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Abstract
The variability in the magnetic activity of the Sun is the main source of the observed changes in the plasma and electro-
magnetic environments within the heliosphere. The primary way in which solar activity affects the Earth’s environment is 
via the solar wind and its transients. However, the relationship between solar activity and solar wind is not the same at the 
Space Weather and Space Climate time scales. In this work, we investigate this relationship exploiting five solar cycles data 
of Ca II K index and solar wind parameters, by taking advantage of the Hilbert–Huang Transform, which allows to separate 
the contribution at the different time scales. By filtering out the high-frequency components and looking at decennial time 
scales, we confirm the presence of a delayed response of solar wind to Ca II K index variations, with a time lag of ∼ 3.1-
year for the speed and ∼ 3.4-year for the dynamic pressure. To assess the results in a stronger framework, we make use of a 
Transfer Entropy approach to investigate the information flow between the quantities and to test the causality of the relation. 
The time lag results from the latter are consistent with the cross-correlation ones, pointing out the presence of a statistical 
significant information flow from Ca II K index to solar wind dynamic pressure that peaks at time lag of 3.6-year. Such a 
result could be of relevance to build up a predictive model in a Space Climate context.
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1  Introduction

The presence of a magnetic field in the solar atmosphere is 
the most prominent manifestation of solar variability. Obser-
vations of such magnetic variability on the Sun can provide 
strong observational constraints on the solar dynamo theory, 
helping to understand the physical mechanisms underlying 
magnetic flux emergence and evolution. This is particularly 
interesting on long-term scales, as the solar cycle can offer 
insights into the complex dynamics of the global dynamo 
(e.g., Usoskin et al. 2007).

The goal of Space Climate is to describe long-term vari-
ations in solar activity and their impact on the heliosphere 
and the Earth’s environment. The time scale usually used to 
distinguish the two regimes (i.e., Space Weather and Space 
Climate) is a few solar rotations (Mursula et al. 2007). Here, 
we focus on the multi-year time scale relationship between 
solar activity and near-Earth solar wind properties. To 
achieve this goal, we utilize the full extent of space–age 
solar wind observations via the OMNI database (King and 
Papitashvili 2005). Furthermore, we make use of a cen-
tury-long dataset of the Ca II K index, a widely employed 
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physical solar activity indicator. This emission index has 
been demonstrated to be a reliable proxy for the magnetic 
flux density at the Sun (Schrijver et al. 1989; Ortiz and Rast 
2005; Chatzistergos et al. 2019b) and it has also been proven 
to trace long-term variations in solar activity (e.g., Judge 
2006; Bertello et al. 2016; Chatzistergos et al. 2019a).

The first evidence of a strong link between solar wind 
properties and the solar cycle comes from observations of a 
period close to 11 years since the very first satellite observa-
tions (Siscoe et al. 1978; King 1979; Neugebauer 1981). In 
later studies, long-term solar wind properties were mostly 
compared with sunspot numbers, revealing a non-perfect 
match among the periodicities of the solar cycle and solar 
wind speed, density, pressure, and magnetic field, further 
highlighting a delayed response of solar wind signals com-
pared to sunspot numbers (Petrinec et al. 1991; Köhnlein 
1996; El-Borie 2002; Katsavrias et al. 2012; Richardson 
and Cane 2012; Li et al. 2016, 2017; Venzmer and Bothmer 
2018; Samsonov et al. 2019). A recent observational analysis 
of near-Earth solar wind measurements in relation to the Ca 
II K index was the first to study these properties over the 
last five solar cycles (Reda et al. 2023b). A 3.2-year lag of 
solar wind speed with respect to the Ca II K index is found 
using both cross-correlation and mutual information analy-
sis, while a 3.6-year lag is found between the magnetic proxy 
and solar wind dynamic pressure. The analysis on the time 
lag behaviour between the Ca II K index and the same solar 
wind parameters was further extended in Reda et al. (2023a), 
studying how their pairwise relative lags vary over the last 
five solar cycles, with values ranging from 6 years to 1 year.

