffness matrix Kuu should
be modified to avoid the localized modes at the low density
regions [40]. The reason is that, based on the SIMP material
interpolation scheme, low density regions are highly flexible
(soft) that produce very low and artificial eigenmodes. To
remedy, the interpolation function for the stiffness matrix
which is proposed by Huang et al. [39] is utilized as follows

k̃uu(xi ) =
[
xmin − x puu

min

1 − x puu
min

(1 − x puu
i ) + x puu

i

]
k̃uu (27)

Now, to tune the resonance frequencywemodify the prob-
lem formulation as follows,

minimize JEH = w j

S − (1 − w j )


E

Subject to V (x) =
NE∑
i=1

xivi ≤ V

ω1 < �,

0 ≤ xi ≤ 1, 0 ≤ Pi ≤ 1,
0 ≤ y ≤ 1

(28)

where y is the new optimization variable and� is the desired
resonance frequency. By having the inequality constraint on
the resonance frequency, the optimization is more relaxed
than having equality constrained. On the other hand, the res-
onance frequency will finally match the excitation frequency
as the structure tends to be more rigid during optimization
iterations. To solve the optimization problem with gradient
based optimizers like MMA we need to calculate the sensi-
tivity analysis which will be discussed next.

4.4.2 Sensitivity analysis

Since, the objective function in Eq. 28 is the same as Eq. 16,
we just calculate here the sensitivity of objective function
with respect to the new optimization variable as follows

∂
S

∂ y
= (

1

2
ũTi + λT

1,i )
∂(M̃Ω̃2)

∂ y
ũi

∂
E

∂ y
= λT

2,i
∂(M̃Ω̃2)

y
ui (29)

where μ and λ are the same elemental adjoint vectors which
are calculated in the adjoint Eq. 20.

To apply the constraint on the natural frequency, its gra-
dient with respect to the optimization variables should be
calculated. To do so, the fundamental natural frequency of
the system can be defined through theRayleigh quotient [39],

ω̃2
s = �T

s K̃uu�s

�T
s M̃�s

(30)

The interpretation of first natural frequency by Rayleigh
quotient will result in to more efficient sensitivity analysis.
By following the procedure presented in [39], the sensitiv-
ities of the natural frequency’s constraints with respect to
optimization variables are

∂ωs

∂xi
= 1

2ωs�T
s M̃�s

[
�T

s (
∂ k̃uu
∂xi

− ω̃2
s
∂ M̃

∂xi
)�s

]

∂ωs

∂ y
= − ω̃s

2�T
s M̃�s

[
�T

s
∂ M̃

∂ y
�s

]
(31)
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Now all the required sensitivities are calculated. However,
since we modified the interpolation function of the stiffness
matrix in Eq. 27 and the expression for the mass matrix is
also changed, their derivatives with respect to density and
new mass optimization variable (y) can be calculated as:

∂̃kuu
∂x

= 1 − xmin

1 − x p
min

puux
p−1
i Kuu

∂m̃

∂xi
= m̃i ,

∂m̃

∂ y
= M̃mass (32)

Aiming for low weight piezoelectric energy harvester,
a new configuration is proposed (Fig. 5-(a)) to minimize
the fundamental resonance frequency and the mass of the
attachment simultaneously. The obtained result (Fig. 5-(b))
in MATLAB and COMSOLMultiphysics demonstrated that
the algorithm successfully restricted the fundamental fre-
quency close to the desired one while respecting the mass
and volume constraints of the vPEH.

Simulation results prove the superiority of the optimized
design in Fig. 5-(b) in comparison with the previously opti-
mized design of Fig. 4-(g) while having less amount of
attachment mass. This is an interesting achievement that we
restricted the first resonance frequencywhile at the same time
having a lower amount of weight. On the other hand, the
stress analysis reveals a higher amount of stress in the newly
proposed configuration (Fig. 5-(a)) in comparison with the
previous configuration of the PEH (Fig. 5-(g)).

5 MATLAB code for frequency tuning of PEH
withmass optimization

In this section the goal is to provide a MATLAB code for
topology optimization of PEHwith tuning the resonance fre-
quency and considering the attached mass as an optimization
variable. The study of this section is similar to Section 4.4.
However, the dimension of study here is 2D and the pro-
vided MATLAB code is in 2D as well. It should be noted
that, despite the modeling dimension of the system, the ana-
lytical calculations of Section 4.4 remain true.

Fig. 6 a) Piezoelectric energy harvester with tip attachment. The mass
of attachment is considered as optimization variable

The MATLAB code in this section is developed on the
basis of the previously published code from the authors for
topology optimization of the PEH [13]. Moreover, the case
study of this section is similar to the case study of the pub-
lished codes [13] with the difference of considering attached
mass at the tip of the beam as it has been illustrated in Fig. 6
withmass of attachment as optimization variable. In this case
study, the polarization direction is considered to be in the z
direction of the coordinate system. However, it is possible to
simply consider the polarization direction in the y axis and
optimize the structure in the direction of thickness.

5.1 Description of the code

The implementation topology optimization MATLAB code
for case study of Fig. 6 is provided in the appendix. For
the sake of brevity, we will only explain here the lines of the
code that are different from previously published code [13] to
implement the optimization of resonance frequency. Readers
are advised to read the paper of previously published codes
[13] primarily before reading this section.

