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Abstract
The auxiliary functions provide efficient computation of integrals arising at the self-consistent field level for molecules using 
Slater-type bases. This applies both in relativistic and non-relativistic electronic structure theory. The relativistic molecular 
auxiliary functions derived in our previous paper (Bağcı and Hoggan, Phys Rev E 91:023303, 2015) are discussed here in 
detail. Two solution methods are proposed in the present study. The ill-conditioned binomial series representation formulae 
are first replaced by a convergent series representation for incomplete beta functions. They are then improved by inserting 
an extra parameter used to extend the domain of convergence. Highly accurate results can be achieved for integrals by the 
procedures discussed in the present study which place no restrictions on quantum numbers in all ranges of orbital parameters. 
The difficulty of obtaining analytical relations associated with using non-integer Slater-type orbitals which are non-analytic 
in the sense of complex analysis at r = 0 is, therefore, eliminated.
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1  Introduction

When calculating molecular electronic structure at the Self-
Consistent Field level (SCF), use of auxiliary functions in 
multi-center integral evaluation over Slater-type orbitals 
is one of the most efficient methods since it leads to fast 
and accurate calculations. It has a long history, beginning 
with Barnett and Coulson (Coulson 1942; Barnett and 
Coulson 1951; Mulliken et al. 1949; Roothaan 1951, 1956; 
Rüdenberg 1951; Löwdin 1956; Kotani et al. 1963; Harris 
and Michels 1965, 1966, 1967; Guseinov 1970). It is still 
being studied in the literature. In particular, the relation-
ships obtained are constantly updated using developments 

in mathematical physics, chemistry and computer sciences 
(Guseinov et al. 2001; Harris 2002, 2003, 2004; Guseinov 
and Mamedov 2002a, 2009; Guseinov and Mamedov 2005; 
Fernández et al. 1997; Ema et al. 2008; Lesiuk and Moszyn-
ski 2014a, b; Bağcı and Hoggan 2014, 2015a, b).

Slater-type orbitals (STOs) (Slater 1930; Parr and Hubert 
1957) are defined as follows:

where Ym
l

 are complex or real spherical harmonics. Phase 
(Ym∗

l
= Y−m

l
;Ym

l
≡ Sm

l
) differs from the Condon–Shortley 

phase, by a sign factor (−1)m (Condon and Shortley 1935; 
Steinborn and Rüedenberg 1973), {n, l,m} are the princi-
pal, orbital, magnetic quantum numbers with, n ∈ ℝ

+ , 
0 ≤ l ≤ ⌊n⌋ − 1 , −l ≤ m ≤ l ; ⌊n⌋ stands for the integer part 
of n and � are orbital parameters. They are obtained by sim-
plification of Laguerre polynomials in hydrogen-like one-
electron eigen-functions (Willock 2009) by keeping only the 
terms of the highest power of r.

Other exponentially decaying bases, e.g. the hydrogen-
like functions may be written as linear combinations of 
STOs (Weniger 2002). Such eigenfunctions satisfy Kato’s 
cusp conditions for asymptotic behavior of the wave 

(1)�nlm(� , r) =
(2� )n+1∕2√
Γ(2n + 1)

rn−1e−�rYm
l
(�, �),
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function near the nucleus (Kato 1957). At long range all 
these orbitals decrease exponentially (Agmon 1982). They 
are, therefore, the natural choice of basis orbital in alge-
braic solution of the Schrödinger equation for many elec-
tron systems. They play a key role in the understanding of 
quantum theory problems. They often arise from testing 
limits of the methods obtained approximately to represent 
the physical systems, where reliable description of elec-
tron density is important, e.g. study of molecules in strong 
magnetic fields (Bouferguene et al. 1999). Second order 
perturbation energy corrections are related (Hoggan 2011).