In Reda et al. (2023a) and Reda et al. (2023b), the Space 
Climate scales were studied by applying a 37-month mov-
ing average to the Ca II K index and solar wind parameters, 
following the approach used by Köhnlein (1996). However, 
the use of the moving average as a low-pass filter can remove 
some relevant features at the Space Climate scales, such as 
the double maxima present in some solar cycles. In this 
study, we propose to overcome these issues using the Hil-
bert–Huang Transform (Huang et al. 1998), and in particular 
the Empirical Mode Decomposition, to filter out the intrin-
sic modes with mean periods below 3 years. We, therefore, 
reproduce a similar analysis as in other studies, studying the 
delays between the signals using a cross-correlation analysis.

Furthermore, we aim to investigate the causal link 
between the proxy of solar activity and the characteristics 
of the solar wind. This causal connection can guide us in 
exploring the underlying physical mechanisms responsi-
ble for this relationship, opening significant prospects for 
understanding the mechanisms of the solar dynamo at Space 
Climate scales. For this reason, we intend to use the Transfer 
Entropy (Schreiber 2000a), a novel approach from infor-
mation theory recently applied to the analogous complex 

dynamics of the Earth’s magnetosphere–ionosphere sys-
tem (Stumpo et al. 2020; Balasis et al. 2023; Stumpo et al. 
2023). Transfer entropy can track down the information flow 
between variables in different directions, thus showing the 
causality relation between the variables. Although a causal 
relationship between the driver of solar variability and solar 
wind properties is expected, such a measure is not assured 
and can shed light on the parameters of the solar wind that 
are more influenced. Additionally, this type of analysis pro-
vides an independent measure of the solar wind’s response 
times to solar magnetic variability, which is not constrained 
by a linear analysis. In particular, in this study, we aim to 
reanalyse the unfiltered data, sampled monthly, to study the 
solar wind properties on climatological time scales.

These investigations are crucial in an era of significant 
expansion of human activity in space. The variations of the 
space radiation environment, for example, have been fore-
casted for the next 80 years in the perspective of long-term 
changes in the Space Climate (Barnard et al. 2011). We are 
at the beginning of a new era of human exploration of deep 
space, which also aims to colonize and inhabit environments 
unprotected by the Earth’s magnetosphere. Solar wind con-
stitutes the main low-energy and high-flux component of 
charged particles in the space environment and has a sig-
nificant impact on the possibility of permanently inhabit-
ing remote locations in the solar system, such as the lunar 
surface in the near future and Mars in the medium term. 
For this reason, it is essential to understand the physical 
mechanisms governing the variability of the solar wind on 
multi-year scales.

The present article is structured as follows: Sect. 2 gives a 
description of the data used; Sect. 3 explains the techniques 
adopted for the analysis here performed; Sect. 4 presents the 
results of the analysis; finally, in Sect. 5, we list and discuss 
the results obtained.

2 � Data

The data we use in the present study, to investigate the rela-
tionship between the solar magnetic activity and the near-
Earth solar wind, are measurements of the Ca II K index and 
of the solar wind speed and dynamic pressure. In particular, 
we use here the monthly averages of the parameters listed 
above over the period 1965–2021.

The Ca II K index is a physical proxy of solar magnetic 
activity that accounts for the emission in the K line of Ca 
II at 393.4 nm. Such a line is originated in the middle solar 
atmosphere (i.e., the chromosphere) and it is related to the 
mean chromospheric emission of the Sun. The Ca II K index 
is one of the more commonly used activity indices and it 
has been proven to be a great proxy for the line-of-sight 
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(LoS) unsigned magnetic flux density along all the phases 
of the cycle, and not only when sunspots are present (see, 
e.g., Schrijver et al. 1989; Ortiz and Rast 2005; Chatzister-
gos et al. 2019b). Specifically, in this work, we make use 
of the Ca II K index composite presented and described in 
Bertello et al. (2016), which is freely accessible from the 
National Solar Observatory (NSO) website at https://​solis.​
nso.​edu/0/​iss/. The Ca II K 0.1 nm emission index contains 
inter-calibrated measures from three different observato-
ries (Kodaikanal Solar Observatory, Sacramento Peak and 
ISS-SOLIS at NSO), and overall, it covers the time period 
between February 1907 and October 2017. After that date, 
the SOLIS facility has been offline and no more data from 
this instrument are available. However, this dataset has been 
already extended to April 2021 in Reda et al. (2023b), by 
making use of the Mg II index (University of Bremen com-
posite), which has been proven to strongly correlate with 
the Ca II K index (see, e.g., Donnelly et al. 1994; Reda et al. 
2021, 2023b).

