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Abstract The performance of phenol degradation by

Rhodococcus UKMP-5M in different modes of bioreactor

operation, batch, and continuous, was studied. The effects

of agitation and aeration on the growth and phenol degra-

dation by Rhodococcus UKMP-5M were first studied in

batch cultivation using a 2 L stirred tank bioreactor. Con-

tinuous bioreactor operation was design based on batch

cultivation data and was operated at different dilution rates,

ranging from 0.05 to 0.20 h-1. The highest cell growth

(0.262 g/L), phenol degradation time (12 h), and phenol

hydroxylase enzyme (32.3 U/mL) in batch cultivation were

obtained at the agitation speed of 160 rpm, DOT of 80 %

saturation, and airflow rate of 1.5 vvm. In continuous

operation, the highest steady-state cell concentration

(0.03 g cell/L) and phenol degradation rate (0.082 g phe-

nol/L/h) were achieved at the dilution rate of 0.18 h-1. The

efficiency of phenol degradation rate was about 3.28 times

higher obtained in continuous cultivation (0.082 g phenol/

L/h) than in batch cultivation (0.025 g phenol/L/h).

Keywords Batch bioreactor � Continuous bioreactor �
Rhodococcus � Stirred tank bioreactor � Phenol
degradation � Phenol hydroxylase

1 Introduction

Phenol is a common waste in many processing industries. It

is classified by US Environmental Protection Agency

(EPA) as a priority pollutant (Collins and Daugulis 1997;

Saravanan et al. 2008; Zhao et al. 2009). The main source

of phenol is from industrial effluents of coal gasification,

polymeric resin production, cooking plants, and oil refining

(Lob and Tar 2000). Phenol causes various hazards and

exposures to it by any route can produce systemic poi-

soning. It is corrosive and causes chemical burns at the

contact site (Basha et al. 2010). Elimination of phenol is

highly required to maintain the environment and health

quality. Activated carbon adsorption, ion exchange, solvent

extraction, and chemical oxidation are treatment alterna-

tives for removing phenol. However, those methods have

some serious drawbacks, including expensive cost (El-

Naas et al. 2010) and formation of hazardous by products

that cause secondary pollution (Shen et al. 2009).

Biological treatment is an efficient method for the

removal of phenol from wastewater (Ahmad et al. 2012).

Among the phenol degrading microorganisms reported in

the literature, Rhodococcus sp. and Pseudomonas sp. seem

to have the highest potential for phenol degradation.

Therefore, a large number of studies related to phenol

degradation by these bacteria have been carried out (Marrot

et al. 2006; Norazah et al. 2015). Although many bacterial
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groups capable in phenol degradation have been reported,

the suitable types of bioreactor for phenol degradation have

not been studied in details. Stirred tank bioreactor was

reported as the commonly used reactor in phenol degra-

dation (Kim et al. 2002; Prieto et al. 2002a). The conditions

in stirred tank reactor can be easily controlled at the desired

levels, and process scale-up is also simple (Daugulis 2001).

Beside the use of stirred tank bioreactor, the other types of

bioreactor that commonly involved in phenol degradation

is spouted bed bioreactor (El-Naas et al. 2010), fluidized

bed reactor (Mayer et al. 2008), packed bed reactor (Kim

et al. 2002; Prieto et al. 2002b; Paca et al. 2005; Tziotzios

et al. 2007), airlift bioreactor (Jia et al. 2006), and im-

mersed membrane bioreactor (Marrot et al. 2006). The

enzyme productivity in a bioreactor is normally influenced

by agitation rate, dissolved oxygen tension (DOT), and

aeration rate (Petruccioli et al. 1995; Zhang et al. 2010;

D’Annibale et al. 2006; Techapun et al. 2003). However,

the optimal conditions are varied for each microbial strain

and parameters employed in the process.

Interactions of chemical compounds with the diversity

of microbial species involved in a biodegradation process

are distinct in batch or continuous systems. In the closed

culture system, the relatively high substrate concentration

at the beginning of the batch process could inhibit the

cellular growth, thus affecting the substrate biodegradation

rate (Alcocer et al. 2007). Even though batch cultivation is

widely used in phenol degradation experiment (Daugulis

2001; Santos et al. 2009; Sharma et al. 2009; Paisio et al.

2012), a process that can be used for a long-term contin-

uous degradation of phenol in wastewater has been the

focus of many researchers (Varma and Gaikwad 2010; Pai

et al. 1995). Continuous culture is a system in which a

well-mixed culture is continuously supplied with fresh

nutrients, and the volume of the culture is kept constant by

continuous removal of the culture liquid at the same flow

rate as the feeding rate of fresh nutrient. Hence, it offers a

continuation of growth for a long period of time. Provided

that the medium has been designed, such that growth is

substrate limited, and not toxin limited, exponential growth

will proceed until the additional substrate is exhausted. The

main advantage of these systems is that they maintain a

very high biomass density, allowing high and stable pro-

cess efficiency even under variations in hydraulic load,

toxicity, concentration, and temperature (Soares et al.

2006).