So far, auxiliary functions for evaluation of molecu-
lar integrals over the STOs have been derived only for 
the integer values of principal quantum numbers. In that 
case, n ∈ ℤ

+ , 0 ≤ l ≤ n − 1 and Γ(2n + 1) = n! . The use of 
non-integer principal quantum numbers in STOs, however, 
promises better results because they provide extra flex-
ibility for closer variational description of molecules (Parr 
and Hubert 1957). The vital importance of generalising 
auxiliary function methods is then clear when extending 
the domain of applications that were previously limited 
to atoms (Koga et al. 1997; Koga and Kanayama 1997; 
Koga et al. 2000; Guseinov and Ertürk 2012) is consid-
ered. A basis spinor to be used in relativistic electronic 
structure calculation is obtained from the hydrogen atom 
Dirac–Hamiltonian eigenfunctions and it can be written 
in terms of Slater-type orbitals since its radial part has the 
following form (Grant 2007; Bağcı and Hoggan 2016):

Deriving such mathematical tools, therefore, directly helps 
to evaluate the integrals arising from algebraic solution of 
the molecular Dirac equation since they in turn reduce to 
integrals over STOs.

The authors recent study (Bağcı and Hoggan 2015a) 
used the Laplace expansion of the Coulomb operator and 
prolate spheroidal coordinates to express the two-center 
molecular integrals in terms of the so-called relativis-
tic molecular auxiliary functions. These auxiliary func-
tions were evaluated numerically via the Global-adaptive 
method with Gauss–Kronrod numerical integration exten-
sion. Note that highly accurate values from the suggested 
numerical method are available only in the Mathematica 
programming language. Since the Mathematica program-
ming language is suitable for bench-marking but requires 
prohibitive calculation time, extended-precision Fortran is 
being investigated for applications. Numerical calculations 
for the hydrogen molecule ion have recently been done to 
96-decimal-digit accuacy in Koborov et al. (2013). The 
source code for fast multi-precision arithmetic used was 
also applied to calculate the recurrence relations for the 
generic Hylleraas three-electron integral (Pachucki et al. 
2004).

(2)f (� , r) =
{
Arn + �Brn+1

}
e−�r.

One of us obtains analytical relations investigated in the 
reference, (Bağcı 2017). The relativistic auxiliary functions 
are expressed through series representation of incomplete 
beta functions and in terms of integrals involving Appell 
functions.

The double series of Appell’s functions (Appell 1925)

where (�)n is the Pochhammer symbol, is mathematically 
convergent when the variables (x, y) , |x| < 1 and |y| < 1 . 
Since the variables (x, y) arising in relativistic auxiliary func-
tions have values outside the convergence region, it is nec-
essary to make use of recurrence relation formulae (Wang 
2012) or numerical integration of a third order ordinary dif-
ferential equation that represents the system of partial dif-
ferential equations of Appell functions given for a set of ana-
lytic continuations (Colavecchia 2001). These methods are, 
however, computationally inefficient and may not give cor-
rect results for a particular set of parameters 

{
�, �1, �2, �

}
 . 

Besides, computing Appell’s functions without erroneous 
last digits is still being studied in the literature (Colavecchia 
and Gasaneo 2004).

In the present study, we refer to the introductory remarks 
given in previous work. Certain concepts and the results 
therein are also used. Here, the relationships given in terms 
of integrals involving Appell’s functions are also reduced to 
series representation formulae for incomplete beta functions. 
Computing Appell’s functions is, therefore, avoided. Further-
more, a new binomial expansion method is developed through 
that given in Liao (2004), Liu (2010) where an extra param-
eter is used to extend the domain of convergence of the well-
known Newton binomial expansion approximation. The ill-
conditioned binomial series representation used for evaluation 
of the molecular integrals in the literature (Guseinov 2009; 
Mekelleche and Baba-Ahmed 2000; Guseinov and Mamedov 
2002b, c) is thus improved. Therefore, reliable methods to 
analytically evaluate the molecular integrals over non-integer 
Slater-type orbitals are finally obtained in the present work.