The near-Earth solar wind data are taken from the OMNI 
database, which can be accessed at https://​omniw​eb.​gsfc.​nasa.​
gov/​hw.​html. The OMNI dataset is a collection of various near-
Earth solar wind parameters, both magnetic and plasma ones, 
provided with different time resolutions (King and Papitashvili 
2005). It is compiled using validated data from several space-
crafts, such as IMP, ISEE, ACE, Wind, and Geotail. Among 
the set of parameters provided by the OMNI database, the 
analysis we perform in this study regards two dynamic param-
eters of the solar wind: speed ( V

sw
 ) and dynamic pressure 

( P
d,sw ). The latter has been computed starting from the speed 

( V
sw

 ) and the ion density ( n
i,sw ), as P

d,sw = 1∕2m
p
n
i,swV

2

sw

 , 

where the proton mass m
p
 is assumed as the mean ion mass. 

Data concerning these parameters are available starting from 
July 1965, thus constituting the main limit for the temporal 
extension of the analysis we carry out here.

The missing monthly data of Ca II K index, solar wind 
speed, and dynamic pressure were filled using a simple linear 
interpolation between the previous and the following monthly 
data. This procedure allows us to continuously investigate, in 
the present study, the time interval that goes from July 1965 
to April 2021, ensuring to almost fully cover the solar cycles 
from 20 to 24, together with the beginning of solar cycle 25 
(Fig. 1).

3 � Methods

3.1 � The Hilbert–Huang transform: empirical mode 
decomposition and hilbert spectral analysis

The Empirical Mode Decomposition (EMD), e.g., the first step 
of the Hilbert–Huang Transform (HHT), has been first intro-
duced by Huang et al. (1998) as an adaptive and a posteriori 
decomposition method whose decomposition basis is derived 
via an iterative process, known as sifting process, based on the 
local properties of signals (Huang et al. 1998).

Let y(t) be a time-dependent signal, the EMD allows us to 
write

(1)y(t) =

N∑

k=1

ck(t) + r(t),

Fig. 1   Monthly averages of the 
time series used for this work: 
Ca II K index (green, top), solar 
wind speed (red, middle), and 
solar wind dynamic pressure 
(blue, bottom) (color figure 
online)

https://solis.nso.edu/0/iss/
https://solis.nso.edu/0/iss/
https://omniweb.gsfc.nasa.gov/hw.html
https://omniweb.gsfc.nasa.gov/hw.html
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where the set {ck(t)} , named as Intrinsic Mode Functions 
(IMFs) or empirical modes, forms the decomposition basis, 
while r(t) is the residue of the decomposition. The latter is 
a non-oscillating function of time, while an IMF is defined 
as a function having the same (or differing at most by one) 
number of extrema and zero crossings and a zero-average 
mean envelope derived from local maxima and minima enve-
lopes, obtained by interpolating them using a cubic spline 
(e.g., Huang et al. 1998; Huang and Wu 2008). Table 1 sum-
marizes the main steps of the sifting process.

The authors proposed in Huang et al. (1998) the follow-
ing constraints as exit condition to stop the sifting process

being fixed � ∈ [0.2, 0.3] . This criterion has been refined by 
Rilling et al. (2003) by the so-called threshold method based 
on two thresholds, �1 and �2 , to guarantee globally small 
fluctuations (as in Huang et al. 1998) and to avoid locally 
large excursions (Flandrin et al. 2004).

In this way, a completely adaptive procedure is built, 
allowing us in deriving embedded oscillations without 
assuming linearity and/or stationarity. The derived set of 
empirical modes {ck(t)} satisfies mathematical requirements 
of completeness, convergence, and local orthogonality by 
construction (Huang et al. 1998), while global orthogonality 
is a posteriori guaranteed, since ⟨ck, ck�⟩ = �kk� , being ⟨… ⟩ 
the scalar product between functions, and �kk′ the Kronecker 
tensor (e.g., Huang and Wu 2008).