5.1.1 Definition of parameters

The provided code starts with the section of GENERAL
DEFINITIONS in which the user defines the geometry of
the structure, resolution of the mesh, penalty factors, etc. The
variable ft defines the filtering type in which the user can

Fig. 5 a) New configuration for
frequency tuned piezoelectric
energy harvester. b) Topology
optimized design [37]
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choose between two filtering methods including density fil-
ter [21, 41] or Heaviside projection suggested by Wang et
al. [42]. The complete MATLAB implementation code for
this combination of filtering methods is provided by Ferrari
et al. [43] and the same lines of codes are utilized in the pro-
vided code of this paper. Three parameters in the filtering
part should be defined in the first section of the code known
as filter radius (rmin), threshold (eta) and sharpness factor
(beta). The projection filter is new in this code in compar-
ison to previously published codes and it is more efficient in
terms of avoiding the gray elements.

For a better convergence to a clean black and white result,
the continuation schemes are applied to the penalties and
sharpness factor. To do so, penalCnt, betaCnt are
defined similarly to what has been defined by [43]. These
parameters accept four values as [istart, maxPar,
isteps, deltaPar], which means the continuation
starts at iteration = istart and will be increased by
deltaPar in each isteps and reaching to maximum
value maxPar.

Variable DF determines the maximum desired natural fre-
quency and the Variable MASS determines the maximum
allowable attachment mass. These two new variables are
defined to integrate the frequency tuning and the optimization
of attachment mass.

The sections of MATERIAL PROPERTIES, PREPARE
FINITE ELEMENT ANALYSIS, DEFINITION OF
BOUNDARY CONDITION, FORCE DEFINITION
remain intact in comparison to previously published code
[13]. Hence, no descriptions will be given here.

The sectionofDEFINITION OF ATTACHMENT MASS
is new and it is defined to model an attachment mass at the
tip of the beam. It should be noted that the code is dynamic
and the placement of the mass can be changed easily. The
lines of code to model the attached mass are as follows:

86 %% DEFINITION OF ATTACHMENT MASS
87 sMass=zeros(nele,1);
88 sMass (nele−nely/2) = 1;
89 le = Lp/nelx; we = Wp/nely;
90 ro_M = MASS∗1e−3/(le∗we∗h)/length(find(

sMass));
91 sMMass = (ro_M/ro)∗m(:).∗sMass’;
92 sMMass = reshape(sMMass,length(m(:))∗nele

,1);
93 M_Att = sparse(iK(:),jK(:),sMMass(:)); %

Creating mass matrix for the
attachement mass

The method to define the mass is to consider elements at
the desired location in the design domain to be more heavy
than other elements. To do so, we use the sMass which is a
Boolean vector with a size of total number of elements. We
choose the desired element(s) to place the mass and the rows
indexing that element will have the value of 1. In the case
study of this paper, since we placed the mass of attachment

at the end of the beam as illustrated in Fig. 6, the last element
at the tip of the beam in the middle of the width is chosen to
be heavier than the rest of the element. To make the element
heavier, we modify the density of the elemental mass matrix
by ro_M. Finally, this mass will be augmented to the global
size mass matrix with the help of the sMMass . The M_Att
is a matrix with the size of global mass matrix which only
contains the attached mass. As such, it should be augmented
to global piezoelectric mass matrix which will be explained
later.

The section of PREPARE FILTER is transferred from
the code written by Ferrari. et. al [43] to implement the
density filter and projection. A detailed explanation can be
found in the cited reference. In the section of INITIALIZE
ITERATION we defined the ratios for the continuation
scheme. These ratios guarantee that the necessary conditions
between the penalization factors of piezoelectric matrices
will follow the intrinsic conditions suggested by [44] during
the continuation scheme of penalization factors. NATD is the
normalized desired natural frequency. Ym is the optimization
variable for the attachment mass that it has set to zero as the
initial value before the optimization.

In the section of MMA Preparation, we set the initial
values for the the MMA optimizer. However, the MMA code
will not be presented in the paper and these are external codes
that are called in our code. To have the MMA code, a request
by reader should be sent to the author of theMMA paper [25,
26].

5.1.2 Iteration loop

In the section of START ITERATION, we start the opti-
mization iterations. Iteration loop start by the filter/projection
part which is again transferred from the code written by Fer-
rari et al. [43]. This initial part of iteration loop produce the
projected physical densities (xPhys).

The interpolation function mentioned in Eq. 27, is imple-
mented in following line:

146 xPhysH = ((xpmin−xpmin.^penalKuu)./(
ones(nely,nelx)−xpmin.^penalKuu)).∗(
ones(nely,nelx)−xPhys.^penalKuu)+xPhys
.^penalKuu; % kuu interpolation
function

The line after, produces the derivation of (xPhysH) with
respect to (xPhys) which is necessary for the sensitivity
analysis:

147 xPhysHD = penalKuu∗((ones(nely,nelx)−
xpmin)./(ones(nely,nelx)−xpmin.^
penalKuu)).∗xPhys.^(penalKuu−1); %
Derivation of xPhysH with respect to
xPhys
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In the part of (FE-ANALYSIS), the column vectors sM,
sKuu, sKup, sKpp will be used to create the mass
matrix, stiffness matrix, coupling matrix and permittivity
matrix respectively all at the global (system) level.