The higher productivity is the main advantage of con-

tinuous culture. However, contaminations are still the

limiting factor of this cultivation technique. The maximum

dilution rate that can be achieved in continuous culture is

also limited by the need to prevent cell washout (Mordocco

et al. 1999; Sokol and Migiro 1996).

Various kinetics models were used in describing the

growth kinetics of the microorganism (Arif et al. 2012;

Ibrahim et al. 2016; Othman et al. 2013; Ahmad et al.

2014). Growth kinetic of Rhodococcus AQ5NOL2 has

been studied using the Haldane model, which indicated that

the growth has good tolerance towards high phenol con-

centrations. Similar observations have also been reported

for other several phenol degrading microorganisms

(Pseudomonas putida, Pseudomonas aeruginosa, Acineto-

bacter calcoaceticus, Camamonas testosteroni, Alcaligenes

TW1, and Ochrobactrum sp.) (Bai et al. 2007; Dutta et al.

2009; Liu et al. 2012; Geng et al. 2006; Futumata and

Harayama 2001; Essam et al. 2010; Chen et al. 2012). Even

though one of the most suitable mathematical expressions

is the Monod model, the limited study on this model was

found in phenol degradation. The Monod model is

expressing the growth rate as a function of the limiting

substrate used based on the use of a single bacterium

(Annadurai and Lee 2007). Due to a very limited number

of studies on Rhodococcus sp. for phenol degradation and

its kinetic model in stirred tank bioreactor, the objective of

this study was to evaluate the performance of Rhodococcus

UKMP-5M in degrading phenol during cultivation in 2 L

stirred tank bioreactor, which was operated as batch and

continuous modes. The relationship between the activity of

phenol hydroxylase enzyme and phenol degradation during

the cultivation of Rhodococcus UKMP-5M in different

modes of bioreactor operation was also evaluated, con-

sidering substrate inhibition Monod-type kinetics for phe-

nol degradation. The novelty of this work is improving the

phenol degradation time using Rhodococcus UKMP-5M.

Rhodococcus was used, because based on the unique

characteristic of cell-wall structure of Rhodococcus strain,

this bacterium is suitable for industrial, biotransformation,

and for the degradation of organic substances beside to

capitalize our novel strain.

2 Materials and methods

2.1 Microorganism and inoculum preparation

The bacterium, Rhodococcus UKMP-5M, was used

throughout this study. This bacterium was isolated from a

petroleum-contaminated soil at an oil refinery in Malacca,

Malaysia and maintained at the Universiti Selangor Culture

Collection Centre, Selangor, Malaysia. The bacterium from

the stock culture was grown in nutrient broth (Merck,

Germany). The flasks were incubated at 30 �C in an

incubator shaker (Jeio Tech SI-600R, Korea) agitated at

160 rpm for 24 h prior to inoculation into the bioreactor for

biodegradation experiments.
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2.2 Medium

The minimal salt medium (MSM), consisted of (g/L)

K2HPO4, 0.4; KH2PO4, 0.2; NaCl, 0.1; MgSO4 0.1; MnSO4

0.01; FeSO4H2O, 0.01; Na2MoO4�2H2O, 0.01; and

(NH4)2SO4, 0.3, was used as the basal medium in all cul-

tivation and phenol degradation experiments (Ahmad et al.

2011). The initial pH of the medium was adjusted to 7.5

using 30 % NaOH before autoclaving. Phenol, 0.5 g/L,

was filter-sterilised using 0.2 lm regenerated cellulose

membrane filter and added into MSM for use in experi-

ments. The optimized temperature and NH4SO4 concen-

tration used were 36 �C and 0.3 g/L, respectively.

2.3 Stirred tank bioreactor

The stirred tank bioreactor (Biostat B-plus, Sartorius Ste-

dim, Germany) was used in this study for all cultivation

experiments. The bioreactor consisted of a 2 L glass vessel

with a working volume of 1.5 L. Two six-bladed turbine

impellers with a diameter (D) of 52 mm mounted on the

agitator shaft were used for agitation. The bioreactor was

equipped with temperature and dissolved oxygen control

systems. During the cultivation, agitation speed (N) was

fixed at 600 rev/min (impeller tip speed pND = 1.64 m/s).

This vessel has internal concave bottom with outer ther-

mostat jacket. Dissolved oxygen tension (DOT) level in the

culture was determined using polarographic electrode

which was calibrated by culture saturated with the air

(100 % saturation) and water saturated with nitrogen (0 %

saturation). The DOT in culture was controlled at a

required level via a sequential cascade control of airflow

rate and agitation speed. The maximum and minimum set

points of permitted airflow rates were 1.5 and 0.6 L/min,

respectively.

2.4 Batch cultivation

Batch cultivations of Rhodococcus UKMP-5M for phenol

degradation were carried out at different agitation speeds

and airflow rates. In the experiment to investigate the effect

of different agitation speeds (10, 50, 160, 300, and

600 rpm) on the growth of Rhodococcus UKMP-5M and

phenol degradation, airflow rate was fixed at 1.5 vvm. In

experiment to investigate the effect of different airflow

rates (0.42, 0.6, 1.0, 1.25, and 1.50 vvm), the agitation

speed was fixed at 160 rpm. In both the experiments, DOT

was not controlled, but was monitored throughout the

cultivation. The effect of different dissolved oxygen ten-

sion (DOT) levels (0, 20, 50, and 80 % air saturation) was

also carried. In this experiment, DOT was controlled via a

sequential cascade control of airflow rate and agitation

speed.