(2)𝜎n =
∑

j

[
𝛿n(tj) − 𝛿n+1(tj)

]2

𝛿n(tj)
2

< 𝜖,

Being derived the set of empirical modes, by means of 
the so-called Hilbert Transform (HT), i.e., the second step 
of the HHT, we can write each of them as modulated both 
in amplitude and in frequency (e.g., Huang et al. 1998). 
Indeed, given an empirical mode ck(t) , we can define its 
Hilbert Transform ĉk(t) as

where P is the Cauchy principal value. By introducing the 
complex signal

it follows

where �k(t) and �k(t) are the instantaneous amplitude and 
phase of the k− th empirical mode, respectively. The defini-
tion of instantaneous frequency derives from the instantane-
ous phase as �k(t) =

1

2�

d�k(t)

dt
 . Similarly, the mean time scale 

is �k = ⟨�−1
k
(t)⟩t , with ⟨… ⟩t identifying the time average.

3.2 � Transfer entropy

The notion of cause–effect is a delicate question when data 
from controlled experiments are not available. This is the 
case of complex systems in general: when dealing with a 
system whose complete set of dynamical variables is not 
known a priori and the state of the system is monitored by 
some indices (which work as proxies) derived empirically, 
correlation may be confused with causation.

Data-driven methods for studying the degree of causation 
have been developed in the recent years. Generally, these 
methods are based on the notion of predictability, i.e., it is 
said that X drives Y if the knowledge of X’s past gives us 
information about Y’s future, but not vice versa. This type of 
causality is known as predictive causality, and it is restricted 
to only two variables, X and Y respectively. Mathematically, 
the concept of predictive causality is expressed through con-
ditional independence, i.e., it is reasonable to assume that X 
does not drive Y if

where X(l)

t−�
=

(
Xt−� , ...,Xt−�−l

)
 , Y(k)

t−1
=

(
Yt−1, ..., Yt−1−k

)
 , p(⋅) 

denotes the probability and � is a time lag. Therefore, to 
measure predictive causality the idea is to test Eq. (7). One 

(3)ĉk(t) =
1

𝜋
P∫

∞

0

ck(t
�

)

t − t�
dt�,

(4)𝜁k(t) = ck(t) + i ĉk(t) = 𝛼k(t)e
i𝜑k(t),

(5)𝛼k(t) =

√
ck(t)

2
+ ĉ2

k

(6)𝜑k(t) = tan−1
[
ĉk(t)

ck(t)

]
,

(7)p(Yt|Y
(k)

t−1
;X(l)

t−�
) = p(Yt|Y

(k)

t−1
),

Table 1   The main steps of the sifting process

y(t) → ym(t) = y(t) − ⟨y(t)⟩
�(t) = ym(t)

1. find local extrema of �(t)
2. find upper and lower envelopes by using cubic spline 
→ U(t) , L(t)

3. find the mean envelope → M(t) =
U(t)+L(t)

2

4. update �(t) → �(t) −M(t)

if �(t) is an IMF
store ck(t) = �(t)

�(t) → �(t) = ym(t) − �(t)

repeat steps 1.-4.
else
iterate steps 1.-4. until �(t) is an IMF
store ck(t) = �(t)

�(t) → �(t) = ym(t) − �(t)

repeat steps 1.-4.
stop the process when r(t) = �(t) is a non-oscillating function or has 

only two extrema
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way to quantify the distance between the right-hand side 
(r.h.s.) and the left-hand side (l.h.s.) of Eq. (7) is using the 
Kullback–Leibler Divergence. In this case, testing Eq. (7) 
becomes equivalent to test whether the expression

is different from zero (Schreiber 2000b). Equa-
tion (8) is known as transfer entropy (TE). Note that 
T
(k,l)

X→Y
(� = 0) ≠ T

(k,l)

Y→X
(� = 0) , i.e., the transfer entropy is 

asymmetric as expected from a measure of predictive cau-
sality (Schreiber 2000b).

