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Abstract
Plants are continuously exposed to abiotic environmental pressures. One of principal abiotic stress factors is heavy metal 
(HM), which as edaphic contaminants is noteworthy environmental hazard posing great negative impact on overall plants’ 
growth, metabolism and hence economic crop productivity and sustainability. During plants’ exposure to elevated HM stress, 
plants suffer from oxidative stress leading to changes in processes at molecular, biochemical, morpho-physiological and at 
whole levels. In high HM-contaminated soils, it is essential for plants to generate specific, appropriate protective/defensive 
mechanisms to nullify the toxic effects of these pollutants, for the normal growth and development. Plants are equipped 
with efficient strategies which enable them to uptake and accumulate the HMs in various parts or phytoremediate them 
into non-toxic forms from contaminated soils. Recent advancement in different disciplines of biosciences, such as genetic 
engineering, plant stress physiology, plant nutrition, transgenics, have aided us in the identification and characterization of 
compounds, transcription factors, gene products, exogenous phytoprotectants and segments of DNA which involve signal 
transduction cascades and stress-inducible proteins involved in HM detoxification and tolerance, however, underpinning 
various strategies for engineered heavy metal plant-stress tolerance is a topic of burning issue which remain least discussed. 
Taking into consideration several recent literature, the present paper (a) sheds light on the responses and impacts of various 
HMs to an array of plants’ physiological and cellular processes, (b) shows role of various underlying mechanisms behind 
tolerance or detoxification against specific metal/metalloid, and finally, (c) briefly highlights the possibility of obtaining 
transgenic improved HM stress tolerant crop plants which could clear the desks for engineering HM stress tolerance in plants 
for developing improved HM tolerant crop plants and challenging the heavy metal-induced threats to sustainable agricultural 
system and for qualitative and quantitative improvements in economic yield of crop plants.

Keywords Heavy metal stress tolerance · Metabolic engineering · Physiological and cellular changes · Transgenics · Crop 
improvement

1 Introduction

From the past few decades, we have seen an increase in 
modern agricultural practices, anthropogenic activities and 
rapid industrialization, urbanization and burning of fossils 

fuels which have altogether orchestrated the threshold level 
of various heavy metals (HMs) in the plant–soil, aquatic 
environments, thereby causing negative impacts to the living 
forms (Piscopo et al. 2016; Förstner and Wittmann 2012; 
Sohail et al. 2016; Shahid et al. 2017). Vast tracts of land 
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areas under cultivation have been contaminated as a result 
of elevated HMs presence due to the unlimited, continu-
ous and excessive chemicals usage in agriculture for crop 
production (chemical manures, pesticides, fertilizers, weedi-
cides, and herbicides), military operations, besides urban 
and rural municipal solid waste, metalliferous mines, energy 
and fuel production, mining, mismanagement of agribusi-
ness wastewater, power transmission and industrial effluents 
also results in HM release (Boparai et al. 2011; Lionetto 
et al. 2016; Lajayer et al. 2017; Bardiya-Bhurat et al. 2017). 
Although there are many HMs occurring naturally in the 
biosphere at a particular region, however, the situation gets 
from bad to worse due to their release in excess amounts 
into the soil environment as a result of prevalence of natural 
calamities and/or increased anthropogenic activities (Wuana 
and Okieimen 2011). When released into the environment, 
they may occur as free cations (such as  Zn2+), cations bound 
to organics (such as  Cu2+) and oxyanions (such as  MoO4

2−) 
and radioactive isotopes (such as 238U, 137Cs, 239Pt, 90Sr) 
(Hossain et al. 2012). The accumulation of the metals in 
water environments over time can result in severe diseases 
to human beings such as cancer, liver damage, lungs conges-
tion, kidney failure and reproductive system dysfunctioning 
(Shaban et al. 2018).In plants, many HMs such as Ni, Zn, 
Cu, Fe, Co, B and Mn are considered as biometals as they 
form constituents of a range of important enzymes/proteins 
synthesis, therefore, they are essential for basic and optimal 
plant metabolism and development, however, the too much 
concentration of essential as well as and non-essential HMs 
in the plant–soil continuum lead to generation of toxicity 
symptoms and dysfunctioning/inhibition of various normal 
plant processes—ranging from molecular, morphological, 
physiological and at whole plant level (Shahzada et al. 2018; 
Shahid et al. 2016; Ali et al. 2013). Both macro- and micro-
mineral nutrients play an exemplified and profound role in 
numerous plant processes, i.e. respiration, photosynthesis, 
chlorophyll biosynthesis, DNA synthesis, pollen tube germi-
nation, protein stabilization and modifications, translocation 
processes, redox reactions in semi autonomous organelles 
(chloroplast and the mitochondrion), metabolism of sugars, 
metabolites, enzyme regulation and fixation and assimilation 
of nitrogen and sulphur (Nagajyoti et al. 2010; Singh et al. 
2016; Wuana and Okieimen 2011). The 53 elements of d 
block in the periodic table, having atomic density greater 
than 5 g/cm-3, are defined as HMs. However, elements such 
as Cd, Cr, Pb, Al and Hg although have no precise and 
defined role to play in plant cell metabolism, are also consid-
ered as very toxic even in low concentrations. Consequently, 
other elements such as Fe, Cu, Zn, Mo, and Ni are regarded 
as essential HMs (Arif et al. 2016). During the era of flower-
ing plant evolution, only 19 elements; macronutrients, viz. 
C, Ca, Mg, O, H, S, N, P and K, and micronutrients, viz. 
B, Cu, Zn, Mn, Fe, Mo, Ni, Co, and Cl were utilised by 

plants for performing their normal growth and development 
(Ernst 2006). In addition to this, later on silicon, lanthanum, 
and titanium were also considered as beneficial elements, 
and reported to be involved in vital activities in some crop 
plants (Epstein 1999; Zhang et al. 2017; García-Jiménez 
et al. 2017; Lyu et al. 2017).