Batch cultivation was started by inoculating the biore-

actor containing 1.5 L of medium with 10 % (v/v) of

inoculum. Phenol concentration of 0.5 g/L was used in this

study. Throughout the cultivation, temperature was set at

36 �C and the initial pH was set at 7.5. During the culti-

vation period, 10 mL of sample was withdrawn at time

intervals for analysis. All cultivations were performed in

triplicate, and the results were presented in average value.

Statistical analysis was performed using the SPSS 16.0

software. Dynamic gassing out technique was used to

estimate the specific oxygen uptake rate (OUR) and volu-

metric oxygen transfer rate (KLa) (Rao 2005; Lopez et al.

2006) during batch cultivation. The measurement of KL-

a using Fermentative Dynamic Gassing out technique is

described by dCL/dt = KLa (CE - CL) - QO2X, where CL

is dissolve oxygen concentration, CE is maximum dissolve

oxygen concentration, X is the concentration of biomass,

and QO2 is the specific respiration rate.

2.5 Continuous cultivation

Continuous cultivations were started with the initial batch

of 1.5 L medium inoculated with 10 % (v/v) of inoculum.

The feeding for continuous cultivation was started when

phenol concentration in the culture was exhausted. The

preparation and the composition of feed medium were

similar to the minimal basal medium (MSM) with the

addition of 0.5 g/L phenol. The feed medium in the

reservoir was kept stirred with hot plate to ensure the well-

mixing condition during feeding into the bioreactor. During

continuous cultivation, DOT was controlled at the required

level by variation in airflow rate (0.42, 0.6, 1.0, 1.25, and

1.5 vvm), and agitation was fixed at 180 rpm. The tem-

perature was maintained at 36 �C.
The culture volume in the bioreactor was kept constant

at 1.5 L using an overflow tube set to a constant height

within the bioreactor vessel. Therefore, as the fresh med-

ium was pumped into the bioreactor, an equal volume of

cultures enters the overflow tube and passes to the effluent

tank. The effluent was transferred out the bioreactor using

peristaltic pump, which was operated continuously at the

slightly higher rate than the feed rate. Experiments were

performed under different dilution rates (0.5, 0.1, 0.15, and

0.18 h-1) without achieving maximum specific growth rate

(lmax), 0.22 h-1. The flow rates of the influent and effluent

were adjusted according to the dilution rate.

Steady state was assumed when the concentration of cell

and phenol in the culture were remained almost constant

with time. During the cultivation, 10 mL of culture sample

was withdrawn at time intervals for the analysis. All cul-

tivations were performed in triplicate, and the results were

presented as average values. The statistical analysis was

performed using the SPSS 16.0 software.
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2.6 Analytical methods

The optical density of the culture was measured at 680 nm

using a spectrophotometer (BioMate 3 UV–Vis Spec-

trophotometer, Thermoscientific, USA). Cell concentra-

tion, in terms of dry cell weight, was determined by the

filtration and oven-dried method (Ariff et al. 1996). The

known volume of culture sample was filtered through a

known weight of dried membrane filter with the pore size

of 0.25 lm using vacuum pump (FB70155, Fisher brand,

USA). The membrane filters with the bacterial cells were at

80 �C for at least 24 h until a constant weight was

achieved.

Phenol concentration in the culture was determined by a

colorimetric method based on rapid condensation with

4-aminoantipyrene (4-AAP), followed by oxidation with

potassium ferricyanide under alkaline conditions to give a

red-coloured product (APHA 1998). To perform the anal-

ysis, 1 mL of supernatant (adjusted to pH 10 using

ammonium solution) was mixed with 100 lL of potassium

ferric cynide K3Fe(CN)6. The mixture was mixed with

100 lL of 4-aminoantipyrine. The absorbance of the

resulting solution after incubation for 15 min (red in col-

our) was measured at 500 nm using a spectrophotometer.

Cell disruption was done using the glass bead disruption

method (Ramanan et al. 2010). Phenol hydroxylase

enzyme was measured by the oxidation of NADH in the

presence of phenol. Absorbance was monitored at 340 nm.

3 mL reaction mixtures containing 50 mm KH2PO4:K2-

HPO4 buffer pH 7.2, 100 lmol of NADH, and 100 lmol of

phenol were added before the addition of the cell extract

(100 lL). One unit of activity is defined as the amount of

enzyme catalysing the oxidation of 1 lmol NADH min-1

(Ali et al. 1998).