In principle to test causality. one needs to include in the 
l.h.s. of Eq. (7) all the information available in the universe 
at time t − 1 and all the information available in the universe 
with the exception of X(l)

t−�
 in the r.h.s (Pearl 2009). For con-

trolled systems, all the variables influencing the measure-
ments of Y’s state are assumed to be known and the transfer 
entropy becomes measurable. This naturally set a limit to the 
application of such causal inference technique. For example, 
in the cases in which all the relevant variables are not known 
a priori, we can still compute Eq. (8), but it can be different 
from zero even though the interaction between X and Y is 
mediated by, e.g., a third variable Z (indirect causation; see, 
e.g., Bossomaier et al. 2016). Thus, the predictive causality 
does not generally imply the true cause–effect relationship 
if the information of the whole set of relevant variables is 
not available. However, it can be still used to measure lags 
between variables and directional coupling (Wibral et al. 
2013).

From a numerical point of view, a key question is whether 
or not the values found for the transfer entropy are statisti-
cally significant. In our case, the critical value of the transfer 
entropy T (∗) above which we can reject the null hypothesis 
is computed by generating surrogate time series satisfying 
Eq. (7) and with the same statistical properties of X and 
Y. To achieve this, we create surrogate trials by randomly 
shuffling the time series Xt−� . This allows us to estimate 
the distribution of the null hypothesis, to fix a confidence 
bound, and to find the critical value T (∗) which adapts to our 
dataset. The values such that T (k,l)

X→Y
(𝜏) > T∗ are considered 

statistically significant.

4 � Results

The results of Empirical Mode Decomposition are shown 
in Fig. 2 for the Ca II K index, in Fig. 3 for the solar wind 
speed and in Fig. 4 for the solar wind dynamic pressure. The 
mode decomposition generates 6 IMFs for the Ca II K index, 

(8)

T
(k,l)

X→Y
(�) =

∑

Yt ,Y
(k)

t−1
,X

(l)
t−�

p(Yt,Y
(k)

t−1
,X(l)

t−�
) log

p(Yt|Y
(k)

t−1
,X(l)

t−�
)

p(Yt|Y
(k)

t−1
)

7 IMFs for the solar wind speed, and 7 IMFs for the solar 
wind dynamic pressure.

The characteristic time scales (or the average period) of 
the IMFs obtained with the EMD are shown, for each signal, 
in Table 2.

The Ca II K index, as expected, displays an intrinsic com-
ponent (IMF 5) related to the 11-year solar activity cycle, in 
particular with a mean period of 12.4 years. Also, the solar 
wind speed and dynamic pressure display a component at 
solar cycle time scales. For both parameters, it is the IMF 6, 
corresponding to a mean period of 11.2 years for the speed 
and 13.9 years for the dynamic pressure. It is interesting to 
notice that for solar wind speed and dynamic pressure, we 
obtain a mode with a quasi-biennial periodicity (IMF 4 in 
both cases), while this is not true for Ca II K index.

To understand which IMF has the highest contribute to 
the overall variability of the signal, it is possible to compute 
for each IMF a weighted variance as it follows. The value of 
the variance of each IMF ( σ2

IMF

 ) is normalized to that of the 
total signal ( σ2

IMF
tot

 ), obtained by summing the contribution 
of all the IMFs but excluding the residual term, and plotted 
as a function of the mean period of the IMF itself. Such 
values are shown for the Ca II K index the solar wind speed 
and the solar wind dynamic pressure in Fig. 5. We can use 
this information to quantify the contribution of each IMF to 
the overall observed behaviour. We focus for our analysis on 
the IMFs with a mean period over 1 year. In the case of Ca 
II K index (left panel of Fig. 5), the greatest weighted vari-
ance is from IMF 5, the one related to the 11-year cycle. In 
the case of the solar dynamic pressure (right panel of Fig. 5), 
the major contribution is from IMF 6, once again the one 
corresponding to the solar cycle time scales. The same is 
true for the solar wind speed (central panel of Fig. 5), for 
which over the yearly time scale, the highest contribution is 
from IMF 6.