Toxic effects of HMs on plants are generally the same 
which mostly include growth inhibition, low biomass pro-
duction and accumulation, chlorosis, altered water and min-
eral nutrients’ balance, which ultimately lead to plant senes-
cence. Nevertheless, besides the impacts of HMs on plants, 
they are regarded as a great threat to human welfare because 
of their long retention in the environment (Bardiya-Bhurat 
et al. 2017; Mitra 2015). Plants inhabiting high HM-contam-
inated soils are called as metallophytes and they accumulate 
higher amounts of HMs mostly in above ground parts, and 
metallophytes are further classified as facultative metallo-
phytes which have capacity to flourish well on both metal/
metalloid contaminated and non-contaminated habitats and 
obligate metallophytes which inhabit only metal-challenged 
environments (Pollard et  al. 2014; Hermann and Aneta 
2017). Nevertheless, plants growing in HM-contaminated 
soils accumulate higher amounts of HMs, resulting their 
entry in food chain that act as major routes for entry of HMs 
into living beings, the result of which is the manifestation of 
several diseases (Ashrafzadeh et al. 2017; Shahid et al. 2015; 
Lajayer et al. 2017). This problem may accelerate further, if 
sufficient protective measures are not taken (Murtaza et al. 
2014). Therefore, devising broad strategies in this broad area 
to decrease the penetrance of HMs in various crop plants 
via soil and to reduce the risk of their contamination is need 
of the hour. Hence, an action to remediate polluted soils 
is required on the basis of soil contaminants, crop specific 
and with respect to changing climatic conditions. The main 
aim of the present addendum is thus to explore the vari-
ous effects of HMs on plants and the underlying resistance 
mechanisms that may prove beneficial for the use of plants 
to clean up and phytoremediate excess metal/metalloid from 
the environment.

2  Plant responses to HM stress

Plants, being sessile organisms cannot move to more favour-
able places to escape the adverse effects of HM toxicity. 
Exposure of the plants to toxic levels of HMs triggers a 
wide range of molecular, biochemical, and physiological 
processes (Sofo et al. 2013) (Fig. 1); and plants to cope with 
the negative impacts of toxicity develop and/or adopt a series 
of strategies (Hayat et al. 2012). The initial response of the 
plants to various stresses, including HM accumulation in the 
soils involve perception of stress stimuli, signal transduc-
tion and transmission of amplified signal (mitogen-activated 
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proteins, viz. SIMKK, SIMK, SAMK, MMK3, and MMK2) 
into cell and acceleration of the cell machinery to bring 
about comparative changes in cascades of physiological, bio-
chemical and molecular activities. It is perhaps difficult to 
gauge the induced changes in signal transduction pathways 
after plants’ exposure to HM stress (Hossain et al. 2011). 
However, it may prove fruitful to our knowledge of under-
standing to study the changes in signal transduction path-
ways that happen after plants are exposed to metal/metalloid 
stress through the early plant responses to HMs’ stress by 
analysing the transcriptomic, proteomic and metabolomic 
changes (Tamás et al. 2010) (Fig. 1).

3  HM‑induced cellular changes

3.1  Effects on the cell division cycle and the cell 
division exponent

Cell division is one of the important metabolic processes in 
plants’ life cycle that gets affected by various abiotic pres-
sures including HMs. Each HM is having different types of 
adverse effect on the rate of cell division and elongation in 
plant. For instance, Cd toxicity affects cell division of root 
tips in beans (He et al. 2012b), however, Zn, Cd, and Pb 
application on bean plants showed that the duration of cell 
division was extended under low concentrations of 0.01, 1.0, 
and 10 ppm of Cd, Pb, and Zn, respectively; while the rate of 

cell division was shortened but the cell cycle was extended 
by increasing the concentration of HMs (Azevedo and Rod-
riguez 2012). In an in vitro culture of Rauvolfia tetraphylla, 
Shahid et al. (2016) observed that Cd dose caused a gradual 
decrease in shoot regeneration. A suppression in mitotic 
activity by high dose of HM in pea plants was reported by 
Fusconi et al. (2006). HM such as Cd appears to be a known 
and one of the main targets to cytoskeleton microtubule 
(MT). Cd at the concentrations of 85–170 μM distorts the 
structure and function of the MT in the root cells of Glycine 
max (Gzyl et al. 2015). The root growth in soybean plants 
was thus diminished accompanied by a reduction in mitotic 
activity and disturbed MT arrays which also includes rand-
omization in the arrangement of the cortical MT, distorted 
mitotic arrays and completed depolymerisation of the MT. 
Furthermore, Cd had significant impact on gene expression 
patterns and subsequently on post-translational modifica-
tion of tubulin unit, which is responsible for impairment of 
MT cytoskeleton’s structure and functioning in root cells of 
soybean plants (Gzyl et al. 2015).