3 Results and discussion

A typical time course of batch cultivation of Rhodococcus

UKMP-5M in medium containing phenol is shown in

Fig. 1. The cultivation experienced the initial exponential

growth phase during the first 5 h, where the majority of the

phenol in the culture was efficiently consumed. In com-

parison, Acinetobacter sp. and Acinetobacter AQ5NOL1

required more than 30 h and up to 6 days to completely

degrade phenol presence in the culture, respectively (Adav

et al. 2007; Ahmad et al. 2011). On the other hand, Can-

dida tropicalis required 50 h to degrade 0.5 g/L phenol

during the cultivation (Yan et al. 2006). Bacillus cereus

required more than 60 h to degrade 60 % of 0.5 g/L phenol

presence in the culture (Banerjee and Ghoshal 2010). A

longer time (7 days) was required by Rhodococcus NO14-1

and NO20-3 to degrade 0.47 g/L phenol (Margesin et al.

2005). Rhodococcus ruber SD3 and Rhodococcus pyrini-

divorans were able to degrade 1.0 and 0.5 g/L phenol

within 72 and 110 h, respectively (Peng et al. 2013;

Kumari et al. 2013).

The cell reached a stationary growth phase after about

15 h cultured, and cell death was observed after the

exhaustion of phenol in the culture. The effect of agitation

speed on the growth of Rhodococcus UKMP-5M and

phenol degradation in batch cultivation using 2 L stirred

tank bioreactor is summarised in Table 1. The final cell

concentration (0.338–g/L) obtained at 600 rpm was about

30 % higher than the cell concentration (0.237 g/L)

obtained at 10 rpm. The highest cell yield (0.676 g/g) was

obtained at the highest agitation speed (600 rpm). The

degree of agitation greatly influenced phenol degradation

by Rhodococcus UKMP-5M. Phenol degradation was

increased with an increasing agitation speed up to 160 rpm.

Decreased in phenol degradation rate was observed at

agitation speed higher than 160 rpm. At optimal agitation

speed (160 rpm), the degradation time of 0.5 g/L phenol

was 12 h, while the time take for 10, 50, 300, and 600 rpm

was more than 15 h. Although the fastest phenol degra-

dation time (12 h) was obtained at 160 rpm, the highest

specific degradation rate (0.193 h-1) was observed at

50 rpm. The highest activity of phenol hydroxylase

(26.1 U/mL) was also obtained at 160 rpm, and it is cor-

responding well to the higher rate of phenol degradation

(0.496 g/L)’’. Substantial reduction in phenol hydroxylase

activity was observed at high agitation speeds (300 and

600 rpm). High agitation speed may cause cell rupture and

inhibit the phenol hydroxylase activity. A very low phenol
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Fig. 1 Time course of batch phenol degradation by Rhodococcus

UKMP-5M in 2 L stirred tank bioreactor at (agitation

rate = 160 rpm; DOT was not controlled) and phenol 0.5 g/L.

Symbols represent (solid square) cell concentration, (solid circle)

phenol concentration, (solid triangle) pH, and (circle) DOT. Error

bars represent the standard error between three determinations.

Statistically significant differences (P\ 0.05) were observed
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hydroxylase activity (3.2 U/mL) was detected at a very low

agitation speed (10 rpm).

In all agitation speeds tested, the culture pH was reduced

from the initial value of pH 7.5 to the range of 6–7 at the

end of the cultivation. The results of our earlier study

indicated that neutral pH was optimal for phenol degra-

dation by Rhodococcus UKMP-5M, where the optimum

activity of phenol hydroxylase enzyme was also obtained at

neutral pH region (Suhaila et al. 2013). In cultivation at

low agitation speed (10 and 50 rpm), the DOT level

dropped to 0 % saturation after 10–18 h of cultivation,

indicating that oxygen became limited. Oxygen limitation

was not observed at high agitation speeds (300 and

600 rpm). Results from this study have demonstrated that

oxygen limited condition was required to enhance phenol

consumption by Rhodococcus UKMP-5M. Mixing was

very crucial for the improvement of productivity in

microbial cultivation and it could be achieved by means of

aeration and agitation (Potumarthi et al. 2007). Agitation

not only improves oxygen transfer rate, but also created

turbulence and shear, which may cause a significant

influence on growth rate, morphology, and product for-

mation (Hoq et al. 1994).

The effect of airflow on cell growth and phenol degra-

dation is summarised in Table 2. The maximum cell con-

centration increased with an increasing airflow rate. Similar

to cell growth, the degradation of phenol was also

increased with an increasing airflow rate. The highest

percentage of phenol degradation (99.4 %) was obtained in

cultivation with airflow rate controlled at 1.25 and

1.5 vvm. However, the maximum specific growth rate

(0.068 h-1) and specific phenol degradation rate

(0.152 h-1) obtained at the airflow rate of 1.5 vvm were

higher than those obtained at 1.25 vvm (0.012 and

0.142 h-1, respectively). In cultivation with air flow rate

controlled at 1.5 vvm, a very short phenol degradation time

(12 h) was obtained which gave the overall productivity of

0.025 g/L/h. Substantial increased in phenol degradation

time was observed at low airflow rates. The phenol

degradation time for cultivation at air flow rate of 1 vvm

was significantly increased to 24 h, though a high per-

centage of phenol degradation (99.2 %) was maintained.

The phenol degradation time was drastically increased to

72 h for cultivation with low airflow rates (0.42 and

0.6 vvm). A very low percentage of phenol degradation

(23.8 %) was also observed at low airflow rates (0.42 and

0.6 vvm).