To further investigate the results of the decomposition, 
it is possible to look at how the power is distributed among 
the IMFs, searching for the presence of possible power 
laws. This can be done by plotting, for each IMF, the value 
of the variance ( σ2

IMF

 ) multiplied by the corresponding 
mean period ( P

IMF
 ), as a function of the mean period of 

the IMF itself (log-log scale). This is the analogous of a 
spectral density. The results are shown for Ca II K index, 
solar wind speed, and dynamic pressure in Fig. 6. It is pos-
sible to notice the presence of a power law, characterized 
by increasing intensity from yearly to solar cycle scales, 
thus extending over at least one decade, in all the signals. 
Although, in this time range, the power law is clearly evi-
dent, the behaviour at very high and very low frequencies 
remains uncertain due to the limited data points available 
in the plots.
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Once the signals have been decomposed via EMD as 
shown above, it becomes possible to filter the time series of 
the three parameters by means of the obtained IMFs. To this 
scope, we subtracted from the monthly time series of Ca II 
K index, solar wind speed, and dynamic pressure the contri-
bution of the IMFs with mean periods smaller than 3 years. 
This criterion is chosen to be consistent and to compare the 
results with the 37-month filtering previously applied in 
Reda et al. (2023b). In particular, for the Ca II K index, the 
contribution from IMFs 1–3 have been subtracted, while 
for both solar wind parameters, we subtract the IMFs 1–4. 
The comparison between monthly means, 37-month aver-
ages, and IMFs filtered data for the three signals is shown in 
Fig. 7. As it can be seen, the signals obtained by filtering the 
high-frequency IMFs are consistent with the 37-month mov-
ing averages, but they seem to better follow the behaviour 
of the monthly means with respect to the latter. Indeed, the 
signals filtered by means of the IMFs retain more informa-
tion, such as the double solar cycle peak visible in Ca II K 
index (top panel of Fig. 7).

According to the analysis performed in Reda et  al. 
(2023b), once the high-frequency components of the signals 
have been filtered out, it is possible to investigate the time 
lag between them. To this scope, we use here a cross-corre-
lation analysis considering only positive delay of the solar 

wind parameters with respect to the activity of the Sun (Ca 
II K index here). The results of the cross-correlation analy-
sis are shown in Fig. 8. The maximum correlation between 
Ca II K index and solar wind speed occurs at a time lag 
of 3.1 ± 0.1 yr, in agreement with the result of 3.2 ± 0.1 yr 
found in Reda et al. (2023b) using 37-month averaged data. 
The maximum correlation of Ca II K index with solar wind 
dynamic pressure, instead, is found for a time lag of 3.4 ± 0.1 
yr. This value is in agreement, within the confidence inter-
vals, with the values found in Reda et al. (2023b) with cross-
correlation ( 3.6 ± 0.1 yr) and mutual information ( 3.4 ± 0.1 
yr). These findings strengthen the analysis, as the results do 
not depend on the technique adopted to filter out the high-
frequency components.

The scatter plots of Fig. 9 show the relation of Ca II K 
index with solar wind speed and solar wind dynamic pres-
sure, respectively, once the time lags from the cross-corre-
lation analysis are taken into account. In both figures, the 
black lines show the best linear fits to the data points. The 
Pearson’s correlation coefficient is r = 0.57 in the case of 
the speed and r = 0.56 in the case of the dynamic pressure, 
indicating in both cases a positive moderate correlation. For 
the case of Ca II K index with solar wind dynamic pressure, 
the correlation coefficient is almost equal to that found in 
Reda et al. (2023b) using 37-month averaged data (r = 0.57), 

Fig. 2   Empirical mode decom-
position of Ca II K index. The 
top row shows the starting 
monthly means. The subsequent 
rows show the successive order 
IMFs, while the last row shows 
the residual signal (color figure 
online)
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while in the case of solar wind speed, it is smaller compared 
to the value they found (r = 0.65).