3.2  Effects on the form of chromosomes

The toxic effect of HMs in plant genome severely affects 
the process of DNA replication and chromosomes as well 
as inducing chromosomal aberrations and abnormalities 
(Niture et al. 2014). For example, barley grains treated with 
Cd showed distorted nucleolus, DNA damage, chromosomal 

Fig. 1  Showing direct and indi-
rect toxic effects posed by heavy 
metal stress on diverse plant 
processes which possibly results 
in reduced crop production. 
Figure shows how various plant 
nutrients including biometals 
are absorbed from rhizosphere. 
After absorption and transloca-
tion in various plant tissues, 
elevated concentrations of 
biometals impose various direct 
and indirect effects which are 
described in text. For detailed 
discussion of direct and indirect 
effects, readers are requested to 
please go through the text
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fragmentation, aberration and liquefaction as a result of Cd 
interference with nucleic acids (Qin et al. 2015). Aslam et al. 
(2014) showed the genotoxic effects induced by HM in cap-
sicum plants using random amplified polymorphic DNA 
(RAPD) technique. They reported a higher degree of poly-
morphism in DNA bands of Cd-exposed capsicum plants 
and concluded that Cd caused chromosomal abnormalities 
and mutations such as multivalent formations, chromosome 
stitching, bridging and laggard formation at anaphase I stage 
of cell division. Ghiani et al. (2014) reported DNA damage 
in Trifolium repens (L.) plants exposed to combined HM 
stress. Nevertheless, there are numerous proteins which can 
annul the metal-induced oxidative stress. One such protein 
is Dps proteins which is an efficient detoxification and DNA-
protecting protein in response to iron-induced oxidative 
stress (Chiancone 2008).

4  Physiological impacts of HMs on plants

4.1  Effects of HMs on plant growth

HM-contaminated soil is the primary route of entry of 
metals into the plant tissues (DalCorso et al. 2013). The 
most common physiological impact of HM stress to plants 
is growth retardation (Huang and Wang 2010). In model 
plants, such as Arabidopsis thaliana, plant-receiving HM 
stress showed a decrease of 40% root growth as compared 
with wild type no stress plants (Abozeid et al. 2017). There 
are noticed changes in leaf morphology and anatomy and 
in various physiological processes, rates of photosynthesis, 
transpiration and respiration, which brings about changes 
in gross plants’ metabolism, and hence results in less bio-
mass production (Maksimović et al. 2012). Transpiration 
and uptake and translocation of mineral nutrients between 
different parts of a plant are also severely affected by HM 
toxicity (Ying et al. 2010). The nutrient and water uptake 
by roots of plants gets impaired under HM stress, due to 
reduction in rate of cell division (Hu et al. 2013). The cumu-
lative effect of these changes affects normal functioning of 
roots and leaves, which in turn affects various plant devel-
opmental processes including chlorophyll biosynthesis, seed 
formation, pollen dispersal, flowering and embryogenesis. 
HM toxicity also affects plants multi-dimensionally caus-
ing phytotoxicity which is followed by leaf chlorosis, molt-
ing, dieback, destructions of PSII pigments, stunted plant 
growth, decline in yield, wilting, restricted mineral nutrient 
uptake and reducing nitrogen fixing ability in legume plants 
(Chen et al. 2012). Under HM pollution, yields of important 
agricultural crop are reduced and deleterious effects of HM 
on human and animal health can be observed through food 
chain contamination and transmission (Park et al. 2011). 
Non-essential HM such as Cd is considered as very toxic 

to plants even in low doses causing enzyme inhibition and 
saturation of Calvin–Benson cycle which results in loss of 
photosynthesis, thereby reducing photosynthetic potential. It 
limits enzymes/protein activities by reacting and saturating 
the thiol group and active sites on enzymes and formation 
of mercaptide (Cailliatte et al. 2009). It also orchestrate the 
generation of many reactive oxygen species (ROS), includ-
ing hydrogen peroxide, superoxides, which are strong oxi-
dants, causing oxidation to bilayered lipid membranes and 
biopolymers (Hood and Skaar, 2012). It has been reported 
that high accumulations of copper (Cu) not only reduces 
the plant biomass by causing chlorosis, but also interferes 
with the electron transport chain system by saturating the 
plastocyanin protein pigment of photosynthesis (Wang et al. 
2013). Elevated concentrations of micronutrient such as Ni 
is responsible for many physiological disorders in plants 
manifested in the form of chlorosis and necrosis, photosyn-
thetic capacity inhibition, reduction in enzyme activities of 
N, S and concomitant increase in oxidative stress biomarkers 
(Yadav 2010; Khan et al. 2016a). Plants grown on Ni-chal-
lenged habitats showed an imbalance in nutrient assimilation 
rate and exhibited disorders in membrane functions due to 
malfunction of H-ATPase activity and lipid composition of 
the plasma membranes (He et al. 2012a).