The profiles of the specific oxygen uptake rate (qO2) and

volumetric oxygen transfer rate (KLa) in the cultivation of

Rhodococcus UKMP-5M with different airflow rates

(0.42–1.5 vvm) are shown in Fig. 2. In cultivation, where

the airflow rate was controlled at 1.5 vvm, qO2 estimated

during the log phase was about 42 % higher than the value

measured during lag growth phase. The average value of

Table 1 Kinetic parameters and performance of phenol degradation in 2 L stirred tank bioreactor by Rhodococcus UKMP-5M operated at

different agitation speeds

Kinetics parameters/performance Agitation (rpm)

10 50 160 300 600

Maximum cell concentration, Xm (g/L) 0.237 ? 0.19c 0.23 ? 0.20c 0.255 ? 0.21bc 0.323 ? 0.24bc 0.338 ? 0.25a

Maximum specific growth rate, l (h-1) 0.040 0.019 0.026 0.038 0.030

Specific phenol degradation rate, P (h-1) 0.080 0.193 0.100 0.103 0.115

Cell yield, Yx/s ( cell/g carbon) (g/g) 1.509 0.529 0.288 0.460 0.629

Product yield, Yp/s (g product/g carbon) (g/g) 0.224 0.42 0.992 0.926 0.69

Initial phenol (g/L) 0.5 0.5 0.5 0.5 0.50

Residual phenol (g/L) 0.388 ? 0.31c 0.290 ? 0.26c 0.004 ? 0.16a 0.037 ? 0.16b 0.155 ? 0.18b

Phenol degraded (g/L) 0.112 0.210 0.496 0.463 0.345

Phenol degradation rate (g/L/h) 0.004 0.010 0.025 0.026 0.017

Percentage of phenol degradation (%) 22.4 42 99.2 92.6 69

Cell efficiency, Pm/Xm (g phenol/g cell) (g/g) 0.473 0.894 1.945 1.433 1.021

Phenol hydroxylase (U/mL) 3.2 9.7 26.1 16.13 12.9

Cultivation time (h) 12 12 12 12 12

Total cultivation time (h) 28 22 20 18 20

Data were obtained from the time course of each cultivation run

Values shown are the mean of three replicates with ?SD

Initial culture pH is 7.5
a,b,c Mean value in the same row with different superscripts is significantly different (P\ 0.05)
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qO2 during lag, log, deceleration, and stationary growth

phase of Rhodococcus UKMP-5M cultivation was 88.97,

153.24, 223.3, and 193 mg O2/g cell-1 h-1, respectively.

This result indicates that the highest requirement of oxygen

by Rhodococcus UKMP-5M occurred during deceleration

growth phase, which was about 31 % higher than that

required during the log phase. The qO2 for Rhodococcus

erythropolis cultivation with cell concentration of 1 g/L

was ranged from 5 to 7 9 10-4 mol O2 m-3 s-1(Garcia-

Ochoaa et al. 2010). On the other hand, qO2 for

exopolysaccharide production exopolysaccharide produc-

tion by Entrobacter was 0.042 mg/min/L (Mineta et al.

2011). The highest KLa (26.02 h-1) in Rhodococcus

UKMP-5M for phenol degradation was observed during

lag growth phase and reduced to 15.23 and 4.91 h-1 during

log and deceleration phase, respectively. Reduced in KL-

a during log and deceleration phase may be due to the

increase in the number of cell, which is corresponding to

higher qO2 by Rhodococcus cell.

A decrease in qO2 was investigated with a decrease in

airflow rate throughout the degradation experiment. As the

airflow rate was reduced from 1.5 to 1.25 vvm, qO2 was

reduced by about 40 %. qO2 during the lag growth in

cultivation with the airflow rate of 1.25 vvm was 54.2 mg

O2/g cell-1 h-1. qO2 was increased to 137.5 and 198.4 mg

O2/g cell-1 h-1 during log and deceleration phase,

respectively. This increase is due to the increase in total

cell before, it was reduced to 56.2 mg O2/g cell-1 h-1

during stationary growth phase. High substrate consump-

tion rate took place during the exponential growth phase,

which corresponded with higher OUR. Subsequently,

decrease in metabolic activity of the cells resulted to a

decrease in OUR. DOT was drastically decreased in the

early stages of cultivation process due to the high specific

oxygen demand by the actively growing cells. Then, DOT

was gradually increased as growth approached to a sta-

tionary growth phase. Similar observation has been repor-

ted by many researchers (Gomez et al. 2006a; Santos et al.

2006).

