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Abstract
In Saccharomyces cerevisiae the export of 2-oxoglutarate from the mitochondria, catalyzed by Yhm2p, Odc1p and Odc2p 
or by at least one of these transporters, has recently been shown to be essential for glutamate biosynthesis in glucose-
supplemented minimal synthetic (SM) medium without glutamate, because the triple mutant yhm2∆odc1∆odc2∆ displays 
a growth defect under these conditions. Surprisingly, in this study it was found that yhm2∆odc1∆odc2∆ cells grow like 
wild-type (WT) cells in the same medium supplemented with non-fermentable carbon sources. Direct transport assays of 
2-oxoglutarate/2-oxoglutarate homoexchange activity in mitochondria from WT and yhm2∆odc1∆odc2∆ cells (solubilized 
and reconstituted into liposomes) showed that the mitochondrial extract from yhm2∆odc1∆odc2∆ was completely inactive 
at variance with that from WT cells, showing that S. cerevisiae mitochondria do not contain additional proteins capable of 
catalyzing 2-oxoglutarate transport efficiently besides Yhm2p, Odc1p and Odc2p. Furthermore, quantitative real-time PCR 
experiments showed that in both WT and yhm2∆odc1∆odc2∆ cells the expression of GDH1 is low on lactate and high on 
glucose and, vice versa, the expression of GDH3 is high on lactate and low on glucose. These results may be interpreted to 
indicate that in S. cerevisiae, grown in glucose-supplemented SM medium, glutamate is synthesized by Gdh1p in the cytosol, 
whereas in lactate-supplemented SM medium glutamate is synthesized by Gdh3p in the mitochondria; therefore, the pathway 
of ammonia assimilation under fermentative conditions requires export of 2-oxoglutarate from the mitochondria, whereas 
the alternative pathway under respiratory conditions does not.
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1  Introduction

In Saccharomyces cerevisiae the biosynthesis of glutamate 
is accomplished via the action of (i) glutamate synthase 
(Glt1p), which catalyzes the synthesis of two glutamate 
molecules from glutamine and 2-oxoglutarate (Filetici et al. 
1996), and (ii) glutamate dehydrogenases (Gdhp), which 
synthesize glutamate from 2-oxoglutarate and ammonia 
(Moye et al. 1985; Avendaño et al. 1997). In S. cerevisiae 
there are two glutamate dehydrogenase isoforms, Gdh1p 
and Gdh3p, involved in glutamate biosynthesis. GDH1 
is expressed when cells grow on glucose, while GDH3 
is expressed when cells grow on non-fermentable carbon 
sources (DeLuna et al. 2001). These isoenzymes, which 
are NADPH dependent, probably differ in their subcellular 
localization; Gdh1p is localized in the cytosol (Perlman and 
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Mahler 1970), whereas Gdh3p probably in the mitochondria 
(Sickmann et al. 2003). Notably, for ammonium fixation the 
actions of the cytosolic Gdh1p and Glt1p require the trans-
location of 2-oxoglutarate across the mitochondrial mem-
brane to connect the mitochondrial matrix with the cytosol. 
The third isoform of glutamate dehydrogenase, Gdh2p, is 
involved in glutamate catabolism and is NAD+ dependent 
(Boles et al. 1993; Miller and Magasanik 1990).

The genome of S. cerevisiae encodes 35 transport pro-
teins belonging to the mitochondrial carrier family (MCF) 
(Krämer and Palmieri 1992; Palmieri 2013, 2014; Palm-
ieri et al. 2006a; Palmieri and Monné 2016; Palmieri et al. 
2000). Among the yeast MCF members, three mitochon-
drial 2-oxoglutarate transporters have been identified and 
characterized biochemically (Castegna et al. 2010; Palm-
ieri et al. 2001). Two of them, Odc1p and Odc2p, catalyze 
the transport of 2-oxoadipate, 2-oxoglutarate and malate 
(Fiermonte et al. 2001; Palmieri et al. 2001), and their role 
is probably to provide 2-oxoadipate or 2-oxoglutarate for the 
cytosolic biosynthesis of lysine or glutamate, respectively 
(Palmieri et al. 2001). The third yeast MCF member capable 
of transporting 2-oxoglutarate, Yhm2p, transports citrate, 
isocitrate and 2-oxoglutarate (Castegna et al. 2010) and its 
main physiological role is likely to transport citrate into the 
cytosol to produce NADPH through the action of isocitrate 
dehydrogenase (Idp2p) (Castegna et al. 2010; Minard and 
McAlister-Henn 2005). In this way, Yhm2p is able to supply 
cytosol with reducing equivalents needed to neutralize reac-
tive oxygen species (ROS). Accordingly, the yhm2Δzwf1Δ 
strain lacking YHM2 and ZWF1, which encodes another 
cytosolic NADPH source, glucose 6-phosphate dehydroge-
nase (Nogae and Johnston 1990), is not able to grow under 
oxidative stress conditions such as presence of H2O2 or high 
temperatures (37 °C) (Castegna et al. 2010).