To assess in a stronger framework the results obtained 
with the present analysis, we compute the transfer entropy 
by directly employing the monthly averaged data, without 
applying any filter. This approach allows us to investigate 
higher order correlation between data, i.e., predictive causal-
ity as explained in the previous section. In Fig. 10, we show 
the information flow, as measured by the transfer entropy, 
from Ca II K index to P

d,SW (top-left panel) and vice versa 
(top-right panel). In both cases, the purple line shows the 
empirical threshold of 99% arising from the analysis of 500 
surrogate time series data (see Sect. 3.2). The information 
flow from the Ca II K index to P

d,SW exhibits a statistically 
significant structure/enhancement between ∼ 25 and ∼ 50 
months. The maximum of the transfer entropy is at 43 
months ( ≃ 3.6-year), while the mean of the interval (assum-
ing a symmetric peak) is at 37.5 months ( ≃ 3.1-year). Both 
lags are comparable with the results found with the cross-
correlation analysis in this work, but also in agreement with 
the findings by Reda et al. (2023b). The latter result high-
lights that the correlation found is not simply due to the syn-
chronization of the time series peaks, but it means that there 
is a predictive link between Ca II K index and the solar wind 
dynamic pressure, suggesting a certain degree of causation.

On the other hand, the information flow in the reversed 
case (top-right panel of Fig. 10) is always below the 99% 
threshold with the exception of a peak at 71 months ( ≃ 5.9-
year; comparable with the distance between solar maximum 
and solar minimum). We interpret this finding as due to 
redundancies/periodicities induced by the solar cycle. To test 
quantitatively this hypothesis, in principle, Eq. (8) should 
be computed using k > 1 . However, this is not reliable with 
only 670 data points.

The bottom panels of Fig. 10 show the results of the trans-
fer entropy analysis for the solar wind speed. In both direc-
tions, i.e., from Ca II K index to V

SW
 (bottom-left panel) 

and vice versa (bottom-right panel), there are no strong evi-
dences about the information flow. The exceedances of the 
threshold at lags of 37 months ( ≃ 3.1-year) and 60 months 
( ≃ 5.0-year) from Ca II K to V

SW
 , and at 78 months ( ≃ 6.5-

year) from V
SW

 to Ca II K, are here interpreted as a fluctua-
tion due to sampling effects. However, the peak at 3.1-year 
is consistent with the structures found in the analysis of solar 
wind dynamic pressure and with the results recently found 
in Reda et al. (2023b).

Note that, in general, the results of the transfer entropy 
analysis are noisy. This is due to the fact that we have only 
670 data points, so that the estimation of high-dimensional 
transition probabilities is prone to fluctuations. To mitigate 

Fig. 3   Empirical mode decom-
position of solar wind speed. 
The top row shows the starting 
monthly means. The subsequent 
rows show the successive order 
IMFs, while the last row shows 
the residual signal (color figure 
online)
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this effect, the estimation of transition probabilities must be 
performed by reducing the number of bins. In our case, the 
best trade-off between correct sampling and resolution (i.e., 
to have filled bins) is to choose less than 10 bins per dimen-
sion. Aware of this technical problem, we interpret threshold 
exceedances of single-point structures as fluctuations that 
are not statistically significant.

5 � Discussion and conclusions

Starting from the monthly averages of a physical proxy 
of the solar activity (the Ca II K index) and solar wind 
parameters, we investigate in this work their relationship 
on Space Climate scales. To this scope, we take advantage 
of the Hilbert–Huang Transform. This method allows to 
decompose the starting signals into several modes and to 
obtain for each of them the instantaneous frequency and 
hence the mean characteristic time scale. Looking at how 
the energy is distributed among the time scales, we find a 
quite similar behaviour for all the signals between annual 
and solar cycle scales, characterized by an increasing 
power. Concerning the behaviour at lower and higher time 
scales, instead, it is not possible to draw conclusions here.

The advantage of the HHT is that the EMD makes pos-
sible to filter out the noisy high-frequency components, 
which are not of interest for the purpose of this work. The 
time lags we find between Ca II K index and both solar 
wind speed (3.1-year) and dynamic pressure (3.4-year), 
after subtracting the contribution at scales smaller than 3 
years, are consistent with the results previously obtained 
by Reda et al. (2023b) using a 37-month smoothing on the 
same dataset.