In the following line, the attachment mass multiplied to
optimization variable (Ym), will be augmeneted to the global
mass matrix:

155 Mtot = M + M_Att∗Ym; % Augmenting
attached mass

The natural frequency and the related eigenvector of the
system are calculated in the following line:

157 [EIGVs,NATs]=eigs(Kuu(freedofs,
freedofs),Mtot(freedofs,freedofs),1,’
smallestabs’);Freq=sqrt(NATs∗k0/M0)/(2∗
pi); % Calculation of natural frequency

The variable Freq produces the real natural frequency in
Hertz by rolling back the normalization. In next line, eigen-
vector is normalized with respect to mass matrix:

158 Normal=EIGVs’∗M(freedofs,freedofs)∗
EIGVs; EIGV(freedofs)=sqrt(1/(Normal
(1,1)))∗EIGVs; % Normalization of
eigenvector

The constitution of global matrices and solving the finite ele
ment equilibrium equation and adjoint equations remain the
same as previous code [13]. In the part of OBJECTIVE FUN
CTION AND SENSITIVITY ANALYSIS, the mechani-
cal energy is divided to two parts related to kuu and −m�2.

The sensitivity of objective function related the attachment
mass which has been mentioned in Eq. 29, is calculated in
the following line:

192 dY = dY + (ro_M/ro)∗(1/(length(find
(sMass))))∗reshape(full(sum(dcME.∗sMass
,2)),[nelx,nely]);dY = sum(dY(:)); %
Attachement sensitivity

The sensitivities of natural frequency with respect to den-
sity and mass ratio (y) which are mentioned in Eq. 31 are
calculated in following lines:

194 DCKE=(1/(2∗sqrt(NATs)))∗(((1/2)∗EIGV(
edofMat)∗kuu).∗EIGV(edofMat));DCK =
reshape(sum(DCKE,2),[nely,nelx]);

195 DCME=(1/(2∗sqrt(NATs)))∗(((1/2)∗EIGV(
edofMat)∗(−m∗NATs)).∗EIGV(edofMat));DCM
= reshape(sum(DCME,2),[nely,nelx]);

196 dcF=(E0−Emin)∗xPhysHD.∗DCK+DCM; %
Frequency sensitivity (density)

197 DcF_Y = (ro_M/ro)∗(1/(length(find(sMass
))))∗reshape(sum(full(DCME.∗sMass),2),[
nely,nelx]);DcF_Y = sum(DcF_Y(:)); %
Frequency sensitivity (attachement mass
)

All the calculated sensitivities are filtered using the MAT-
LAB built-in function imfilter as suggested by Ferrari et
al. [43].

The section of MMA OPTIMIZATION OF DESIGN
VARIABLES calls MMA optimizer to update the optimiza-
tion variables. The external codes which are called in this
section are mmasub.m and subsolve.m which should be
requested from the author of the papers [25, 26].

After updating the optimization variables, the continua-
tion scheme will be applied to the penalization factor and
sharpness factor for the next iteration. The engagement of
this continuation scheme will be done in a particular itera-
tion number defined by the user as explained before.

5.1.3 Presentation of results

The final section of the paper is PLOT DENSITIES &
POLARIZATION which show the density and polarization
profile in each iteration plus showing the numerical results.

5.2 Case studies

To analyze the efficiency of the code, three case studies are
investigated. For all of the case studies the optimization prob-
lem is formulated as it is mentioned in Eq. 28 which means
the structure in Fig. 6 is under harmonic excitation and while
there is a constraint on the fundamental (first) natural fre-
quency, the goal is to maximize the output electrical energy
VS mechanical energy. The optimization variables are the
density, polarization and attachment’s mass.

5.2.1 Various excitation frequency, constant constraint
on the natural frequency

In the first case study, the structure will be excited by three
different frequencies while the constraint on the natural fre-
quency is equivalent to 2000 Hz. The results of optimization
are illustrated in Fig. 7. As it can be seen in this figure, dif-
ferent optimal layouts are obtained for different excitation
frequencies. Thiswas also studied in the previously published
code [13]. However, the important points here can be seen in
the numerical results. In panel (i) of Fig. 7 it is obvious that
in all cases the optimization respected the constraint on the
natural frequency precisely. The results are quite satisfactory
considering the fact that the optimal layouts are completely
steered to fully black and white and gray elements are suc-
cessfully avoided. Although the filtering and projection were
efficient in this case, themajor factor is the optimization of the
attachment’s mass. As can be seen in panel (j), the optimiza-
tion variable (y) gradually increased during the optimization
to reduce the overall natural frequency of the system. This
gives more freedom to the optimization solver to increase the
mass of the structure without modifying its stiffness.
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Fig. 7 Topology optimization result for PEH energy harvester for different excitation frequency. Desired natural frequency = 2000 (Hz). a-c) Layout
results, d-f) Polarization profile, g-j) Numerical plots

Fig. 8 Topology optimization result for PEH energy harvester for different desired natural frequency. Excitation frequency = 800 (Hz). a-c) Layout
results, d-f) Polarization profile, g-j) Numerical plots
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5.2.2 Constant excitation frequency, different constraint
on the natural frequency

In the next case study, the results of optimization for different
constraints on the natural frequency are reported in Fig. 8.
In panels (i) and (j) of this figure, it can be seen that the
constraint on the natural frequency is respectedwith different
final attachment mass. When the constraint on the natural
frequency is very low, higher mass is required to decrease
the natural frequency and vice versa.

5.2.3 Different maximum allowable attachment’s mass

In the final case study, the results of optimization for dif-
ferent maximum allowable attachment’s mass are illustrated
in Fig. 9. In this case study, a constant constraint on the
natural frequency and a constant excitation frequency are
considered for three different attachment’s mass. Moreover,
the final optimal attachment’s mass (mass ratio times the
maximum allowable mass) is the same. However, still, the
optimal layouts (panels (a-c)), are different. This can be due
to the fact that the maximum allowable jump between the
values of optimization variables in two sequences of itera-
tion is limited. Hence, the design with more allowable mass
respects the constraint sooner.