2 � Evaluation of relativistic molecular 
auxiliary functions

The compact expressions we previously derived for two-
center, one- and two-electron relativistic molecular integrals 
in a lined-up coordinate system through Laplace expansion 
of Coulomb interaction and prolate spheroidal coordinates 
( �, �,� ), where 1 ≤ 𝜉 < ∞ , −1 ≤ � ≤ 1 , 0 ≤ � ≤ 2� , are 
obtained using the following auxiliary function integrals 
(Bağcı and Hoggan 2015a):

(3)F1

(
�;�1, �2;�;x, y

)
=

∞∑
s1,s2=0

(�)s1+s2

(
�1
)
s1

(
�2
)
s2

(�)s1s2s1!s2!
xs1ys2 ,
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where 
{
q, n1

}
∈ ℤ , 

{
n2, n3, n4

}
∈ ℝ , p123 =

{
p1, p2, p3

}
 

(and in subsequent notation), p1 > 0 , p2 > 0 , −p2 ≤ p3 ≤ p2.
P, Q are the normalized complementary incomplete gamma 

and the normalized incomplete gamma functions

where �(a, z) and Γ(a, z) are incomplete gamma functions

Γ(a) is a complete gamma function

and the Pochhammer symbol (�)n is defined as:

see, Abramowitz and Stegun (1972), Temme (1994). Evalu-
ation of these auxiliary functions involves some challenges 
including power functions with non-integer exponents. Also, 
incomplete gamma functions and their products have no 
explicit closed-form relations. On the other hand, symme-
try properties of two-center two-electron integrals allow us 
to take advantage of the sum P + Q = 1 . This allows use of 
Eq. (4) via up- and down-ward distant recurrence relations 
of normalized incomplete gamma functions

in terms of the following form (please see Bağcı 2017):

(4)

{ n1,q
n2n3n4

(
p123

)
n1,q

n2n3n4

(
p123

)
}

=
p
n1
1(

n4 − n1
)
n1

�
∞

1 �
1

−1

(��)q(� + �)n2(� − �)n3

×

{
P
[
n4 − n1, p1(� + �)

]
Q
[
n4 − n1, p1(� + �)

]
}
ep2�−p3�d�d�,

(5)P[�, z] =
�(�, z)

Γ(�)
,Q[�, z] =

Γ(�, z)

Γ(�)
,

(6)�(�, z) = ∫
z

0

t�−1e−tdt,Γ(�, z) = ∫
∞

z

t�−1e−tdt,

(7)Γ(�) = Γ(�, z) + �(�, z),

(8)(�)n =
Γ(� + n)

Γ(�)
,

(9)
�

P[a, bz]

Q[a, bz]

�
=

⎧
⎪⎨⎪⎩

P[a + n, bz] + e
−bz

∑
n

s=1

(bz)a+s−1

Γ(a+s)

Q[a + n, bz] − e
−bz

∑
n

s=1

(bz)a+s−1

Γ(a+s)

⎫
⎪⎬⎪⎭
,

(10)
�

P[a, bz]

Q[a, bz]

�
=

⎧
⎪⎨⎪⎩

P[a − n, bz] − e
−bz

∑
n−1

s=1

(bz)a−s−1

Γ(a−s)

Q[a − n, bz] + e
−bz

∑
n−1

s=1

(bz)a−s−1

Γ(a−s)

⎫
⎪⎬⎪⎭
,

The feature given above can, therefore, generally be defined 
as follows:

Criterion Let P
[
n4 − n1, z

]
 and Q

[
n�
4
− n�

1
, z
]
 , then 

n4 − n1 = a ± c , n�
4
− n�

1
= a ± d , where a ∈ ℝ , {c, d} ∈ ℤ 

are true for any integrals that can be reduced to Eq. (4).