4.2  Effects of HMs on photosynthesis

The fast increasing human population requires a concom-
itant increase in net plant productivity. The natural plant 
productivity under the influence of metal/metalloid con-
tamination and the current available techniques, it would 
be quite impossible to achieve this task. Photosynthesis is 
a principal driver of life on the Earth, involving the trans-
formation of energy from sunlight into the biosphere zone 
and simultaneously releasing molecular oxygen from water 
(Foyer et al. 2017). Among non-biotic stresses, HM stress 
reduces productivity of plants and alters plant ecosystems’ 
functions; hence affects the photosynthesis and plant pro-
ductivity (Picorel et al. 2017). HM pollution has inhibitory 
effects on photosynthetic and respiratory activities of plants 
(Volland et al. 2012). Although certain biometals such as 
Fe, Cu, Zn, Ni, Co, and Mo are essential plant nutrients 
and are required for optimum photosynthesis and a large 
number of enzymes as cofactors (Kováčik et al. 2010), but 
their elevated dose retards all the vital activities of plants. 
Photosynthesis is an important anabolic oxidation–reduc-
tion process responsible for providing energy and biomass 
accumulation and requires a consistent and uninterrupted 
and normal working of various cell components. The major 
components of light-scavenging pigment system (chloro-
phyll and carotenoids) are saturated in the presence of metal/
metalloid stress (Kuzminov et al. 2013) and disruption in 
their functions occurs due to block of electron flow in energy 
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transfer reactions in light-harvesting antennae. Metal/metal-
loid stress also affects pigment proteins associated in two 
phases of photosynthesis, such as plastoquinones, plastocya-
nins, cytochrome b6f complex, D1 and D2 proteins of PSII, 
RUBISCO activity, thereby affecting the normal functioning 
of both light and carbon reactions of photosynthesis (Ceppi 
et al. 2012; Masood et al. 2012). Higher levels of metalloid/
metal toxicity (As, Cd, Mn, Zn and Ni) affect electron pas-
sage system on the acceptor side of photosystem II (PS II), 
thereby inhibiting rate of electron flow between photosystem 
PS (II) and PS (I) due to toxicity of their ions to membrane 
lipids (Wu et al. 2012).

4.3  Effects of HMs on chlorophyll

Photosynthetic machinery is very sensitive to changes in cel-
lular redox homeostasis affected by metal/metalloid stress. 
The thylakoid membranes constitute a well-organized sys-
tem containing chlorophyll and protein complexes (Kran-
ner and Colville, 2011), which function to couple photolysis 
of water molecules with electron transport system, thereby 
make available reducing powers such as adenosine triphos-
phate (ATP) and nicotinamide adenine dinucleotide phos-
phate (NADPH) for the carbon phases of photosynthesis. 
The chlorophyll molecules and photosystem complexes 
(PSI) and (PSII) are present in segregated manner in the 
chloroplast membranes in mega and super complexes forms 
(Dekker and Boekema, 2005; Taiz and Zeiger, 2010). HMs’ 
contamination severely affects the functioning of the photo-
synthetic apparatus (Shahid et al. 2014a). Several research 
undertaken had shown that Pb, Cd, Cu, and Zn affect the 
rate of photosynthesis significantly (Burzyński and Kłobus 
2004; Khan et al. 2010). Pb stress brings about distorted 
chloroplast ultra structure, decrease chlorophyll biosynthe-
sis, non-coupling in electron transport system and decrease 
in activities of enzymes of Calvin cycle (Verma and Dubey 
2003). In a hydroponic study conducted on Tagetes erecta 
plants, Bardiya-Bhurat et al. (2017) found that the increasing 
concentration of Ni and Pb caused a marked decreased in 
chlorophyll content. Under metal/metalloid toxicity, marked 
changes were observed in the absorption peaks of the chloro-
phyll fluorescence spectra. Less fluorescence re-absorption 
was detected in plants contaminated with Cd stress, which 
indicates that the chlorophyll fluorescence parameters are 
sensitive in detecting changes in the PSII under Cd exposure 
(Marques and Nascimento 2013). Bioaccumulation of Cd in 
tomato plants poses negative impacts on PSII photochemis-
try but increased energy flashes per reaction centre (Singh 
et al. 2017). Cd stress also decreased chlorophyll fluores-
cence parameters differently in two mustard cultivars show-
ing differential Cd stress tolerance (Per et al. 2016a). Photo 
inhibition and oxidation as a result of damage to photosyn-
thetic apparatus may either be short-term and reversible, or 

long-term and irreversible (Kono and Terashima, 2014). 
Pigment contents in photosynthesis also get reduced by 
high metal presence (Cambrollé et al. 2011). However, low 
photosynthetic potential may result from adversity of excess 
metals which decrease chlorophyll biosynthesis or acceler-
ate its degradation (Marques and Nascimento 2013). HM 
contamination caused a significant decrease in chlorophyll 
content and caused disruptions in the structure and function 
of photosynthetic apparatus, decreasing mesophyll thickness 
and stomatal density (Per et al. 2016b; Tang et al. 2013).