The provided MATLAB code in this section can be
extended to 3Dproblem. In this regard, the strategy and struc-
ture of the code remains the same. The provided MATLAB
code is flexible in terms of considering different case stud-
ies i.e. different boundary conditions and force applications,
design domain, etc.

6 Towardmulti-material topology
optimization

In pursuit of advancing the application of topology optimiza-
tion to piezoelectric structures, AS2M department embarked
on a new initiative. Building upon the proven success of topol-
ogyoptimizationusingsinglematerial, particularly in thedesign
of piezoelectric energy harvesters (PEHs) and piezoelectric
actuators as summarized in Table 2, this new venture seeks to
simultaneously distribute both active and passive materials.

The researchonmulti-material has reachedamature stage, as
evidenced by several notable works [45–48]. Multi-material
topology optimization (MMTO) involves the integration of
softmaterials andpassivematerials, drawing inspiration from
natural systems. This innovative design methodology strives
to achieve an optimal equilibrium between the flexibility
inherent in soft piezoelectric materials and the sturdiness of
rigid passive materials.

Fig. 9 Topology optimization result for PEH energy harvester for different attached mass. Excitation frequency = 800 (Hz) and desired natural
frequency = 2000 (Hz). a-c) Layout results, d-f) Polarization profile, g-j) Numerical plots
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Table 2 Summary of publications regarding topology optimization of piezoelectric structures in AS2M department

Year Publication Structure Approach Contribution

2017 [2] Uni-morph PEH Parametric\gradient-
based optimization

Explicit cost function to find optimal thickness

2018 [35] Amplification mechanism SIMP approach Increasing the stroke of stack piezo actuator

2020 [29] single-layer PEH SIMP approach Optimization of polarization and topology

2020 [30] Bi-morph PEH SIMP approach Multidirectional PEH/avoiding charge cancelation

2020 [13] single-layer piezo SIMP approach First MATLAB code published for TOM of piezo

2020 [16] single-layer piezo pusher SIMP approach Increasing stroke by optimizing the polarization

2020 [31] cantilever PEH Neural network &
genetic algorithm

In-span attachement mass

2022 [36] single-layer piezo pusher SIMP approach Considering voltage uncertainty

2023 [37] Bi-morph PEH SIMP approach Tuning resonance frequency/mass optimization

Leveraging multi-material topology optimization pro-
vides an avenue to fully exploit the inherent advantages of
using different materials to enhance structural performance.
This approach leads to an increase in the degrees of freedom
in force, displacement and energy transduction particularly
in the context of piezoelectric materials [49]. The process
of incorporating multi-material technique into the design of
robotic structures as given in the design of Robobee, MiGri-
bot and MilliDelta involves the optimal combination of two
distinct materials to leverage their individual inherent char-
acteristics through a unified approach. This integration is
crucial for optimizing the overall performance of the robotic
systems.

A key technique employed in this endeavor is topology
optimization (TO) particularly utilizing the well established

Fig. 10 Piezoelectric multi-material actuator design domain with load-
ing and boundary conditions

Solid Isotropic Materials with Penalization (SIMP) method.
The literature primarily addresses cases of combination of
multi-material such as passive-passive, active-active and
active-passive materials.

The multi-material scheme is responsible for creation of
a design domain comprising of three phases: void and two
solid phases corresponding to either void or passivematerials
as depicted in Fig. 10.

7 Conclusion

This paper primarily summarized and discussed the appro-
aches developed at AS2M/FEMTO-ST institute for the topo-
logical design of piezoelectric structures. The summary of
the publications and the introduced contribution is reported
in Table 2. We demonstrated that topology optimization
methodology can be employed as a design tool to obtain
miniaturized piezoelectric structures with enhanced perfor-
mances. Moreover, the eigenvalue and mass optimization of
the PEH are presented in the paper theoretically and a 2D
topology optimization MATLAB code is provided to tune
the frequency of a piezoelectric energy harvester by optimiz-
ing the mass of the attachment. This is a first and new code
in the literature in this context.

Extending the SIMP to piezoelectric material paves
the way for promising perspectives. The first perspective
would concern multi-material topology optimization includ-
ing active and passivematerial. The other perspectives would
concern multi-degrees of freedom structures and considera-
tion of large deformations.

MATLAB topology optimization code for
piezoelectricenergyharvesterswith frequency
tuning
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1 % A 2D TOPOLOGY OPTIMIZATION CODE FOR PIEZOELECTRIC ENERGY HARVESTER WITH FREQUENCY TUNING
2 clc;clear;close all;
3 %% GENERAL DEFINITIONS
4 Lp = 3e−2; % Pieozoelectric plate length (m) in x direction
5 Wp = 1e−2; % Pieozoelectric plate width (m) in y direction
6 h = 2e−4; % Pieozoelectric plate Thickness (m) in z direction
7 nelx = 240; % Number of element in x direction
8 nely = 80; % Number of element in y direction
9 penalKuu = 3; penalKup = 6;penalKpp = 4;penalPol = 1; % Penalization factors

10 omega = 800; % Excitation frequency (Hz)
11 wj = 0.2; % Objective function weigthing factor
12 volfrac = 0.5; % Volume fraction
13 ft = 2; % 1= Density filter, 2&3= projection with eta and beta as parameters
14 rmin = 2; % Filter radius
15 eta = 0.5; % Threshold
16 beta = 1; % Sharpness factor
17 ftBC = ’N’;
18 penalCnt = {50,6,10,0.1}; % Continuation scheme on penalKuu {istart, maxPar, isteps, deltaPar