The strain deleted of the ODC1/2 and YHM2 genes 
(yhm2Δodc1Δodc2Δ) was demonstrated to exhibit a 
growth defect in a minimal synthetic (SM) medium 
without lysine or glutamate (Scarcia et al. 2017). The 
strains lacking only one or two of the above-mentioned 
three genes did not display a growth defect, showing that 
all three transporters have an overlapping biochemical 
function probably consisting in their ability to transport 

2-oxoglutarate. Furthermore, the lysine auxotrophy was 
observed on both fermentable and non-fermentable car-
bon sources, whereas the glutamate auxotrophy was shown 
only in glucose-supplemented SM medium (Scarcia et al. 
2017).

In this study, we have found that the triple deleted strain 
yhm2Δodc1Δodc2Δ grows normally in SM medium with-
out glutamate and supplemented with non-fermentable 
carbon sources; mitochondria from yhm2Δodc1Δodc2Δ 
are unable to transport 2-oxoglutarate; and in both wild-
type (WT) and yhm2Δodc1Δodc2Δ cells glutamate dehy-
drogenase GDH1 is highly expressed on glucose and little 
on lactate and, vice versa, GDH3 is little expressed on 
glucose and highly on lactate. It is concluded that in S. 
cerevisiae grown on fermentable carbon sources glutamate 
is synthesized by Gdh1p and on non-fermentable carbon 
sources by Gdh3p. 2-Oxoglutarate export from the mito-
chondria is required for the former pathway of ammonium 
assimilation but not for the latter pathway.

2 � Materials and methods

2.1 � Strains, media and growth conditions

The strains used in this study are reported in Table 1. The 
strains were grown at 30 °C in synthetic minimal (SM) 
medium supplemented with auxotrophic nutrients (Sher-
man 1991), when required, and 2% glucose, 2% lactate or 
3% glycerol as carbon sources. When using solid media, 
2% agar was added. In all experiments, the strains were 
precultured overnight in rich medium (YP) with 2% glu-
cose. For growth studies, the cells were washed in SM 
medium and serial tenfold dilutions were spotted on solid 
media. For the preparation of mitochondria the cells were 
precultured on synthetic complete (SC) medium supple-
mented with 3% glycerol and 0.1% glucose for 14–16 h, 
diluted 35-fold in YP supplemented with the same car-
bon sources, and grown to mid-exponential phase. The 
mitochondria were isolated as previously described (Daum 
et al. 1982).

Table 1   S. cerevisiae strains used

a Otherwise isogenic to YPH499

S. cerevisiae strain Description References

YPH499 MATa ade2-101 his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 lys2-801 Sikorski and Hieter(1989)
Wild-typea LYS2 Scarcia et al. (2017)
yhm2Δa LYS2 yhm2Δ::HIS3 Scarcia et al. (2017)
odc1Δodc2Δa LYS2 odc1Δ::TRP1 odc2Δ::HIS3 Scarcia et al. (2017)
yhm2Δ odc1Δodc2Δa LYS2 yhm2Δ::kanMX4 odc1Δ::TRP1 odc2Δ::HIS3 Scarcia et al. (2017)
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2.2 � Reconstitution into liposomes and transport 
assays