4.4  Effect of HM stress on nutrient uptake

HM toxicity significantly affects rate of nutrient uptake, 
translocation and assimilation processes in plants (Gopal 
and Rizvi, 2008). The endogenous concentration of essential 
ions such as S, K,  Mg2+,  Zn2+,  Ca2+,  Fe2+ and  Mn2+ in plant 
roots and shoots system also gets reduced by the presence of 
biometals (Chatterjee et al. 2004; Lopez et al. 2006; Ahmad 
et al. 2016). Exposure to Pb stress reduced significantly the 
nitrate content, nitrate reductase activity and amino acid 
content in B. Pekinensis (Małecka et al. 2008). Cd is known 
to modify the structural, physiological, and biochemical pro-
cesses in crops in soil–plant interaction (Feng et al. 2010) 
by hindering the uptake and translocation rate and usage of 
mineral nutrients (Asgher et al. 2015; Nazar et al. 2012). Cd, 
a non-essential heavy metal for plants, is readily absorbed by 
plant roots and gets accumulated in various vegetative plant 
parts, thereby deteriorating quantity and quality as well as 
the yield of important crop plants (Mahmood et al. 2006) by 
restricting the absorbance and distribution rate of important 
macro/micro-mineral nutrient elements (Rizwan et al. 2016; 
Sandalio et al. 2001) and the processes such as respiration 
and photosynthesis (Lu et al. 2012). Furthermore, Cd also 
causes stomatal closure, hence, inhibits gaseous exchange, 
water uptake and its transportation (Kang et al. 2010; Per 
et al. 2016b). Inside the plants, it slows down the photo-
synthesis by reducing the activity of Calvin–Benson cycle 
enzymes, thus, reduces the metabolism of triose phosphates, 
and hence of sugars (Mittler and Blumwald, 2010).

4.5  Activity of enzymes

Most of the effects of HM toxicity on the enzyme activity are 
inhibitory (Wang et al. 2014). Cd has been shown to reduce 
the activity of nitrate reductase in Lepidium sativum (Gill 
et al. 2012). In Brassica juncea plants, Cd has been shown 
to negatively affect the activity of ribulose-1,5-bisphosphate 
carboxylase/oxygenase activity which is main carbon diox-
ide acceptor in  C3 plants, thereby affecting the net photo-
synthetic rate (Khan et al. 2016b; Per et al. 2016c). Mobin 
and Khan (2007) reported reductions in carbonic anhydrase 
activity (CA) in mustard plants subjected to Cd stress. Singh 
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et al. (2008) using increased doses of Cd in blackgram 
reported significant reductions in CA activity. In Triticum 
aestivum plants, nitrate reductase (NR) activity showed a 
significant decrease on exposing plants to Cd stress (Khan 
et al. 2015). In the tonoplast of wheat plants, the ATPase 
and PPase activity showed a decreasing trend rapidly under 
aluminium (Al) stress (Harb et al. 2010). Essential HMs 
such as nickel and zinc at elevated concentrations have sig-
nificantly diminished the activity of NR in mustard plants 
(Khan and Khan, 2014). Similar concomitant decrease of 
NR and CA activity against varied doses of cobalt and alu-
minium stresses in chickpea and mung bean plants have been 
worked out by Ali (2014, 2017).

4.6  Water relation

HM contamination can alter the water relation in plants 
(De Vries et  al. 2013), causing severe dehydration by 
restricting the movement of water both via apoplastic 
and symplastic route from roots to shoot part of plants 
(Hussain et al. 2013). The toxic effects of HMs have been 
dissected in multiple processes such as stomatal behav-
iour, movement and uptake of water through symplast 
or apoplast (Mombo et al. 2016). Balance between tran-
spiration rate and water uptake greatly determines water 
status in plants. Many studies have shown that HM such 
as Ni can decrease the water content, transpiration rate, 
stomatal conductance, internal carbon dioxide concen-
trations, water-use efficiency and net photosynthesis in 
plants (Moosavi et al. 2012; Khan and Khan, 2014). In 

sand culture experiment, 4-day-old seedlings of T. aesti-
vum were exposed to 10 mM Ni stress and a reduction in 
leaf water potential, transpiration rate, stomatal conduct-
ance and total moisture content was observed (Yusuf et al. 
2011).

The toxic impacts of  Ni2+ ions can reduce the mean leaf 
area of plants (Mou et al. 2011; Khan et al. 2016a). A sig-
nificant percent reduction in leaf area of wheat and mustard 
plants was detected under the Ni stress conditions (Siddiqui 
et al. 2013; Khan et al. 2016a). Similar type of reduction also 
happened in Brassica oleracea plants due to application of 
Ni in the form of  NiSO4 · 7H2O (Nadeem et al. 2012). The 
main toxic impact of HM toxicity is also the reduced tran-
spiration rate and closing of the stomatal aperture (Per et al. 
2016b; Pierart et al. 2015). However, abscisic acid (ABA), 
a plant growth regulator which causes stomatal closing, gets 
increased in P. vulgaris plants under Ni stress conditions 
(Sharma et al. 2012).