}
19 betaCnt = {50,60,10,1}; % Continuation scheme on beta {istart, maxPar, isteps, deltaPar}
20 DF = 2000; % Desired fundamental natural frequency (Hz)
21 MASS = 1; % Maximum allowable attachement mass (gr)
22 Max_loop = 100; % Maximum number of Iterations
23 %% MATERIAL PROPERTIES (PZT 4)
24 ro = 7500; % Density of piezoelectric material
25 e31 = −14.9091; % e31 Coupling coefficient
26 ep33 = 7.8374e−09; % Piezoelectric permitivity epsilon33
27 C = zeros(3,3); % Creation of null mechanical stiffness tensor
28 C(1,1) = 9.1187e+10; C(2,2) = C(1,1);
29 C(1,2) = 3.0025e+10; C(2,1) = C(1,2);
30 C(3,3) = 3.0581e+10;
31 %% PREPARE FINITE ELEMENT ANALYSIS
32 le = Lp/nelx; % Element length
33 we = Wp/nely; % Element width
34 e = [e31,e31,0]; % Piezoelectric matrix
35 x1 = 0;y1 = 0;x2 = le;y2 = 0;x3 = le;y3 = we;x4 = 0;y4 = we; % Element node coordinate
36 GP = [−1/sqrt(3) −1/sqrt(3);1/sqrt(3) −1/sqrt(3);1/sqrt(3) 1/sqrt(3);−1/sqrt(3) 1/sqrt(3)];

% Gauss quadrature points
37 kuu = 0;kpp = 0;kup = 0;m = 0; % Initial values for piezoelectric matrices
38 for i = 1:4
39 s = GP(i,1);t = GP(i,2); % Natural coordinates
40 n1 = (1/4)∗(1−s)∗(1−t);
41 n2 = (1/4)∗(1+s)∗(1−t);
42 n3 = (1/4)∗(1+s)∗(1+t);
43 n4 = (1/4)∗(1−s)∗(1+t);
44 a = (y1∗(s−1)+y2∗(−1−s)+y3∗(1+s)+y4∗(1−s))/4;
45 b = (y1∗(t−1)+y2∗(1−t)+y3∗(1+t)+y4∗(−1−t))/4;
46 c = (x1∗(t−1)+x2∗(1−t)+x3∗(1+t)+x4∗(−1−t))/4;
47 d = (x1∗(s−1)+x2∗(−1−s)+x3∗(1+s)+x4∗(1−s))/4;
48 B1 = [a∗(t−1)/4−b∗(s−1)/4 0 ; 0 c∗(s−1)/4−d∗(t−1)/4 ;c∗(s−1)/4−d∗(t−1)/4 a∗(t−1)/4−b∗(

s−1)/4];
49 B2 = [a∗(1−t)/4−b∗(−1−s)/4 0 ; 0 c∗(−1−s)/4−d∗(1−t)/4;c∗(−1−s)/4−d∗(1−t)/4 a∗(1−t)/4−

b∗(−1−s)/4];
50 B3 = [a∗(t+1)/4−b∗(s+1)/4 0 ; 0 c∗(s+1)/4−d∗(t+1)/4 ;c∗(s+1)/4−d∗(t+1)/4 a∗(t+1)/4−b∗(s

+1)/4];
51 B4 = [a∗(−1−t)/4−b∗(1−s)/4 0 ; 0 c∗(1−s)/4−d∗(−1−t)/4 ;c∗(1−s)/4−d∗(−1−t)/4 a∗(−1−t)

/4−b∗(1−s)/4];
52 Bfirst = [B1 B2 B3 B4];
53 Jfirst = [0 1−t t−s s−1 ; t−1 0 s+1 −s−t ;s−t −s−1 0 t+1 ; 1−s s+t −t−1 0];
54 J = [x1 x2 x3 x4]∗Jfirst∗[y1 ; y2 ; y3 ; y4]/8; % Determinant of jacobian matrix
55 Bu = Bfirst/J;
56 Bphi = 1/h;
57 kuu = kuu + h∗J∗transpose(Bu)∗C∗Bu; % Mechanical stiffness matrix
58 kup = kup + h∗J∗transpose(Bu)∗e’∗Bphi; % Piezoelectric coupling matrix
59 kpp = kpp + h∗J∗transpose(Bphi)∗ep33∗Bphi; % Dielectric stiffness matrix
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60 N = [n1,0,n2,0,n3,0,n4,0;0,n1,0,n2,0,n3,0,n4]; % Matrix of interpolation functions
61 m = m+J∗ro∗h∗(N’)∗N; % Mass matrix
62 end
63 k0 = max(abs(kuu(:)));beta0 = max(kpp(:));alpha = max(kup(:));M0 = max(m(:)); % Normalization

Factors
64 kuu = kuu/k0;kup = kup/alpha;kpp = kpp/beta0;gamma = (k0∗beta0)/(alpha^2);m = m/M0; omega =