Isolated mitochondria were solubilized with 1% Triton 
X-100, 50 mM NaCl and 10 mM PIPES, pH 7.0. After 
incubation for 20 min at 4 °C, the mixture was centrifuged 
at 138,000×g for 20 min. The mitochondrial extract (30 µg 
of protein) was reconstituted as previously reported (Palm-
ieri et al. 1999b, 2001). Transport was started by adding 
[14C]2-oxoglutarate to proteoliposomes preloaded with 
10 mM 2-oxoglutarate and terminated by the addition of 
30 mM pyridoxal 5′-phosphate and 10 mM bathophenan-
throline, which in combination inhibit the activity of many 
mitochondrial carriers completely and rapidly (Agrimi et al. 
2012; Di Noia et al. 2014; Fiermonte et al. 2009; Hoyos et al. 
2003; Monné et al. 2015; Palmieri et al. 1999a, 2006b). In 
controls, the inhibitors were added together with the labeled 
substrate (the stop-inhibitor method (Indiveri et al. 1994; 
Marobbio et al. 2006, 2008; Palmieri et al. 1995). The exter-
nal radioactive substrate was removed, and the radioactivity 
in the proteoliposomes was measured (Palmieri et al. 1995). 
The experimental values were corrected by subtracting con-
trol values (Marobbio et al. 2002; Marobbio et al. 2003; 
Porcelli et al. 2014).

2.3 � RNA isolation and reverse transcription

Total RNA was isolated from WT or yhm2Δodc1Δodc2Δ 
cells grown at 30 °C until the early exponential phase was 
reached (absorbance of 0.8). Aurum Total RNA Kit (Bio-
rad) was used according to the manufacturer’s instructions. 
The amount of extracted RNA was determined by measuring 
the absorbance at 260 nm with NanoDrop 1000 (Thermo 
Scientific), and quality was assessed by the 260/280 absorb-
ance ratio with values of 1.8–2.0 and 260/230 absorbance 
ratio with values greater than 1.7. The ribosomal RNA band 
integrity was checked by denaturing agarose/formaldehyde 
gel electrophoresis and ethidium bromide staining (Sam-
brook and Russell 2006). The iScript Reverse Transcription 
Supermix kit (Biorad) with mix of random hexamers and 
oligo (dT) as primers was used.

2.4 � Quantitative PCR reaction

For quantitative real-time PCR (qPCR), primers based on 
the cDNA sequences of the investigated genes were designed 
with Primer Express 3.0 (Applied Biosystems, Life Tech-
nologies) and purchased from Invitrogen (Life Technolo-
gies). The primer sequences used are reported in Table 2. 
The qPCR reactions were performed using an ABI Prism 
7900 HT (Applied Biosystems, Life Technologies). 20 μL 
of reaction volume contained 20 ng of template (reverse 
transcribed first-strand cDNA), 10 μL of SYBR Select 

Master Mix (Applied Biosystems, Life Technologies), and 
300 nM of each primer. The specificity of the PCR ampli-
fication was checked with the heat dissociation protocol 
after the final cycle of PCR. To correct for differences 
in the amount of starting first-strand cDNAs, the yeast 
β-actin gene (ACT1) was amplified in parallel as a refer-
ence gene. The relative quantification of the investigated 
genes was performed according to the comparative method 
(2−ΔΔCt) (Agrimi et al. 2004; Fiermonte et al. 2003, 2004). 
2−ΔΔCt = 2−(ΔCt sample−ΔCt calibrator), where ΔCt sample is Ct 
sample − Ct reference gene and Ct is the threshold cycle. 
For the calibrator, ΔΔCt = 0 and 2−ΔΔCt = 1. The value of 
2−ΔΔCt indicates the fold change in gene expression relative 
to the calibrator.

3 � Results

3.1 � Glutamate auxotrophy 
of the yhm2∆odc1∆odc2∆ strain is carbon 
source dependent

Yeast Yhm2p (citrate oxoglutarate carrier), Odc1p (oxodi-
carboxylate carrier isoform 1) and Odc2p (oxodicarboxylate 
carrier isoform 2) show an overlapping substrate specificity, 
transporting 2-oxoglutarate and, to different extents, citrate 
and oxoadipate (Castegna et al. 2010; Palmieri et al. 2001). 
Recently, the transport of 2-oxoglutarate from the mitochon-
drial matrix to the cytosol, catalyzed by Yhm2p, Odc1p and 
Odc2p or by at least one of these transporters, has been 
shown to be essential for glutamate biosynthesis when yeast 
cells are grown in glucose-supplemented SM medium in the 
absence of glutamate (Scarcia et al. 2017). To investigate 
the role of the above-mentioned three mitochondrial 2-oxo-
glutarate carriers in glutamate biosynthesis during respira-
tion, the triple deleted strain as well as the WT, yhm2Δ and 
odc1∆odc2∆ strains were grown in SM medium with lactate 
as carbon source and without glutamate. Surprisingly, no 
growth defect of the triple mutant yhm2Δodc1Δodc2Δ strain 
was observed in lactate-supplemented SM medium lacking 
glutamate (Fig. 1). Similarly in the absence of glutamate 
yhm2∆odc1∆odc2∆ cells did not display any growth defect 