5  Potential mechanisms involved 
behind detoxification and tolerance 
to specific metal/metalloids

During the course of evolution, plants have adapted com-
patible strategies for nullifying the induced responses of 
metal/metalloid toxicity in the environment (Fig. 2). Some 
of these strategies have been briefly discussed in the follow-
ing sections.

Fig. 2  An overview of plant 
defence mechanisms against 
heavy metal(s) toxicity. Figure 
showing various phytoremedia-
tion-based mechanisms evolved 
by plants in response to heavy 
metal stress
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5.1  Restriction of uptake and transport of HMs

Uptake and transport of HMs by plants involve root sens-
ing, interception, entry and their transport to the aerial shoot 
systems (Pauget et al. 2012). Based on the type of ions being 
absorbed, the entry of HM ions into the plant occurs either 
through symplast or apoplast pathway (Radić et al. 2010). 
Most of the HM ions make their entry inside plant system by 
an energy-mediated manner via specialised metal-ion carri-
ers, pumps or channels (Schreck et al. 2011). The plant could 
restrict HM uptake either by precipitating or by complexing 
metals in the rhizospheric zone (Shahid et al. 2013). Plants 
employ process of HMs’ precipitation either by increasing 
rhizospheric pH or expelling ions as phosphates (Shahid 
et al. 2014b). In addition, in rice plants, Noctor et al. (2012) 
has reported Fe plaque formation as a possible underlying 
mechanism for excluding toxic ions.

5.2  Cellular exclusion of HMs

Cellular exclusion of ions is considered as a useful adap-
tive strategy for metal/metalloid tolerance in plant systems 
(Soudek et al. 2014). Large fractions/portions of HMs ions 
are found to be in the plant roots apoplastic space (Uzu 
et al. 2011a) and many metal transporter proteins have been 
found to be involved in the cellular exclusion of metal ions 
from apoplastic or symplastic space or vice versa (Uzu et al. 
2011b).

5.3  HM complexation at the cell wall–plasma 
membrane interface

The cell wall–plasma membrane (CWPM) interface rep-
resents not only apoplastic mechanical barrier, but also a 
flexible structure involved in stress sensing, perception and 
signalling for the metal/metalloid stress. The CWPs engaged 
in response to various abiotic stresses, have been extensively 
recognised and characterised among different crop plants. 
Under various stress conditions, the main (CWPM) include 
phospholipases, the salt overly sensitive kinases (SOS), 
transcription factors, C-repeat binding factor, dehydration 
sensitive element-binding proteins, mitogen-activated pro-
tein kinases and phosphatases, and abscisic acid-responsive-
binding factors (Ihsan et al. 2017; Dar et al. 2017). There are 
known CW proteins which form covalent bonds and undergo 
glycosylation with HMs; some of them are proline-rich pro-
teins (PRPs), expansins, proline-rich extensin-like proteins 
(PRExts), formin-like proteins and hydroxyproline-rich 
O-glycoproteins (HRGPs) (Suzuki et al. 2015). The cell 
wall–plasma membrane interface is believed to be the poten-
tial site of HM tolerance as it accumulates large fractions 
of HMs (Wu et al. 2010). Pectins play a well role in ions 
induced formation of cell wall surface charge. In plants such 

as Pastinaca sativa and Apium graveolens, Szatanik-Kloc 
et al. (2017) reported that the CWPM are jointly involved in 
ion exchange and surface characteristics of plants. Recently 
Barzegargolchini et  al. (2017) have discovered the role 
of two potential genes, namely LAC4 and PER64 which 
increased their activity and brings about an increase in cell 
wall thickness of roots of Aeluropus plants in response to 
abiotic stress. Plasma membrane is also involved in seques-
tration and transport of HM ions by secondary messenger-
dependent proton-ATPase (Liu et al. 2015). Plasma mem-
brane is also involved in the exclusion of critical mineral 
nutrient  (K+) from Agrostis capillaris roots (Wainwright and 
Woolhouse, 1977). Some plants decrease metal concentra-
tion by employing the avoidance mechanisms such as accu-
mulation in root cells via modifications of cell wall polysac-
charides (Li et al. 2016) or organic acid anions exudation 
from the tops of root cells (Chen and Liao 2016).

5.4  Complexation of HMs and the role 
of heavy metal transporter proteins 
in compartmentalization within vacuoles

Once metal toxicity is recognised inside the plant cells, 
they adapt various anatomical and physiological strategies 
for performing proper optimum growth and development 
(Wannaz et al. 2012; Sitko et al. 2017). Transporting metal/
metalloid ions out of the cell or sequestrating them inside 
the plant organelles, thereby removing them from the cyto-
plasm or from other cellular environments through the active 
involvement of sensitive and essential metabolic activities 
is one such strategy (Xiong et al. 2014). Various plant cell 
organelles are involved in meta/metalloid ions’ sequestration 
but the homeostatic role of vacuole in conferring HM stress 
tolerance is well established (Bashir et al. 2016). The central 
vacuole, therefore, represents a suitable storage bucket/res-
ervoir for excessively accumulated metal pollutants. There 
are proton pumps located in the tonoplast, namely proton 
ATPase- (VATPase) and pyrophosphate (VPPase) which 
are involved in accelerating most solutes across vacuoles 
(Yan et al. 2010) through channels and transporters (Socha 
and Guerinot 2014). Although few HM transporter proteins 
have been well characterised, the molecular location and 
specificity of these transporter proteins in plants is still 
lacking. Some of the identified include iron-regulated trans-
porter (IRT)-like protein ZIP family, zinc-regulated trans-
porter (ZRT), P-type metal ATPases, mitochondrial ABC 
transporter, ATP-binding cassette (ABC), cation diffusion 
facilitator (CDF), natural resistance resistance-associated 
macrophage protein (NRAMP), pleiotropic drug resistance 
(PDR), CAX transporter involving  Ca2+, multidrug resist-
ance-associated protein (MRP), copper transporter (COPT) 
and yellow strip-like (YSL) transporter (Dimkpa et al. 2015; 
Taiz and Zeiger 2010). There is a profound role of plant 
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vacuoles as main reservoirs of HMs (Xiao and Chye 2011). 
A mechanism of cellular detoxification of HMs is described 
diagrammatically in Fig. 3.

