
Vol.:(0123456789)1 3

Rend. Fis. Acc. Lincei (2018) 29 (Suppl 1):S51–S58 
https://doi.org/10.1007/s12210-017-0651-x

SATELLITE POSITIONING FOR GEOSCIENCES

The velocity field of the Italian area

Roberto Devoti1   · Federica Riguzzi1 

Received: 9 June 2017 / Accepted: 10 October 2017 / Published online: 19 October 2017 
© Accademia Nazionale dei Lincei 2017

1 � GNSS networks and data analysis

INGV manages the Italian RING network (http://ring.
gm.ingv.it), a GPS network of about 200 stations that meet 
strict instrumental standardization in terms of monument, 
receiver and antenna types. Moreover, daily data from 32 
different Italian GNSS networks are currently archived and 
processed routinely. The GNSS database is further aug-
mented with other 57 sites belonging to EUREF and/or IGS 
networks that are homogeneously distributed in Europe and 
used for the ITRF2008 reference frame definition (Fig. 1). 
The number of analyzed sites grew exponentially in the last 
decade, following the deployment of new GNSS stations 
(Fig. 2). At present we process, on average, data from about 
1000 sites per day, this number is variable because of data 
gaps due to different causes (missing data, bad data not pass-
ing a preliminary quality check, etc.).

The monument types, antenna and receiver types and the 
environmental operating conditions are not uniform (Devoti 
et al. 2016), nor geodetic standards are well advised, nev-
ertheless the networks cover the Italian area in an almost 
uniform way. Figure 3 shows all the analyzed GPS stations 
(black dots) and the color maps the distance from the near-
est GPS site: in most sections this distance ranges between 
10 and 20 km with an overall maximum value lower than 
40 km. In this picture, northwest Italy is slightly sparser 
populated, since most of the INGV stations were planned to 
monitor the seismically active Apennines chain, nevertheless 
the number of new contributing stations is always in evolu-
tion according to the different owner needs.

This continuous monitoring effort, carried out by various 
institutions, is of great value to better understand the large-
scale plate kinematics and to shed light on the physics that 
governs tectonic deformation and seismic and aseismic fault-
ing. The GPS data are currently archived and fully processed 
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by three Analysis Centers (AC) at INGV, in which differ-
ent processing approaches are adopted (Devoti et al. 2017). 
The combination of those independent solutions provides 
a unique velocity field that can be validated and assessed 
through a feedback technique.

In particular, the three ACs process and analyze routinely 
all the available European GPS data using, respectively, the 
Bernese (Beutler et al. 2007), Gamit (Herring et al. 2015) 
and Gipsy (Zumberge et al. 1997) software. They produce 
daily position solutions for up to 2000 stations located 
mostly in the Mediterranean area and on the central and 
western European continent. Figure 4 shows the flowchart 
of the data processing scheme, starting from the raw GNSS 
observations acquired at the remote stations and transmitted 
over different transmission systems (GSM, UMTS, VSAT, 
WiFi, etc.) to the control centers, going through the quality 

control and archiving into databanks, and finally undergoing 
the processing and the products generation.

Each AC usually produces an independent velocity solu-
tion of a different grid of networks, so that most sites overlap 
among the other two. The site velocities are estimated fitting 
simultaneously a linear drift, episodic offsets and annual 
sinusoids to the coordinate time series. Offsets are estimated 
whenever a change in the GPS equipment induces a sig-
nificant transient in the time series, or whenever a constant 
offset has been detected in the raw time series. Whereas sea-
sonal oscillations are filtered out by fitting annual sinusoids. 
The three velocity solutions are then combined to obtain 
a complete velocity field expressed in a unique reference 
frame. The velocity combination procedure is a generaliza-
tion of the loosely constraints approach (Devoti et al. 2017) 
in which each velocity field is considered as a sample of the 
true velocity field while the combined velocity, is the best 
estimate of the true velocity field. The availability of differ-
ent samples of the station velocities allows a sort of valida-
tion in which the velocity repeatability can be truly assessed.

The combined horizontal velocity field (Fig. 5) highlights 
with unprecedented details the kinematics of a large por-
tion of the European region, with dense spatial sampling of 
crustal deformation across the Mediterranean plate boundary 
and active fault systems.