Case 1 The parameter p3 = 0.
Starting by lowering the indices q using

the auxiliary functions n1,q are obtained as follows Bağcı 
(2017):

here,

and

with

(11)

n1,q
n2n3

(
p123

)
=

p
n1
1

Γ
(
n1 + 1

)

× �
∞

1 �
1

−1

(��)q(� + �)n2 (� − �)n3e−p2�−p3�d�d�.

(12)(��) =
1

4

{
(� + �)2 − (� − �)2

}
,

(13)n1,q
n2n3

(
p120

)
=

1

4

{n1,q−1

n2+2n3

(
p120

)
− n1,q−1

n2n3+2

(
p120

)}
,

(14)

n
1
,0

n
2
n
3

(
p
120

)
=hn1,0

n
2
n
3

(
p
12

)
+ hn1,0

n
3
n
2

(
p
12

)

− kn1,0
n
2
n
3

(
p
12

)
− kn1,0

n
3
n
2

(
p
12

)
,

(15)

hn1,q
�

n
2
n
3

(
p
12

)
=

p
n
1

1

Γ
(
n
1
+ 1

)2n2+n3+q�+1B(n2 + 1, n
3
+ 1

)

× E−(n2+n3+q�+1)
(
p
2

)
− ln1,q

�

n
2
n
3

(
p
12

)
,

(16)

ln1,q
�

n2n3

(
p12

)

=
p
n1
1

Γ
(
n1 + 1

)
∞∑
s=0

(
−n2

)
s(

n3 + s + 1
)∗
s!
m

n2+q
�−s

n3+s+1

(
p2
)
,

(17)mn1
n2
(p) = 2n1U

(
n2 + 1, n1 + n2 + 2, p

)
Γ
(
n2 + 1

)
e−p,

(18)

kn1,q
�

n
2
,n

3

(
p
12

)
=

p
n
1

1

Γ
(
n
1
+ 1

)2n2+n3+q�+1B
(
n
2
+ 1, n

3
+ 1,

1

2

)

× E−(n2+n3+q�+1)
(
p
2

)
,
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where U(�, �;z) are confluent hypergeometric functions of 
second kind with

confluent hypergeometric functions of first kind and 
B(�, �, z) incomplete beta functions

where B(�, �) = B(�, �, 1) are beta functions, respectively 
(Abramowitz and Stegun 1972).

Case 2 The parameter p3 ≠ 0.
By lowering the indices q and using the series expansion 

of exponential functions ez , where z = −p3� , the following 
relation is obtained (Bağcı 2017):

The Js,q functions involve Appell’s hypergeometric functions 
(Appell 1925):

and their explicit forms are given as:

The sum of two Js,s
′;q

n2n3
 functions arising in the right-hand side 

of Eq. (22) is an integral in the form, written as:

(19)

U(�, �;z) =
Γ(� − 1)

Γ(�) 1
F
1
(� − � + 1, 2 − �;z)

+
Γ(1 − �)

Γ(� − � + 1) 1
F
1
(�;�;z),

(20)
1F1(�, �;z)

=
Γ(�)

Γ(� − �)Γ(�) ∫
1

0

t�−1(1 − t)�−�−1eztdt,

(21)B(�, �, z) = ∫
z

0

t�−1(1 − t)�−1dt,

(22)

n
1
,0

n
2
n
3

(p
123

) =
p
n
1

1

Γ
(
n
1
+ 1

)
∞∑
s=0

(−ps
3
)

Γ(s + 1)

(
1

s + 1

)

×
{
J
s+1,s+2;0
n
2
n
3

(
p
2

)
+ (−1)sJs+1,s+2;0

n
3
n
2

(
p
2

)}
,

(23)

F1

(
�;�1, �2;�;x, y

)
=

Γ(�)

Γ(�)Γ(� − �)

× ∫
1

0

u�−1(1 − u)�−�−1(1 − ux)−�1(1 − uy)−�2du,

(24)

Js,s
�;q

n2n3
(p) = ∫

∞

1

F1

(
s; − n2,−n3;s

�;
1

�
,−

1

�

)

×�n2+n3+qe−p�d�.