M0∗(omega∗2∗pi)^2/k0; % Normalization
65 ndof = 2∗(nely+1)∗(nelx+1); % mechanical degrees of freedom
66 nele = nelx∗nely; % number of elements
67 nodenrs = reshape(1:(1+nelx)∗(1+nely),1+nely,1+nelx);
68 edofVec = reshape(2∗nodenrs(1:end−1,1:end−1)+1,nele,1);
69 edofMat = repmat(edofVec,1,8)+repmat([0 1 2∗nely+[2 3 0 1] −2 −1],nele,1);
70 edofMatPZT = 1:nele;
71 iK = kron(edofMat,ones(8,1))’;
72 jK = kron(edofMat,ones(1,8))’;
73 iKup = edofMat’;
74 jKup = kron(edofMatPZT,ones(1,8))’;
75 B = ones(nele,1); % Boolean Matrix defined as a vector of ones
76 %% DEFINITION OF BOUNDARY CONDITION
77 fixeddofs = 1:2∗(nely+1); % Clamped−Free
78 freedofs = setdiff(1:ndof,fixeddofs);
79 lf = length(freedofs);
80 %% FORCE DEFINITION
81 nf = 1; % Number of forces
82 F = sparse(ndof,nf);
83 Fe = ndof−(nely); % Definition of desired Dof for application of force
84 F(Fe,1) = +1; % Amplitude of the force
85 Ftot = [F(freedofs,:);zeros(1,nf)];
86 %% DEFINITION OF ATTACHMENT MASS
87 sMass=zeros(nele,1);
88 sMass (nele−nely/2) = 1;
89 le = Lp/nelx; we = Wp/nely;
90 ro_M = MASS∗1e−3/(le∗we∗h)/length(find(sMass));
91 sMMass = (ro_M/ro)∗m(:).∗sMass’;
92 sMMass = reshape(sMMass,length(m(:))∗nele,1);
93 M_Att = sparse(iK(:),jK(:),sMMass(:)); % Creating mass matrix for the attachement mass
94 %% PREPARE FILTER (F. Ferrari et al. 2021)
95 if ftBC == ’N’, bcF = ’symmetric’; else, bcF = 0; end
96 prj = @(v,eta,beta) (tanh(beta∗eta)+tanh(beta∗(v(:)−eta)))./(tanh(beta∗eta)+tanh(beta∗(1−eta)

)); % projection
97 deta = @(v,eta,beta) − beta ∗ csch( beta ) .∗ sech( beta ∗ ( v( : ) − eta ) ).^2 .∗sinh( v( :

) ∗ beta ) .∗ sinh( ( 1 − v( : ) ) ∗ beta ); % projection eta−derivative
98 dprj = @(v,eta,beta) beta∗(1−tanh(beta∗(v−eta)).^2)./(tanh(beta∗eta)+tanh(beta∗(1−eta)));%

proj. x−derivative
99 cnt = @(v,vCnt,l) v+(l>=vCnt{1}).∗(v<vCnt{2}).∗(mod(l,vCnt{3})==0).∗vCnt{4};

100 [dy,dz,dx] = meshgrid(−ceil(rmin)+1:ceil(rmin)−1,−ceil(rmin)+1:ceil(rmin)−1,−ceil(rmin)+1:
ceil(rmin)−1 );

101 h = max( 0, rmin − sqrt( dx.^2 + dy.^2 + dz.^2 )); % Conv. kernel
102 Hp = imfilter( ones( nely, nelx), h, bcF ); dHs = Hp; % Matrix of weights (filter)
103 %% INITIALIZE ITERATION
104 x = repmat(volfrac,nely,nelx); xpmin=x∗1e−2; % Initial values for density ratios
105 pol = repmat(0.5,[nely,nelx]); % Initial values for polarization
106 xPhys = x;
107 loop = 0;
108 Density_change = 1;
109 E0 = 1; Emin = 1e−9;
110 e0 = 1; eMin = 1e−9;
111 eps0 = 1; epsMin = 1e−9;
112 dv0 = ones(nely,nelx); % Volume sensitivity
113 penalratio_up = penalKup/penalKuu; penalratio_pp = penalKpp/penalKuu; % Penalty ratios for

continuation scheme
114 NATD=(DF∗2∗pi)^2∗(M0/k0); % Normalization of desired natural frequency
115 Ym = 0; % Initial mass ratio
116 EIGV1 = zeros (ndof,1); EIGV2 = zeros (ndof,1); % Creating null eigenvectors
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117 %% MMA Preparation
118 mc = 2; % Number of constraints
119 nVar = 2∗nele+1; % Number of variables
120 xmin = zeros(nVar,1); % Minimum possible density
121 xmax = ones(nVar,1); % Vector of maximum optimization variables
122 xold1 = [x(:);pol(:);Ym]; % Vector of variables for previous iteration
123 xold2 = [x(:);pol(:);Ym]; % Vector of variables for 2nd previous iteration
124 low = xmin; % Initial vector of lower asymptotes
125 upp = xmax; % Initial vector of upper asymptotes
126 a0 = 1;
127 ai = zeros(mc,1);
128 ci = (1e5)∗ones(mc,1);
129 di = zeros(mc,1);
130 %% START ITERATION
131 while Density_change > 0.005 && loop < Max_loop
132 tic
133 loop = loop + 1;
134 % COMPUTE PHYSICAL DENSITY FIELD (AND ETA IF PROJECT.) (F. Ferrari et al. 2021)
135 xTilde = imfilter( reshape( x, nely, nelx), h, bcF ) ./ Hp; xPhys = xTilde; % Filtered

field
136 if ft > 1 % Compute optimal eta∗ with Newton
137 f = ( mean( prj( xPhys, eta, beta ) ) − volfrac ) ∗ (ft == 3); % Function (volume)
138 while abs( f ) > 1e−6 % Newton process for finding opt. eta
139 eta = eta − f / mean( deta( xPhys, eta, beta ) );
140 f = mean( prj( xPhys, eta, beta ) ) − volfrac;
141 end
142 dHs = Hp ./ reshape( dprj( xPhys, eta, beta ), nely, nelx); % Sensitivity

modification
143 xPhys = prj( xPhys, eta, beta ); % Projected (physical) field
144 end
145 xPhys = reshape(xPhys,nely,nelx); % Physical density
146 xPhysH = ((xpmin−xpmin.^penalKuu)./(ones(nely,nelx)−xpmin.^penalKuu)).∗(ones(nely,nelx)−

xPhys.^penalKuu)+xPhys.^penalKuu; % kuu interpolation function
147 xPhysHD = penalKuu∗((ones(nely,nelx)−xpmin)./(ones(nely,nelx)−xpmin.^penalKuu)).∗xPhys