Table 2   Primers used for quantitative PCR

Primers Sequence (5′ → 3′)

ACT1 For 5′-ACT​TTC​AAC​GTT​CCA​GCC​TTCT-3′
ACT1 Rev 5′-ACA​CCA​TCA​CCG​GAA​TCC​AA-3′
GDH1 For 5′-GAA​GGG​AAG​ATC​TAA​TAA​CGA​AAT​CAG-3′
GDH1 Rev 5′-GAC​CAA​TGT​GTC​TGC​TCA​ATT​CTC​-3′
GDH3 For 5′-TCC​CGG​AGA​GGA​TCA​TTC​AA-3′
GDH3 Rev 5′-CAC​TTC​TTG​CTC​GCC​ATT​ATCA-3′
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in SM medium supplemented with other non-fermentable 
carbon sources such as glycerol (data not shown).

3.2 � Yhm2p, Odc1p and Odc2p are 
the only 2‑oxoglutarate carriers in S. cerevisiae 
mitochondria

To investigate whether the lack of glutamate auxotrophy of 
the yhm2∆odc1∆odc2∆ strain in SM medium supplemented 
with non-fermentable carbon sources was due to the pres-
ence or activation of an unknown mitochondrial 2-oxog-
lutarate transporter, mitochondria were isolated from WT 
and mutant cells grown on lactate. They were solubilized 
using Triton X-100, and the resulting mitochondrial extract 
was reconstituted into liposomes as previously described 
(Palmieri et al. 1999b; Punzi et al. 2018). Direct trans-
port measurements showed that proteoliposomes recon-
stituted with the WT mitochondrial extract were capable 
of catalyzing the homoexchange between externally added 
[14C]2-oxoglutarate and intraliposomal 2-oxoglutarate 
(0.14 ± 0.02  mmol/mg protein/30  min), whereas those 
reconstituted with the yhm2∆odc1∆odc2∆ mitochondrial 
extract were completely inactive (Fig. 2). Furthermore, 
proteoliposomes obtained using the yhm2∆ or odc1∆odc2∆ 
mitochondrial extract exhibited about 47 and 16% of the 
WT transport activity, respectively. By contrast, the prote-
oliposomes prepared using the mitochondrial extracts of all 
four yeast strains showed an equally efficient [14C]ADP/ADP 
exchange activity of about 1.9 mmol/g protein/30 min.

These experiments demonstrate that the tr iple 
mutant yhm2∆odc1∆odc2∆ strain is unable to transport 

2-oxoglutarate and that S. cerevisiae mitochondria do not 
contain additional proteins capable of catalyzing 2-oxog-
lutarate transport efficiently besides Yhm2p, Odc1p and 
Odc2p.

Fig. 1   Deletion of ODC1, 
ODC2, and YHM2 results in 
impaired glutamate biosyn-
thesis in SM medium without 
glutamate and supplemented 
with glucose but not with 
lactate. Tenfold serial dilutions 
of equally numbered wild-type 
(WT), yhm2Δ, odc1Δodc2Δ and 
yhm2Δodc1Δodc2Δ cells were 
spotted on solid SM medium 
supplemented with 2% glucose 
(a), 2% lactate (b) with or with-
out glutamate

Fig. 2   2-Oxoglutarate/2-oxoglutarate homoexchange activity in 
liposomes reconstituted with mitochondrial extracts. The extract 
(30  µg of protein) of isolated mitochondria from wild-type (lined 
column), yhm2∆odc1∆odc2∆ (black column), yhm2∆ (gray column) 
and odc1∆odc2∆ (hatched column) strains were reconstituted into 
liposomes preloaded with 2-oxoglutarate (20  mM). Transport was 
started by adding 0.1 mM [14C]2-oxoglutarate to proteoliposomes and 
terminated after 30  min. The data represent the mean ± SEM for at 
least three independent experiments
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3.3 � Expression of the glutamate dehydrogenase 
isoforms GDH1 and GDH3 on different carbon 
sources