(25)

(
1

s + 1

){
Js+1,s+2;0
n2n3

(
p2
)
+ (−1)sJs+1,s+2;0

n3n2

(
p2
)}

= ∫
∞

1 ∫
1

−1

(� + �)n2 (� − �)n3�se−p2�d�d�.

Dividing and multiplying the expression with �s′ gives:

By again making use of Eq. (12), finally the following rela-
tion is obtained for 

(
s� = s

)
:

with p02 =
{
1, p2

}
 . It should be noted that Eqs. (14 and 28) 

imply convergence properties of incomplete beta function 
expansions; Bz

(
n1, n2

)
 at z = 0 , where the absolute value of 

z must be |z| < 1 . Considering the domain given for auxiliary 
functions n1,q , it is easy to see that the convergence condi-
tion is satisfied, where z = �−1

2�
 . Equation (22) gives the con-

vergence properties for series representation of exponential 
functions ez which are uniformly convergent for the entire 
complex plane for any z with |z| < ∞.

2.1 � On the use of Newton’s binomial theorem

Newton’s binomial theorem is generalized by Liao, within 
the frame of the homotopic analysis (Liao 2004). An extra 
parameter h, the so-called auxiliary parameter, is used to 
extend the domain of convergence. The auxiliary parameter 
is generally used in homotopic analysis to construct the so-
called zero-order deformation equation. A set of expressions 
is thus obtained in terms of the auxiliary parameter h as 
solutions.

Series with the mean convergence domain show rate of 
solution increased by choosing a proper value for h (Liao 
2004; Liu 2010).

A power function such as (� ± �)n with real number n 
(n ≠ 0, 1, 2, 3,…) , can be written in the form:

where 
||||

𝜈

𝜉
−

𝜈0

𝜉0

1±
𝜈0

𝜉0

|||| < 1 , �0
�0

= ∓1 ∓
1

h
 with | 𝜈0

𝜉0
| < 1 , respectively. 

The auxiliary parameter h is then adjusted accordingly. By 
applying now the usual Newton’s binomial expansion, the 
following relations are obtained:

(26)
 s,s�

n2n3

(
p2
)

= �
∞

1 �
1

−1

(� + �)n2(� − �)n3
(
�s

�

�s
)
�−s

�

e−p2�d�d�.

(27) s,s
n2n3

(
p2
)
=

1

4

{ s−1,s

n2+2n3

(
p2
)
−  s−1,s

n2n3+2

(
p2
)}

,

(28)

 0,s
n
2
n
3

(
p
2

)
=

1

2−s

{
h1,−s
n
2
n
3

(
p
02

)
+ h1,−s

n
3
n
2

(
p
02

)

− k1,−s
n
2
n
3

(
p
02

)
− k1,−s

n
3
n
2

(
p
02

)}

(29)(� ± �)n = �n
�
1 ±

�0

�0

�n⎛⎜⎜⎝
1 ±

�

�
−

�0

�0

1 ±
�0

�0

⎞⎟⎟⎠

n

,
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The terms arising in Eq. (4) can thus be re-written as:

where, Fs(n) , are the binomial coefficients indexed by n, s is 

usually written 
(
n

s

)
 , with,

According to the formulae given above the auxiliary func-
tions, n1,q are obtained as follows:

where k = s + s� and

are the exponential integral functions.

(30)(� ± �)n = lim
N→∞

N∑
s=0

(±1)s�N,s
n

(h)Fs(n)�
n−s�s,

(31)�N,s
n

(h) =

N−s∑
s�=0

(±1)s
�

Fs� (n − s)(−h)s−n(h + 1)s
�

.

(32)
(� + �)n2 (� − �)n2 = lim

N→∞

N∑
s,s�=0

�N,s
n2

(h)�N,s�

n3

(
h�
)

×Fs

(
n2
)
Fs�

(
n3
)
�n2+n3−s−s

�

�s+s
�

,

(33)
(
n

s

)
=

Γ(n + 1)

Γ(s + 1)Γ(n − s + 1)
.