.^(penalKuu−1); % Derivation of xPhysH with respect to xPhys
148 % FE−ANALYSIS
149 sM = m(:)∗xPhys(:)’;
150 sKuu = kuu(:).∗(Emin+xPhysH(:)’∗(E0−Emin));
151 sKup = kup(:)∗(eMin+xPhys(:)’.^penalKup∗(e0−eMin).∗((2∗pol(:)−1)’.^penalPol));
152 sKpp = kpp(:)∗(epsMin+xPhys(:)’.^penalKpp∗(eps0−epsMin));
153 % Creation of global matrices
154 M = sparse(iK(:),jK(:),sM(:)); M = (M+M’)/2; % Global mass matrix
155 Mtot = M + M_Att∗Ym; % Augmenting attached mass
156 Kuu = sparse(iK,jK,sKuu);
157 [EIGVs,NATs]=eigs(Kuu(freedofs,freedofs),Mtot(freedofs,freedofs),1,’smallestabs’);Freq=

sqrt(NATs∗k0/M0)/(2∗pi); % Calculation of natural frequency
158 Normal=EIGVs’∗M(freedofs,freedofs)∗EIGVs; EIGV(freedofs)=sqrt(1/(Normal(1,1)))∗EIGVs; %

Normalization of eigenvector
159 Kuu = sparse(iK,jK,sKuu)−omega∗Mtot;
160 Kup = sparse(iKup(:),jKup(:),sKup(:)); % Global piezoelectric coupling matrix
161 Kpp = sparse(edofMatPZT(:),edofMatPZT(:),sKpp(:)); % Global dielectric stifness matrix
162 KupEqui = Kup(freedofs,:)∗B; KppEqui = gamma∗B’∗Kpp∗B; % Equipotential Condition
163 Ktot = [Kuu(freedofs,freedofs),KupEqui;KupEqui’,−KppEqui]; % Creation of total matrix

with equipotential hypothesis
164 Ktot = 1/2∗(Ktot + Ktot’); % Numerical symmetry enforcement
165 U = Ktot\Ftot; % Response vector
166 Uu(freedofs,:) = U(1:lf,:); Up = U(lf+1:end,:); % Separation of mechanical displacement

and electrical Potential
167 ADJ1 = Ktot\[−Kuu(freedofs,freedofs)∗Uu(freedofs,:);zeros(1,nf)]; % First adjoint vector
168 lambda1(freedofs,:) = ADJ1(1:lf,:); mu1 = B∗ADJ1(lf+1:end,:);
169 ADJ2 = Ktot\[zeros(lf,nf);−KppEqui∗Up]; % Second adjoint vector
170 lambda2(freedofs,:) = ADJ2(1:lf,:); mu2 = B∗ADJ2(lf+1:end,:);
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171 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
172 c = 0; Wm1 = 0; Wm2 = 0; We = 0;
173 dc = zeros(nely,nelx);
174 dp = zeros(nely,nelx);dY = 0;
175 for i = 1:nf % nf is the total number of forces (Load Cases)
176 Uu_i = Uu(:,i);Up_i = B∗Up(:,i);
177 lambda1_i = lambda1(:,i); lambda2_i = lambda2(:,i);
178 mu1_i = mu1(:,i); mu2_i = mu2(:,i);
179 Wm1 = Wm1 + reshape(sum((Uu_i(edofMat)∗kuu).∗Uu_i(edofMat),2),nely,nelx); % Elemental

mechanical energy (kuu)
180 Wm2 = Wm2 + reshape(sum((Uu_i(edofMat)∗m∗omega).∗Uu_i(edofMat),2),nely,nelx); %

Elemental mechanical energy (m)
181 We = We + reshape(sum((Up_i∗kpp).∗Up_i,2),nely,nelx); % Elemental electrical energy
182 dcKuuE = wj∗((((1/2)∗Uu_i(edofMat) + lambda1_i(edofMat))∗kuu).∗Uu_i(edofMat))−(1−wj)

∗((lambda2_i(edofMat)∗kuu).∗Uu_i(edofMat));
183 dcKupE = wj∗((lambda1_i(edofMat)∗kup).∗Up_i + ((Uu_i(edofMat))∗kup).∗mu1_i)−(1−wj)∗((

lambda2_i(edofMat)∗kup).∗Up_i + ((Uu_i(edofMat))∗kup).∗mu2_i);
184 dcKppE = wj∗((−mu1_i∗kpp).∗Up_i)−(1−wj)∗((1/2)∗(Up_i∗kpp).∗Up_i − (mu2_i∗kpp).∗Up_i);
185 dcME = wj∗((((1/2)∗Uu_i(edofMat) + lambda1_i(edofMat))∗(−m∗omega)).∗Uu_i(edofMat))