The focus on the Italian area allows to evidence pecu-
liar features both in the horizontal and vertical velocities 

Fig. 1   Number of analyzed sites for each network. RIN RING (Isti-
tuto Nazionale di Geofisica e Vulcanologia), ASI Agenzia Spaziale 
Italiana, FRE FREDNET (Istituto Nazionale di Oceanografia e di 
Geofisica Sperimentale), EUR EUREF and IGS. The remaining acro-
nyms represent networks established by regional administrations and 
private companies

Fig. 2   Bar chart showing the growth of analyzed site number in the 
Italian area per year

Fig. 3   Distance from the nearest permanent GPS site on a regular 
grid of 0.1° × 0.1°. Black dots are the stations
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(Fig. 6a, b); the error ellipses show the one-sigma region 
and range from 0.1 mm/year for the long lasting sites, to 
about 1 mm/year. The average horizontal and vertical veloc-
ity uncertainties are 0.3 and 0.5 mm/year, respectively. Each 
GPS site spans different life times, so that we show in the 
figure all those with a minimum observation time of 3 years, 
the mean station lifetime being 7 years. The reference Eura-
sian plate has been realized by minimizing the rigid motion 
of 15 selected EUREF stations located in stable central 
Europe.

The horizontal velocity field permits to figure out some 
important features at regional scale: the distinct patterns 

between the Tyrrhenian and Adriatic domains, represented, 
respectively, by the NW- and NE-directed velocities marking 
the active extension along the Apennines chain; the ongoing 
compression in NE Alps and northern Sicily; the extension 
across the Northeastern Sicily and the Sicily Channel; the 
Corsica–Sardinia block demonstrating no residual motion 
with respect to the Eurasian plate. Moreover, significant 
subsidence is evident in the eastern Po plain and Aeolian 
islands area, whereas a striking uplift along the Alps and 
Apennines chain is detected. This complex puzzle reflects 
the rather complicated geodynamic processes involved in 
the Italian peninsula, its tectonics is dominated by the active 

Fig. 4   Scheme of the data flow. 
Courtesy of Maria Brovelli

Fig. 5   Horizontal velocity field 
of the Mediterranean area esti-
mated with respect to the stable 
Eurasian plate. After Devoti 
et al. (2017)
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subduction of the Adriatic microplate along the Apennines 
and Dinarides, and overriding the Eurasian plate along the 
Alps (Devoti et al. 2008). Earthquakes with extensional 
mechanisms mainly occur along the Apennines, while 
compressive mechanisms are detected near the active fronts 
(Pondrelli et al. 2006).

Actually GPS time series contain more interesting signa-
tures (Fig. 7a) than linear trend useful to study geodynamic 
processes. In fact, they are often affected by earthquakes, 
both as instant offsets (Figs. 7a, b, 8), useful to model the 
seismic source (i.e., Anzidei et al. 2009; Cheloni et al. 2016) 
or post-seismic non-linear behavior, as shown in Fig. 7a 
(Devoti 2012).

The fundamental questions for which geodesy provides 
useful clues to disclose our understanding of geodynamic 
processes are not trivial indeed, here we propose a few key 
issues for which the measurement of displacements may help 
clarifying pending issues.

The first question concerns the possibility of measuring 
a possible precursor: is there any geophysical process that 
produces measurable effects on the surface, which can trig-
ger or modify the occurrence of earthquakes? It is generally 

thought that elastic strain accumulates in the crust gaining 
a critical stress value after which an unavoidable rupture 
occurs (Fig. 8). However, many other phenomena may alter 
the constant strain build-up, promoting or retarding the fault 
rupture. Pore pressure changes caused by deep-seated flu-
ids or shallow water table fluctuations induced by climate 
changes (Hoffmann et al. 2001; Longuevergne et al. 2009; 
Jacob et al. 2010; Wahr et al. 2013; Amos et al. 2014; Devoti 
et al. 2015; Silverii et al. 2016), stress variations caused by 
nearby earthquakes (Lin and Stein 2004; Thompson and Par-
sons 2016) but also indirect mantle flow caused by subduc-
tion or continental collision such as delamination and tear 
faults (D’Agostino et al. 2001; Pérouse et al. 2010; Devoti 
et al. 2011; Cowie et al. 2013). Recognizing all these pro-
cesses represent a challenge for the scientific community 
and will by all means constrain future earthquake hazard.

This discussion is related to another basic scientific prob-
lem: do we have a complete tectonic model that explains the 
observed inter-seismic deformation? In other words, how 
well do we know the mechanics and the importance of differ-
ent processes that control the strain and stress accumulation 
in active fault zones. It is thought that tectonic deformation 

a b

Fig. 6   a Horizontal velocity field of the Italian area in the Eurasian frame; b vertical velocity field. The background color map has been 
obtained by interpolating the vertical velocities by GMT (Wessel et al. 2013)
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buildup is well approximated by a linear increase of strain 
with time and is generally termed inter-seismic deforma-
tion (Segall 2010). Thus, to study the earthquake cycle and 
improve the predictive power of the theory, it is crucial to 

figure out the corresponding components in each time series 
to assess the regional stress field variation. Another peculiar 
question arises after the earthquake occurs, it is worthwhile 
to assess what kind of seismic source and how the rupture 