A significant decrease in qO2 was observed when the

airflow rate was reduced from 1.5 vvm to lower airflow

rates (1.0, 0.6, and 0.42 vvm). However, the patterns of

DOT at different growth phases were almost similar at the

different airflow rates. The decrease in airflow rate also

caused reduction in KLa value. It is well known that KLa is

the function of the agitation and aeration rate, where KLa

and OTR are normally increased with increasing agitation

and aeration rates (Gomez et al. 2006b). The lowest qO2

was detected during cultivation at the air flow rate of

0.42 vvm, where the qO2 value was only 49.9 mg O2/g

cell-1 h-1 during lag phase and increased to 124.03 mg

O2/g cell-1 h-1 during log phase. High cell concentration

(160 mg/L) obtained in cultivation with higher airflow rate

may be attributed to the higher OUR. Phenol hydroxylase

activity (32.3 U/mL) was enhanced in cultivation with high

airflow rate (1.5 vvm) (Table 2). The highest degradation

Table 2 Comparison of the kinetic parameters and performance of phenol degradation using different air flow rates (vvm) in 2 L stirred tank

bioreactor by Rhodococcus UKMP-5M

Kinetics parameters/performance Air flow rate (vvm)

0.42 0.6 1.0 1.25 1.5

Maximum cell concentration, Xm (g/L) 0.210 ? 0.15c 0.203 ? 0.16bc 0.238 ? 0.17bc 0.259 ? 0.21b 0.262 ? 0.2bc

Maximum specific growth rate, l (h-1) 0.017 0.024 0.007 0.012 0.068

Specific phenol degradation rate, P (h-1) 0.025 0.006 0.134 0.142 0.152

Cell yield, Yx/s (g cell/g carbon) (g/g) 1.034 0.376 0.276 0.249 0.292

Product yield, Yp/s (g product/g carbon) (g/g) 0.238 0.606 0.992 0.994 0.994

Initial phenol (g/L) 0.5 0.5 0.5 0.5 0.5

Residual phenol (g/L) 0.381 ? 0.43a 0.197 ? 0.38ab 0.004 ? 0.18c 0.003 ? 0.22bc 0.003 ? 0.16c

Phenol degraded (g/L) 0.119 0.303 0.496 0.497 0.497

Phenol degradation rate (g/L/h) 0.002 0.004 0.021 0.025 0.025

Percentage of phenol degradation (%) 23.8 60.6 99.2 99.4 99.4

Cell efficiency, Pm/Xm (g phenol/g cell) (g/g) 0.567 1.493 2.084 1.919 1.897

Phenol hydroxylase (U/mL) 12.9 19.4 24.0 29.03 32.3

Cultivation time (h) 72 72 18 14 12

Total cultivation time (h) 72 72 24 20 20

Data were obtained from the time course of each cultivation run

Values shown are the mean of three replicates with ? SD

Initial culture pH is 7.5
a,b,c Mean value in the same row with different superscripts is significantly different (P\ 0.05)
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of phenol, 0.497 g/L at 1.5 vvm, also enhances the pro-

duction of enzyme to 32.3 U/mL.

The lowest activity of phenol hydroxylase (12.9 U/mL)

was detected in the cultivation of Rhodococcus UKMP-5M

with the lowest airflow rate (0.42 vvm) tested in this study.

Improved in oxygen supply to the culture using high air-

flow rate greatly improved the synthesis of phenol

hydroxlase which enhanced phenol degradation (Santos

et al. 2006; Giavasis et al. 2006). The productivity of any

bioprocesses is an important parameter for the assessment

of the effectiveness of a system (Hoq et al. 1994).

The effect of DOT on kinetic and the cultivation perfor-

mance of Rhodococcus UKMP-5M and phenol degradation

are shown in Table 3. High cell concentration

(0.266–0.274 g/L) was obtained in cultivation, where the

DOT was controlled at high level (65–80 % saturation).

Reduced cell concentration was observed with reduction in

DOT level. A high percentage of phenol degradation

(54.8 %) also corresponded well with high cell concentra-

tion and high activity of phenol hydroxylase (25.8 U/mL)

obtained at high DOT level (80 % saturation). The per-

centage of phenol degradation was reduced to 36.2 % when

theDOT level was reduced to 20 %,where a very low phenol

hydroxylase activity (3.2 U/mL) was detected. Phenol

degradation was totally inhibited in cultivation without

oxygen supply. The influence of aeration rate on the oxygen

transfer process is very complex, but it is generally consid-

ered that the increase in aeration rate results in an increase of

OTR (Jennifer and Andrew 2009; Vogelaar et al. 2000).

From the results of this study, it can be concluded that high

DOT level shall be maintained during the cultivation of

RhodococcusUKMP-5M to enhance the synthesis of phenol

hydroxylase, which in turn, increased the phenol degradation

rate. Therefore, it can be suggested that the enzymatic action

of phenol degradation takes place under aerobic degradation

pathway. This result is in agreement with Paca et al. (2007)

who claimed that the phenol hydroxylation was dependent

on the presence of oxygen, and the activity was decreased

under anaerobic condition.

The typical time course of continuous cultivation of

Rhodococcus UKMP-5M for biodegradation of phenol is

shown in Fig. 3. Continuous cultivation was initiated with

the feeding of fresh medium containing 0.5 g/L phenol

when the initial batch cultivation was completed at 12 h,

where growth reached a high cell concentration (0.245 g/L)

and phenol in the culture was exhausted. For continuous

cultivation operated at D of 0.18 h-1, steady state was

achieved after 30 h (equivalent to about five generation

times). The cell and phenol concentration at steady state was

0.178 and 0.043 g/L, respectively. During continuous cul-

tivation, the culture pH reached a steady-state value after

30 h, while the steady-state DOT level was not achieved.