Fig. 4   Empirical mode decom-
position of solar wind dynamic 
pressure. The top row shows 
the starting monthly means. 
The subsequent rows show the 
successive order IMFs, while 
the last row shows the residual 
signal (color figure online)

Table 2   Characteristic time scales of the extracted IMFs for each sig-
nal

IMF # Mean period [years]

Ca II K index SW speed SW 
dynamic 
pressure

1 0.36 0.31 0.32
2 0.65 0.59 0.54
3 1.36 1.06 1.18
4 3.58 2.13 2.26
5 12.38 4.84 5.17
6 51.43 11.17 13.88
7 – 19.84 51.45
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Fig. 5   IMF variance weighted on the IMFs total variance as a function of the IMF mean period. The subplots are for Ca II K index (left), solar 
wind speed (center), and solar wind dynamic pressure (right) (color figure online)

Fig. 6   IMF variance multiplied by the mean period as a function of the IMF mean period (log–log scale). The subplots are for Ca II K index 
(left), solar wind speed (center), and solar wind dynamic pressure (right) (color figure online)

Fig. 7   Monthly averages with 
superimposed 37-month mov-
ing averages and IMFs filtered 
signals for Ca II K index (top), 
solar wind speed (middle), and 
solar wind dynamic pressure 
(bottom) (color figure online)
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However, the presence of a correlation with a time delay 
does not ensure a cause–effect relation, as well as the pres-
ence of mutual information peak does not guarantee the 
nature of the directional coupling. For this reason, to fur-
ther investigate these results, we use the transfer entropy as 
predictive causality test for higher order correlation between 
data. The results from transfer entropy analysis suggest the 
presence of statistically significant structures from Ca II K 
index to solar wind dynamic pressure, with a peak at time 
lag of 3.6-year, once again in agreement with the time lag 
found by Reda et al. (2023b). This finding confirms that 

the knowledge of past values of the Ca II K index gives 
information about the future state of the solar wind dynamic 
pressure. Indeed, the cross-correlation analysis is based on 
co-variation of data and it is naturally stronger when peaks 
are synchronized, while the transfer entropy is based on 
(temporal) transition probabilities between the states and it 
is a dynamical and time-asymmetric concept. As reported 
by Wibral et al. (2013), the time-delays found from cross-
correlation analysis and transfer entropy analysis are not 
necessarily the same.

Fig. 8   Cross-correlation of 
the IMFs filtered signals. a 
Cross-correlation between 
Ca II K index and solar wind 
speed; b comparison of Ca II K 
index (green) with solar wind 
speed (red) shifted backward by 
3.1 years; c cross-correlation 
between Ca II K index and solar 
wind dynamic pressure; d com-
parison of Ca II K index with 
solar wind dynamic pressure 
(blue) shifted backward by 3.4 
years (color figure online)

Fig. 9   Scatter plot showing the relationship of Ca II K index with 
solar wind speed (left panel) and solar wind dynamic pressure (right 
panel) once shifted by the time lags found with the cross-correla-
tion analysis. In both panels, the color map shows how the relation 

changes with time, while the black line shows the best linear fit to the 
data points. The Pearson correlation coefficients are reported on the 
upper left (color figure online)
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Considering the information flow from Ca II K index to 
solar wind speed, the transfer entropy shows a single peak 
that exceeds the 99% threshold, at time lag of 3.1-year. As 
in the case of the dynamic pressure, this results is consistent 
with the result recently found by Reda et al. (2023b). How-
ever, because it is a single peak, it may also be interpreted 
as a fluctuation.

Our results suggest that over the last five solar cycles, 
there is a better information flow from Ca II K index to solar 
wind dynamic pressure than from Ca II K index to solar 
wind speed. Since the dynamic pressure depends both on 
the speed and the density of the solar wind, thus making it 
an energy related parameter, we interpret this result as a phe-
nomenon connected to energy transfer processes from the 
Sun to the heliosphere. The former result could be of interest 
to build up a predictive model in a Space Climate context.

We remark that, although the results found with the 
transfer entropy analysis are in agreement with the previ-
ous findings, further work is needed to assess the causal 
relationship. Indeed, due to technical limitations (e.g., few 
data points), we are not able to investigate thoroughly the 
statistical significance of our results. However, we empha-
size that, at the moment, the application of the transfer 
entropy is promising and may be extremely helpful in 
the future to disentangle the (non-linear) causal relations 
between the solar activity and the solar wind at Space Cli-
mate scales. Dataset with a higher time resolution, thus 
with more data points, will be considered for a future 
analysis to verify this hypothesis and to confirm the result 
obtained via the transfer entropy presented in this work.
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