Fig. 7   a Time series of the Up, East and North components of 
L’Aquila station from January 01, 2009 to the end of July, the red bar 
marks the epoch of the April 6 Mw 6.1 earthquake; b time series of 

the North component of Montereale and Amatrice stations crossing 
the epoch of the recent seismic sequence started on August 26, 2016

Fig. 8   Horizontal displace-
ments observed at permanent 
and non-permanent GPS 
stations after the L’Aquila earth-
quake (April 6, 2009 Mw 6.1,) 
gray arrows, and the cumula-
tive displacements (in red) due 
to Amatrice (August 24, 2016 
Mw 6.0), Visso (October 26, 
2016 Mw 5.9), Norcia (October 
30, 2016 Mw 6.5) and the four 
M > 5.0 Campotosto events 
(January 18, 2017) red arrows 
(colour figure online)
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evolves in time by observing the time-dependent surface 
displacements at different space–time scales. Although we 
already own a good theory of fault dislocation in a elastic 
half-space (i.e., dislocation theory, see for example Savage 
1983), we still lack the details of the rupture style, the effect 
of listric geometries or secondary splay faults, non-elastic 
behavior of the lithosphere and if mature or incipient faults 
act differently. Finally, after an earthquake had occurred, we 
may ask how the lower crust will react to the fault disloca-
tion and sudden stress drop, and what rheology explains the 
observed surface rebound. This effect, called post-seismic 

relaxation (Hampel and Hetzel 2015), may last for several 
decades after major earthquakes and overlaps to the inter-
seismic tectonic deformation, thus it has to be carefully 
analyzed and assessed to separate the relative contributions.

The deployment of discontinuous GPS stations, in which 
repeated survey campaigns may be achieved with reason-
able precision, represents a helpful and rather cost-effective 
monitoring technique allowing to densify the network in sec-
tors of particular interest. The discontinuous stations mate-
rialized in central Italy, provide more than 200 benchmarks 
that, measured occasionally over the last 18 years, provide a 

Fig. 9   a GPS horizontal inter-
seismic velocities (red) from 
permanent and non-permanent 
networks in a no-net-translation 
reference frame. In blue the 
seismicity (square historical, dot 
recent); b velocities projected 
along the profile within the 
rectangular box, in gray the 
topographic profile; the black 
line on the bottom is the best 
estimate from data of the dislo-
cation surface occurring along 
a E-directed creeping source 
located below 15 km depth 
(colour figure online)
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complementary set of observations for the linear trend evalu-
ation (Galvani et al. 2012). Worth of note is the GPS transect 
crossing central Italy over the Amatrice area, for which we 
were able to estimate the horizontal velocities with enhanced 
details before the August 24, 2016 seismic sequence. The 
velocities enclosed in the rectangular box were projected 
along the profile shown in Fig. 9a; they are representative 
of the pre-seismic velocities (i.e., inter-seismic including 
post-seismic relaxation due to previous events), before the 
Amatrice earthquakes. The red dots in Fig. 9b shows the 
projected velocities obtained from the non-permanent GPS 
stations, in this particular profile the density of non-perma-
nent stations is three times higher, and thus the recognition 
of second-order details in the deformation pattern becomes 
feasible. As an example of possible source for the observed 
surface inter-seismic strain, the solid line in Fig. 9b shows 
the modeled strain profile caused by a creeping dislocation 
embedded in an elastic half-space (Savage 1983) and locked 
at 15 km depth.

2 � Conclusions

We show that a dense grid of GNSS stations, despite its 
inhomogeneous nature, represents a valuable scientific infra-
structure that allows continuous monitoring of surface dis-
placements and support significant geophysical studies in 
active plate boundary zones like the Italian peninsula. The 
mean inter-station distance ranges between 10 and 40 km but 
is not regular everywhere, this allows to figure out the long 
wavelength of the surface deformation pattern. Neverthe-
less to inspect the details and in some cases, to discriminate 
between competing theories, a further network densification 
is necessary. A good cost-effectiveness compromise may be 
the adoption of removable GNSS stations measuring the 
position in repeated survey campaigns. The network aug-
mentation in particular sectors and across the Apennines 
shows still unknown and probably unexpected features of 
the deformation field at small spatial scales, thus suggest-
ing the existence of short wavelength deformation patterns 
at distances comparable to the seismogenic layer (10 km or 
lower distances). We, therefore, strongly support the idea 
of a geodetic infrastructure (grid of GNSS networks) along 
and across the Apennines, capable to monitor geophysical 
processes at different spatial scales and continuously in 
time. Such an infrastructure will certainly grant fundamen-
tal understandings of crustal and sub-crustal processes in 
the Italian peninsula.
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