High cell yield coefficient (Yx/s) of 0.389 g cell dry weight

g-1 phenol) was observed in this study as compared to the

value (0.16–0.275 g cell dry weight g-1 phenol) reported by

Yoong et al. (1997) for cultivation with the initial phenol

concentrations of 1–1.5 g/L. This result indicated that phe-

nol was degraded efficiently by Rhodococcus UKMP-5M.

The kinetics and performance of phenol degradation at

different dilution rates are summarised in Table 4. The

optimized parameters for batch cultivation were also used

in continuous cultivation. The concentration of cell at

steady state was increased with increasing D up to

0.18 h-1, and the cell concentration was drastically drop-

ped to 0.098 g/L at D of 0.2 h-1. Although the optimum

D to get the highest steady-state cell concentration

(0.178 g/L) was 0.18 h-1, the percentage of phenol

degradation was significantly increased at D ranged from

0.05 to 0.18 h-1, as shown by low concentrations of phenol

(0.01–0.043 g/L) in the culture at steady state. The per-

centage of phenol degradation at this range of D was above

90 %. At D of 0.2 h-1, the percentage of phenol degra-

dation was drastically reduced to 69.4 %. Even though the

steady-state phenol concentration was higher at high dilu-

tion rate, no toxicity effect was observed as Rhodococcus
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sp. was able to grow at phenol concentration up to 2.8 g/L

(Straube et al. 1990).

In continuous cultivation, cell production rate was signifi-

cantly increased from 0.08 to 0.030 g/L/h with increasing

dilution rate from 0.05 to 0.18 h-1. A drastic decreased in cell

production rate (0.016 g/L/h) was observed at very high

D (0.2 h-1). Subsequently, phenol degradation rate was sig-

nificantly increased with increasing D. Phenol degradation

rate was increased from 0.025 to 0.082 g/L/h with increasing

D from 0.05 to 0.18 h-1. Phenol degradation rate was

drastically reduced (0.069 g/L/h) at high D (0.2 h-1).

Degradation rate is an indication of cell numbers on the basis

of the relationship between substrate consumption and cell

numbers. It could be said that total population size in the

reactions increased in direct proportion to the increase in

dilution rate (Mordocco et al. 1999). Similar pattern was also

observed for cell yield. A high yield coefficient of Yx/

s = 0.389 g cell dry weight g-1 phenol was obtained at D of

0.18 h-1. The highest rate of phenol degradation by Bacillus

thermoleovorans using 660 mg/L phenol, as a substrate was

obtained at D of 0.5 h-1(Feitkenhauer et al. 2003) and D of

0.15 h-1 for Pseudomonas CF600 using 200 mg/L phenol as

a substrate (Moharikar and Purohit 2003).

Dilution rate is the key factor in all continuous culti-

vations. Disturbances in operating variables, particularly

changes in dilution rate or substrate concentration in the

feed, may cause washout of the biomass from the biore-

actor or transient increase in the substrate concentration by

perturbing operation from the steady-state point (Sokol and

Migiro 1996). Due to this reason, the dilution rates need to

be adjusted to prevent washout. Washout is a condition

where all cells are equal to zero and it will happen if the

dilution rate exceeds the maximum specific growth rate of

the cultivated microorganism. The maximum specific

growth rate of Rhodococcus UKMP-5M was 0.22 h-1, as

evaluated from the result of this study.

Table 3 Effect of DOT level on the growth of Rhodococcus UKMP-5M and phenol degradation in batch cultivation using 2 l stirred tank

bioreactor

Kinetics parameters/performance DOT (% saturation)

0 20 50 65 80

Maximum cell concentration, Xm (g/L) 0.154 ? 0.12c 0.188 ? 0.14bc 0.201 ? 0.12c 0.266 ? 0.20a 0.274 ? 0.17ab

Maximum specific growth rate, l (h-1) 0.008 0.105 0.012 0.031 0.045

Specific degradation rate, P (h-1) 0.012 0.010 0.118 0.083 0.239

Cell yield, Yx/s (g cell/g carbon) (g/g) 0.830 0.651 0.723 0.773 0.574

Product yield, Yp/s (g product/g carbon) (g/g) 0.188 0.38 0.39 0.45 0.61

Initial phenol (g/L) 0.5 0.5 0.5 0.5 0.5

Residual phenol (g/L) 0.406 ? 0.28c 0.311 ? 0.22c 0.305 ? 0.24c 0.275 ? 0.25ab 0.195 ? 0.22a

Phenol degraded (g/L) 0.094 0.190 0.195 0.225 0.305

Phenol degradation rate (g/L/h) 0.001 0.004 0.005 0.005 0.013

Percentage of phenol degradation (%) 18.8 36.2 39.0 53.2 54.8

Cell efficiency, Pm/Xm (g phenol/g cell) (g/g) 0.610 1.005 0.970 0.846 1.113

Phenol hydroxylase (U/mL) 3.2 3.2 19.4 22.6 25.8

Cultivation time (h) 24 12 12 12 12

Total cultivation time (h) 96 50 41 41 24

Data were obtained from the time course of each cultivation run

Values shown are the mean of three replicates with ? SD

Initial culture pH is 7.5
a,b.c Mean value in the same row with different superscripts is significantly different (P\ 0.05)
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The steady-state values calculated according to the

continuous kinetic models for different dilution rates

ranging from 0.05 to 0.2 h-1 fitted well to the continuous

experimental data (Fig. 4). Only a slight deviation of the

calculated data from the experimental data of steady-state

cell concentration was observed at D of 0.18 and 0.2 h-1.