−(1−wj)∗((lambda2_i(edofMat)∗(−m∗omega)).∗Uu_i(edofMat));
186 dcKuu = reshape(sum(dcKuuE,2),[nely,nelx]);
187 dcKup = reshape(sum(dcKupE,2),[nely,nelx]);
188 dcKpp = gamma∗reshape(sum(dcKppE,2),[nely,nelx]);
189 dcM = reshape(sum(dcME,2),[nely,nelx]);
190 dc = dc + (E0−Emin)∗xPhysHD.∗dcKuu+penalKup∗(e0−eMin)∗xPhys.^(penalKup−1).∗dcKup

.∗((2∗pol−1).^(penalPol))+penalKpp∗(eps0−epsMin)∗xPhys.^(penalKpp−1).∗dcKpp+dcM; %
Density sensitivity

191 dp = dp + (e0−eMin)∗2∗penalPol∗((2∗pol−1).^(penalPol−1)).∗xPhys.^penalKup.∗dcKup; %
Polarization sensitivity

192 dY = dY + (ro_M/ro)∗(1/(length(find(sMass))))∗reshape(full(sum(dcME.∗sMass,2)),[nelx,
nely]);dY = sum(dY(:)); % Attachement sensitivity

193 end
194 DCKE=(1/(2∗sqrt(NATs)))∗(((1/2)∗EIGV(edofMat)∗kuu).∗EIGV(edofMat));DCK = reshape(sum(DCKE

,2),[nely,nelx]);
195 DCME=(1/(2∗sqrt(NATs)))∗(((1/2)∗EIGV(edofMat)∗(−m∗NATs)).∗EIGV(edofMat));DCM = reshape(

sum(DCME,2),[nely,nelx]);
196 dcF=(E0−Emin)∗xPhysHD.∗DCK+DCM; % Frequency sensitivity (density)
197 DcF_Y = (ro_M/ro)∗(1/(length(find(sMass))))∗reshape(sum(full(DCME.∗sMass),2),[nely,nelx])

;DcF_Y = sum(DcF_Y(:)); % Frequency sensitivity (attachement mass)
198 Wm = sum(sum(xPhysH.∗Wm1))−sum(sum(xPhys.∗Wm2)); % Mechanical energy (Normalized)
199 We = sum(sum((epsMin+xPhys.^penalKpp∗(eps0−epsMin)).∗We)); % Electrical energy (

Normalized)
200 c = wj∗Wm−(1−wj)∗We; % Objective function
201 dv = ones(nely,nelx);
202 % FILTERING/MODIFICATION OF SENSITIVITIES
203 dc = imfilter( reshape( dc, nely, nelx) ./ dHs, h, bcF ); % Filter objective sensitivity
204 dcF = imfilter( reshape( dcF, nely, nelx) ./ dHs, h, bcF ); % Filter frequency

sensitivity
205 dv = imfilter( reshape( dv0, nely, nelx ) ./ dHs, h, bcF ); % Filter volume sensitivity
206 %% MMA OPTIMIZATION OF DESIGN VARIABLES
207 xval = [x(:);pol(:);Ym]; % Vector of current optimization variables
208 f0val = c; % Current objective function value
209 df0dx = [dc(:);dp(:);dY]; % Vector of Sensitivities
210 fval = [sum(xPhys(:))/(volfrac∗nele) − 1;(sqrt(NATs)/sqrt(NATD))−1]; % Constraint value
211 dfdx = [dv(:)’ / (volfrac∗nele),0∗pol(:)’,0;dcF(:)’/sqrt(NATD),0∗pol(:)’,DcF_Y(:)’/sqrt(

NATD)]; % Constraint’s Sensitivities
212 [xmma, ~, ~, ~, ~, ~, ~, ~, ~, low,upp] = mmasub(mc, nVar, loop, xval, xmin, xmax, xold1,

xold2, f0val,df0dx,fval,dfdx,low,upp,a0,ai,ci,di); % MMA optimization
213 xnew = reshape(xmma(1:nele,1),nely,nelx); % Vector of updated density variable
214 Density_change = max(abs(xnew(:)−x(:)));
215 xold2 = xold1(:);xold1 = [x(:);pol(:);Ym];
216 pol = reshape(xmma(nele+1:2∗nele,1),nely,nelx); % Vector of updated polarization

variables
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217 Ym = xmma(2∗nele+1,1); % Updated mass ratio variable
218 x = xnew;
219 %% CONTINIUATION SCHEME ON PENALIZATION FACTORS & BETA
220 [penalKuu,~] = deal(cnt(penalKuu ,penalCnt,loop),cnt(beta,betaCnt,loop));
221 penalKup=penalKuu∗penalratio_up; penalKpp=penalKuu∗penalratio_pp;
222 %% PLOT DENSITIES & POLARIZATION
223 figure(1);colormap(gray); imagesc(1−x); caxis([0 1]); axis equal; axis off; drawnow;
224 figure(2);colormap(jet); imagesc(((x.∗(pol∗2−1))+1)/2); caxis([0 1]); axis equal; axis

off; drawnow;
225 fprintf(’ It:%2.0i Time:%3.2fs Obj:%3.4f Wm.:%3.4f We.:%3.4f Freq:%3.3f Ym.:%3.3f Vol

:%3.3f ch:%3.3f\n ’,loop,toc,c,Wm,We,Freq,Ym,mean(xPhys(:)),Density_change);
226 end
227 % ||=====================================================================||
228 % || THIS CODE IS WRITTEN BY ABBAS HOMAYOUNI−AMLASHI, THOMAS SCHLINQUER, ||
229 % || Peter Kipkemoi, Jean Bosco Byiringiro, MICKY RAKOTONDRABE, ||
230 % || Michael Gauthier and ABDENBI MOHAND−OUSAID. January 2024. ||
231 % ||=====================================================================||
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