6  Transgenic plants and HM stress tolerance

Scientific know-how of the basic processes of metal trans-
port, hoarding and forbearance in both plants and other 
organisms have led to the development of various strate-
gies for the alteration of these traits in transgenic plants for 
increasing the strength of plants to phytoremediate more 
and more HM from the contaminating environment (Stolpe 
et al. 2017). Emerging fields of biotechnology and genetic 
engineering are considered as most important tools for iden-
tification and better understanding of several key steps at the 
molecular level to improve plant tolerance particularly HM 
toxicity (Dixit et al. 2015; Mosa et al. 2016).

Overexpression of identified genes and the encoded 
polypeptide accountable for HM uptake, translocation, and 
sequestration may allow for the production of plants that 
can be successfully exploited for phytoremediation purpose. 
Increased tolerance to HM stresses by overexpressing metal-
binding peptides–phytochelatins and metallothionein genes 
had been widely reported in plants (Xu et al. 2011).

Plants are equipped with different mechanisms for HM 
detoxification, one among which is the production of phyto-
chelatins (PCs). In plants, PCs act as defensive mechanisms 
not only against metal-related stresses but also in retaliation 
to other abiotic stresses such as salinity and heat stress (Gau-
tam and Agrawal 2017). PCs have been reported to be used 
as biomarkers for the early detection of HM stress in plants. 
A. thaliana phytochelatin synthase (AtPCS1) and wheat 

(Triticum aestivum L.) phytochelatin synthase (TaPCS1) 
were amongst the first plant phytochelatin genes that were 
identified and extricated successfully (Bohra et al. 2015). 
Transgenic Arabidopsis plants were established with much 
better HM accumulation capacity than wild-type Arabi-
dopsis as a result of expressing synthetic phytochelatins 
(ECs). Overexpression of arsenic-phytochelatin synthase 
1 (AsPCS1) and yeast cadmium factor 1 (YCF1) (isolated 
from garlic and baking yeast) in A. thaliana resulted in an 
increased tolerance to Cd and As and also increased its abil-
ity to gather the metals to a greater extent (Pramanick et al. 
2017). Overexpression of wheat PCS1(TaPCS1) in tobacco 
plants leads to an increased accumulation of Cd and other 
HMs in leaves (Thakur et al. 2016). Transgenic tobacco 
plants overexpressing TaPCS1 could accumulate more than 
100 times biomass on HM-contaminated soils than the wild-
type hyperaccumulator plants (Shahid et al. 2012). More 
and more research and investigations into this area has led 
to the identification of various PCS genes in distinct plant 
species such as B. Juncea (BjPCS1) and rice (O. Sativa L.) 
(OsPCS1) (Arévalo-Gardini et al. 2017).

In plants, metallothioneins (MTs) are cysteine-rich ligand 
metabolites that are involved in annuling toxicity of HMs 
through cellular sequestration, balancing intracellular metal 
ions, and metal transport accommodation in plants (Jan and 
Parray, 2016; Lionetto et al. 2016). Expression of Elsholtzia 
hai chowensis metallothionein type 1 (EhMT1) in tobacco 
plants not only led to an increase in the tolerance of trans-
genic tobacco to Cu toxicity, but also decreased the pro-
duction of strong oxidant hydrogen peroxide and improved 
peroxidase activity (POD) in roots, thereby leading to an 
increase in the ability of plants to cope with oxidative stress 
(Hou et al. 2017). TaMT3, a metallothionein type 3 from 

Fig. 3  Various schematic 
mechanisms behind cellular tol-
erance/detoxification of metal/
metalloids inside plant systems
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Tamarix androssowii, engineered into tobacco resulted in 
increased tolerance to Cd stress through significant increases 
of SOD functionality, which raised the ability of ROS clean-
ing up in transgenic plant (Ashraf et al. 2017). OSMT1e-p, 
a type 1 MT obtained from a salt-tolerant rice genotype (O. 
sativa L. cv. Pokkali) induced tolerance to Cu and Zn toxic-
ity when ectopically expressed in transgenic tobacco (Soda 
et al. 2016). Ectopic expression of BjMT2, a metallothionein 
type 2 from B. juncea, in A. thaliana enhanced Cu and Cd 
tolerance at the plant seedling stage (Soda et al. 2016). Vari-
ous representative studies involving role of transgenics in 
conferring heavy metal/metalloid stress tolerance have been 
given in Table 1.