From the ANOVA analysis, the deviations between the

experimental data and the calculated data were significant

at a significant probability of 5 %. Meanwhile, phenol

concentration at all dilution rates fitted well to the pattern

of the calculated data of the proposed continuous model.

These results suggested that the proposed model was suf-

ficient to describe the growth of Rhodococcus UKMP-5M

and phenol biodegradation in continuous cultivation.

The comparison of kinetic parameter values and the

performance of phenol degradation in optimal batch and

continuous cultivation are given in Table 5. The final cell

concentration (0.255 g/L) obtained in batch cultivation,

and the cell growth rate was observed to be high when the

experiment was carried out using continuous culture.

Similar observation was also made in terms of cell effi-

ciency, where continuous culture showed nearly 24 %

increase in cell efficiency as compared to batch cultivation.

Even though batch cultivation showed a better phenol

degradation, which was 99.2 % as compared to 91.4 % in

continuous cultivation, the phenol degradation rate in

continuous culture was 70 % higher than that obtained in

batch cultivation.

Phenol degradation can be achieved in either batch or

continuous mode (Mordocco et al. 1999), and in both cases,

the major determinant of the rate of degradation is cell

number. In continuous culture, the influent phenol concen-

tration and dilution rate can control the cell number. Inter-

actions of chemical compounds involved in a biodegradation

process are different in batch and continuous systems. In a

closed system cultivation (batch cultivation), higher sub-

strate concentration at the beginning of the batch process

could inhibit the cellular growth, therefore, affecting the

substrate biodegradation rate (Narang et al. 1997).

Table 4 Steady-state parameters and performance of phenol degradation by Rhodococcus UKMP-5M in one-stage continuous culture operated

at different dilution rates

Steady-state parameters/performance Dilution rate (h-1)

0.05 0.1 0.15 0.18 0.2

Cell concentration, X (g/L) 0.151 ? 0.27d 0.158 ? 0.28c 0.175 ? 0.31b 0.178 ? 0.32a 0.098 ? 0.17e

Cell yield, Yx/s (g cell/g carbon) (g/g) 0.308 0.323 0.368 0.389 0.282

Product yield, Yp/s (g product/g carbon) (g/g) 0.98 0.978 0.952 0.914 0.694

Initial phenol (g/L) 0.5 0.5 0.5 0.5 0.5

Residual phenol (g/L) 0.010 ? 0.04c 0.011 ? 0.01c 0.024 ? 0.02c 0.043 ? 0.04c 0.153 ? 0.15bb

Phenol degraded (g/L) 0.49 0.489 0.476 0.457 0.347

Phenol degradation rate, rs (g/L/h) 0.025 0.049 0.071 0.082 0.069

Percentage of phenol degradation (%) 98 97.8 95.2 91.4 69.4

Cell efficiency, Pm/Xm (g phenol/g cell) (g/g) 3.245 3.095 2.72 2.567 3.541

Cell production rate, rx (g/L/h) 0.008 0.016 0.026 0.030 0.016

Time to reach steady-state (h) 84 32 28 30 26

0.5 g/L phenol was used in the feed medium

Data were obtained from the time course of each cultivation run

Values shown are the mean of three replicates with ?SD

Initial culture pH is 7.5
a,b,c,d,e Mean value in the same row with different superscripts is significantly different (P\ 0.05)
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Meanwhile, in an open system (continuous system), low

substrate levels are maintained in the reaction mixture,

therefore, lowering the growth-inhibiting effect and cata-

bolic repression than in batch culture to simultaneously

degrade substrates (Kovar and Egli 1998). Since increased

biomass leads to an increase of phenol degradation, rec-

ommendation for the future to apply immobilized cell can

support higher biomass for phenol degradation.

4 Conclusion

In batch cultivation, the performance of phenol degradation

by Rhodococcus UKMP-5M was greatly influenced by the

DOT level. High cell concentration (0.262 g/L) and higher

phenol degradation (0,497 g/L) which correspond with

high phenol hydroxylase activity (32.3 U/mL) were

obtained in cultivation, where the DOT level was not

controlled, which was achieved at the agitation speed of

160 rpm and the air flow rate of 1.5 vvm. Under this

optimal batch cultivation, 0.5 g/L phenol was completely

degraded after 12 h cultivation. Continuous cultivation of

Rhodococcus UKMP-5M can also be used in phenol

degradation, where the performance was greatly influenced

by the dilution rate (D). The highest phenol degradation

rate in continuous cultivation (0.082 g phenol/L/h) was

obtained at D of 0.18 h-1, and this value was higher as

compared to that obtained in batch cultivation (0.025 g

phenol/L/h). Therefore, continuous culture was useful due

to higher productivity as demonstrated in this study.
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