Since S. cerevisiae yhm2∆odc1∆odc2∆ cells lacking all three 
mitochondrial 2-oxoglutarate transporters grow on lactate-
supplemented SM medium without glutamate, but not in 
the same medium supplemented with glucose (Fig. 1) and 
these cells do not export 2-oxoglutarate from mitochon-
dria to cytosol (Fig. 2), we determined the expression of 
GDH1 and GDH3 genes in the WT and yhm2∆odc1∆odc2∆ 
strains, grown in SM medium lacking glutamate and sup-
plemented with either glucose or lactate, by quantitative 
real-time PCR. In both WT and yhm2∆odc1∆odc2∆ cells 
GDH1 was expressed considerably more when the cells were 
grown in glucose-supplemented SM medium than in lactate-
supplemented medium (Fig. 3a). In fact, the expression of 
GDH1 was 2.4-fold higher on glucose than on lactate in the 
WT cells, and 3.1-fold higher on glucose than on lactate 
in the triple deleted cells. Notably, although the amount of 
the GDH1 transcript is higher in yhm2∆odc1∆odc2∆ than 
in WT cells, the fact that the former cells do not grow in 
SM medium supplemented with glucose indicates that 
under these conditions is the lack of 2-oxoglutarate trans-
port from the mitochondria to the cytosol to be limiting 
the growth and not the amount of Gdh1p. By contrast, in 
both WT and yhm2∆odc1∆odc2∆ cells GDH3 was remark-
ably more expressed in lactate-supplemented SM medium 
than in glucose-supplemented medium (Fig. 3b). Specifi-
cally, the increase in GHD3 expression on lactate was 2.3-
fold in WT cells and more (3.8-fold) in the triple mutant 
cells as compared to the expression on glucose. The up-
regulation of GHD3 on lactate in WT and much higher in 
yhm2∆odc1∆odc2∆ most likely reflects a compensatory 
response to the low glutamate concentration in the cytosol 
due to the absence of 2-oxoglutarate transport from the mito-
chondrial matrix to the cytosol.

4 � Discussion

This study examines the role of three mitochondrial carriers, 
Yhm2p (citrate oxoglutarate transporter), Odc1p (oxodicar-
boxylate carrier isoform 1) and Odc2p (oxodicarboxylate 
carrier isoform 2) and two glutamate dehydrogenase iso-
forms, Gdh1p and Gdh3p in glutamate biosynthesis of the 
yeast Saccharomyces cerevisiae.

The results reported above can be interpreted to indi-
cate that the synthesis of glutamate in S. cerevisiae is 
accomplished by different pathways on fermentable and 
non-fermentable carbon sources (Fig. 4). When S. cerevi-
siae cells grow on glucose glutamate is synthesized in the 
cytosol by Gdh1p from 2-oxoglutarate and ammonia, and 

2-oxoglutarate is exported from the mitochondrial matrix, 
where it is produced, to the cytosol by Odc1p, Odc2p or 
Yhm2p. These three mitochondrial transporters are obligate 
exchangers. In view of their substrate specificity, we can 
infer that Odc1p and Odc2p transport 2-oxoglutarate from 
the mitochondrial matrix to the cytosol in exchange for a 
cytosolic dicarboxylate (most likely oxaloacetate or malate), 
and Yhm2p exports 2-oxoglutarate from the mitochondria 
in exchange for succinate or oxaloacetate. Alternatively, 
Yhm2p can export citrate, instead of 2-oxoglutarate, from 
the mitochondria to the cytosol where it is converted into 
2-oxoglutarate by Idp2p (NADP-dependent isocitrate dehy-
drogenase) (Fig. 4). This reaction also catalyzes the reduc-
tion of NADP+ to NADPH which can be used by Gdh1p to 
produce glutamate. The conclusion that S. cerevisiae when 
grown on glucose synthesizes glutamate by the action of 
Gdh1p, a pathway that requires the essential intervention 
of Odc1p, Odc2p and Yhm2p or at least one of them for 