(34)

n1,q
n2n3

(p123) =
p
n1
1

Γ
(
n1 + 1

) lim
N→∞

N∑
s,s�=0

�N,s
n2

(h)�N,s�

n3

(
h�
)

× Fs

(
n2
)
Fs�

(
n3
)
�

∞

1

�n1+n2+q−s−s
�

e−p2�d�

× �
1

−1

�q+s+s
�

e−p3�d�,

(35)

n1,q
n2n3

(
p123

)
=

p
n1
1

Γ
(
n1 + 1

) lim
N→∞

N∑
s,s�=0

�N,s
n2

(h)�N,s�

n3

(
h�
)

× Fs

(
n2
)
Fs�

(
n3
){E−(n2+n3)−q+k

(
p2
)

p
q+k+1

3

×

(
�
(
q + k + 1, p3

)
− �

(
q + k + 1,−p3

))}
,

(36)En(p) = ∫
∞

1

e−p�

�n
d�,

3 � Conclusion

The renewed interest in molecular integrals over Slater-type 
orbitals with non-integer principal quantum numbers is 
increasing. Recent studies show that they are used in both 
relativistic and non-relativistic electronic structure calcula-
tions. These integrals are expressed in terms of molecular 
auxiliary functions. They involve power functions such as 
f (z) = zn = en log z with non-integer exponents n ∈ ℝ which 
cannot be represented by a power series because they are not 
analytic about z = 0 (Weniger 2008). This constitutes the 
underlying reason why the Slater-type orbitals with non-
integer principal quantum numbers could not be used in 
molecular electronic structure calculations so far. Availabil-
ity of computation methods for molecular auxiliary func-
tions, on the other hand, needs urgent implementation and 
is precious. Two methods based on this reasoning are pro-
posed in this study. Firstly, through expansion of exponential 
functions, the molecular n,q auxiliary functions reduce to 
integrals involving Appell functions (Eq. 22). Instead of 
using recurrence relations of Appell’s functions, they are 
represented through convergent series expansion of incom-
plete beta functions. Secondly, through an improved form of 
the binomial series expansion of power functions they 
reduce to easily integrable expressions in which the varia-
bles are separated (Eq. 35). These methods are derived 
according to a criterion given below the Eq. (11). Compact 
form expressions obtained for multi-center integrals via 
Laplace expansion of the Coulomb interaction involve a sum 
of n1,q

n2n3n4

(
p123

)
 and n′

1
,q

n′
2
n′
3
n′
4

(
p123

)
 auxiliary functions, where

and

where 
{
n, n′

}
 , L are principal and total angular momentum 

quantum numbers, respectively (Bağcı 2017). This is, there-
fore, the foundation for construction of the criterion.

The relationships given in the presented work are reliable 
and convergent. Benchmark results in our previous papers 
(Bağcı and Hoggan 2014, 2015a) can, therefore, be obtained 
with the formalism given in the present study.

The homotopy analysis method which is used to extend 
the domain of convergence of Newton’s binomial series rep-
resentation formulae may also be used to obtain non-analytic 

n1 = 0, n4 = n + n� + L + 1 for 
n�
1
= 2L + 1, n�

4
= n + n� + L + 1 for 

n4 − n1 = n + n� + L + 1 for 
n�
4
− n�

1
= n + n� − L for 
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solutions, which by their nature cannot be expressed through 
power series (Gorder 2017). The single-center expansion 
method i.e., expansion of Slater-type orbitals with non-
integer principal quantum numbers in terms of an infinite 
series of Slater-type orbitals with integer principal quantum 
numbers (Guseinov et al. 2002; Guseinov 2007),

where, V are the expansion coefficients and � ∈ ℤ
+ , may 

thus also become useable.
The computational aspect of the formulae given here for 

molecular auxiliary functions and their applications will be 
the subject of future research.
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