7  Conclusions and future prospects

Almost 3.1 billion people live in rural areas and out of this 
population, ~ 2.5 billion people earn their livelihood from 
traditional agricultural practices, which contributes ~ 30% 
to economy because agriculture contribute major share to 
gross domestic products (Yang et al. 2011). Nevertheless, 
the world population is also estimated to rise to ~ 10 bil-
lion by the middle of the twenty-first century and drastic as 
well as serious food and energy crisis are most likely to be 
witnessed (Zeng et al. 2011). In this scenario, the situation 
is likely to get worse due to manifold increase in anthropo-
genic activities that caused unwanted and untoward changes 
in the natural environment such as soil, air, and water con-
tamination (Nabulo et al. 2010). These situations (increas-
ing population cum pollution) are posing an everlasting and 
increasing burden on natural endowments to enhance food 
production and consequently food security. Hence, there 

are serious demands for engineering diverse crop varieties 
that stand healthy, adaptive and resistant to various abiotic 
stresses particularly heavy metal(s) (Syvertsen and Garcia-
Sanchez 2014). In disparity to biotic stresses, which mostly 
relies under monogenic traits, abiotic stress tolerance mecha-
nisms are genetically labyrinthine and intricate processes 
and multi-genic in nature, involving an array of components 
of signalling transduction pathways, and thus, more diffi-
cult to engineer. Real progress for plant-engineering stress 
tolerance procedures for HM tolerance therefore depend on 
the gene(s) expression and their product(s), which regu-
late signalling pathways or are involved in the synthesis of 
transcription factors that endow engineered heavy metal/
metalloid stress tolerance (Singh et al. 2015). The present 
collected literature provides new insights in dynamics of 
metal/metalloid stress response, acclimation and recovery 
after stress treatment of various plant processes for devel-
oping engineered heavy metal/metalloid transgenic plants 
with elevated stress tolerance to other abiotic stresses as 
well as orchestrated crop productivity in decades to come. 
Up-regulation or the overexpression of genes has resulted 
into enhanced tolerance of plants to metal stress. Therefore, 
identifying the genes reported to regulate HM homeostasis, 
detoxification and exclusion can benefit sustainable agricul-
ture. Further, by identifying plant promoters, signal trans-
duction pathways, and transcription factors involved in HM 
stress tolerance can enlighten the molecular mechanisms 
behind HM stress resistance in plants. The same knowledge 
may prove beneficial in translating information to faculta-
tive metallophytes as well. Recently, several efforts were 
made for engineered heavy metal/metalloid stress toler-
ance through genetic concocting with moderate success. 
However, owing to genetically complex nature of heavy 

Table 1  Showing various transgenic plants obtained by the modification of underlying genes/proteins involved

Gene Plant Effect References

AtPCS1 Arabidopsis Cd tolerance and accumulation Soda et al. (2016)
AtPCS1/CePCS1 Tobacco As tolerance and accumulation Gielen et al. (2017)
CdPCS1 Tobacco Accumulation of As and Cd Das et al. (2017)
NnPCS1 Arabidopsis Accumulation of Cd De Araújo et al. (2017)
TaPCS1 Poplar Accumulation of Pb and Zn Gong et al. (2017)
PtPCS1 Poplar Zn accumulation Chen et al. (2017)
TaPCS1 Rice Cd hypersensitivity Mayerová et al. (2017)
TcPCS1 Tobacco Accumulation of Cd Zou et al. (2017)
CAT1 and CAT2 Arabidopsis Low level of  H2O2 and enhanced stress tolerance González-Guerrero et al. (2016)
DHAR/GR/GST Tobacco Enhanced metal tolerance overexpression due to redox homeostasis of 

ascorbate and glutathione pool
Quintela-Sabarís et al. (2017)

GST Tobacco Enhanced Cd tolerance vis-a-vis no Cd accumulation, high activity of 
antioxidant enzymes

Zanella et al. (2016)

Sulfite oxidase (SO) Tobacco High tolerance against S as a result of efficient  H2O2 scavenging by CAT Sharma et al. (2016)
TcPCS1 Tobacco Engineered Cd tolerance due to decrease in malondialdehyde content and 

elevated activities of antioxidant enzymes
Clemens and Ma (2016)
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metal/metalloid stress tolerance mechanisms and dissemi-
nation of this information from lab to field trials make it 
difficult to achieve. In addition, genetic transformation of 
heavy metal/metalloid stress-responsive metabolites, genes 
(particularly TFs) and proteins have yielded promising 
results, but still their complete genetic intricacies need to 
be exploited in much greater detail (Márquez-García et al. 
2013). Future research based on unravelling major insights 
into the role and regulating engineered heavy metal stress 
tolerance can show promising results. Therefore, a well-
coordinated omics-based approaches, viz. transcriptomics, 
metabolomics, proteomics and their crosstalk with respect 
to improved plant heavy metal/metalloid stress tolerance 
as well as to other non-biotic environmental pressures can 
provide new insights in economically important crop plants 
(Fig. 4).
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