Fig. 3   Expression of GDH1 and GDH3 in wild-type and 
yhm2Δodc1Δodc2Δ cells on glucose or lactate. qPCR analy-
sis of a GDH1 and b GDH3 mRNAs isolated from wild-type and 
yhm2∆odc1∆odc2∆ cells grown in SM medium lacking glutamate 
and supplemented with glucose (white columns) or lactate (black col-
umns). The wild-type cells grown on glucose were used as calibrator. 
The gene relative quantification was performed according to the com-
parative method (2−ΔΔCt). Values are mean ± SEM of three independ-
ent experiments (*p < 0.05, **p < 0.01 and ***p < 0.001, two-tailed 
unpaired Student’s t test)
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the export of 2-oxoglutarate (or citrate), is substantiated by 
the fact that (i) the triple mutant yhm2∆odc1∆odc2∆ does 
not grow on glucose-supplemented SM medium lacking 
glutamate [(Scarcia et al. 2017) and Fig. 1 of this study]; 
(ii) Odc1p, Odc2p and Yhm2p are individually capable of 
transporting 2-oxoglutarate (Castegna et al. 2010; Palmieri 
et al. 2001); (iii) S. cerevisiae mitochondria do not con-
tain other efficient transporters of 2-oxoglutarate (Fig. 2), 
and (iv) the expression of GDH3 is very low on glucose 
as fermentable carbon source (Fig. 3), suggesting that its 
contribution to glutamate synthesis is negligible under 
these conditions. On the contrary, when S. cerevisiae cells 
grow on non-fermentable carbon sources glutamate is syn-
thesized from 2-oxoglutarate and ammonia by the action 
of GDH3 in the mitochondrial matrix. Consistently, (a) 
the triple mutant yhm2∆odc1∆odc2∆ does not exhibit any 
growth defect on lactate-supplemented SM medium without 
glutamate (Fig. 1); (b) GDH3 is strongly upregulated on 
lactate, as compared to on glucose, in WT and much more 

in yhm2∆odc1∆odc2∆ cells, and (c) the gdh3∆ cells grow 
remarkably less than WT cells on ethanol as non-fermenta-
ble carbon source (DeLuna et al. 2001).

While the subcellular localization of Gdh1p has been 
clearly demonstrated to be cytosolic (Perlman and Mahler 
1970), the Gdh3p subcellular localization has not been 
definitively established. Using GFP-tagged proteins, Huh 
et al. (2003) localized Gdh1p and Gdh2p in the cytosol, 
but did not detect Gdh3p probably because yeast cells were 
grown on glucose. Conversely, glutamate dehydrogenase 
isoform 3 and 2 were localized in mitochondria in a large-
scale proteomic study (Sickmann et al. 2003). Our data 
strongly support the contention that Gdh3p is localized to 
mitochondria because ammonia fixation in the presence of 
a non-fermentable substrate does not require the presence 
of Odc1p, Odc2p or Yhm2p, i.e., the export of 2-oxoglutar-
ate, as demonstrated by the glutamate prototrophy of the 
yhm2∆odc1∆odc2∆ strain on lactate (Fig. 1). Obviously in 
the Gdh3p-mediated pathway of glutamate synthesis this 

Fig. 4   Pathways of glutamate synthesis in S. cerevisiae cells growing 
in SM medium without glutamate and supplemented with glucose or 
lactate. The pathway of glutamate synthesis occurring on glucose is 
indicated by dashed lines, whereas that occurring on lactate by con-
tinuous bold lines. In the pathway on sucrose the dashed bold lines 
were used to indicate the Odc1p-, Odc2p- and Yhm2p-mediated 
transport of 2-oxoglutarate from the mitochondrial matrix to the cyto-
sol and the Gdh1p-mediated 2-oxoglutarate amination to glutamate, 
and the dashed unbold lines to indicate the Yhm2p-mediated citrate 
transport from the mitochondrial matrix to the cytosol, isocitrate 

formation from citrate and the Idp2p-mediated, NADP+-dependent 
production of 2-oxoglutarate from isocitrate. TCA cycle tricarbox-
ylic acid cycle, OAA oxaloacetate, Yhm2p citrate oxoglutarate car-
rier, Odc1p oxodicarboxylate carrier isoform 1, Odc2p oxodicarbo-
xylate carrier isoform 2, Agc1p aspartate glutamate carrier 1, Gdh1p 
NADP+-dependent glutamate dehydrogenase 1 (cytosolic isoform), 
Gdh3p NADP+-dependent glutamate dehydrogenase 3 (mitochondrial 
isoform), Idp2p NADP+-dependent isocitrate dehydrogenase 2 (cyto-
solic isoform)
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intramitochondrially produced amino acid has to be exported 
to the cytosol (Fig. 4), a transport step that can be cata-
lyzed by the aspartate glutamate carrier Agc1p (Cavero et al. 
2003) and/or by a not yet identified glutamate transport sys-
tem localized in the mitochondrial membrane.
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