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Abstract Soil erosion is one of the major threats to the

conservation of soil and water resources. For that reason,

predictive erosion models are useful tools for evaluating

soil erosion and developing soil erosion management plans.

For this aim, the revised universal soil loss equation

(RUSLE) function is a widely used erosion model. This

research integrated the RUSLE with a geographic infor-

mation system (GIS) to investigate the spatial distribution

of annual soil loss potential in the Alaca catchment in north

central Black Sea region, Turkey. The rainfall erosivity

factor was developed from local annual precipitation data

using a modified Fournier index; the topographic factor

was developed from a digital elevation model; the land

cover factor was generated from satellite imagery and

forest inventory maps; and the soil organic carbon level

and the erodibility factor were developed from systemati-

cally collected soil samples and the application of the

geostatistical method, respectively. From the model, more

than the half of the total study area was in the very low and

low erosion risk classes (0–12 t ha-1 year-1), whereas

4.4 % (723.6 h) of the total area was at high and very high

erosion risk (35–150 and [150 t ha-1 year-1), respec-

tively. In addition, soil organic carbon density values were

between 0.18 and 4.92 kg m-2 across the catchment.

Moreover, the distribution of soil organic carbon losses

was closely correlated with the distribution of soil erosion

risk classes in the study area. Soils and topographical

properties of the watershed had a greater influence than

land use/land-cover type on the magnitude of potential soil

and soil organic carbon losses, because the erosivity factor

did not change substantially in the study area.

Keywords RUSLE � Soil organic carbon � GIS �
Alaca Basin

1 Introduction

Land degradation is causing serious social, economic, and

environmental problems worldwide, especially in the more

vulnerable areas with an arid or semiarid climate. Jones

and Montanarella (2003) reported that land degradation is

the reduction or loss in arid, semi-arid, and dry sub-humid

areas of the biological or economic productivity and

complexity of rain-fed cropland, irrigated cropland,

rangeland, pastures, forests, and woodlands, including

processes arising from human activities and habitation

patterns. Therefore, land degradation directly affects

livelihoods and food security, particularly in dry areas with

unfavorable climate, by reducing the productivity of land

resources and adversely affecting the stability, functions,

and services derived from natural systems (UNCCD 2015).

The types and causes of land degradation vary from one

site to another, even within a short distance. Essentially,

land degradation is the result of the misuse/overexploita-

tion of the natural resources base, particularly through

inappropriate and unsuitable agricultural practices, over-

grazing, deforestation, and forest degradation (Dengiz et al.

2015). Moreover, in recent decades, the degradation of

previously naturally vegetated or productive agricultural
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lands, leading in many cases to a barren, desertified land-

scape, has dramatically accelerated in many regions of the

world (Pla 2008).

The important functions of natural resources, especially

soils, are threatened by many severe degradation processes.

One of the major degrading factors is soil erosion caused

by wind and/or water. RIVM (2000) stated that water

erosion is one of the most important land degradation

processes for EU countries. It was also reported that

southern EU countries are at greater risk of water erosion,

with high water erosion risk rates of 58, 66, 66, and 85 %

in France, Italy, Spain, and Greece, respectively. Turkey is

a hilly to mountainous country. The average elevation is

approximately 1250 m, and 62.5 % of the total land has

more than 15 % slope. Due to its topographic limitations

(generally steep or sloping terrain) and to climate and soil

conditions, soil erosion is Turkey’s biggest land degrada-

tion problem; some 58.7 % of the land is exposed to severe

or very severe soil erosion (Ministry of Agriculture, For-

estry and Villages 1987). In addition, there is active erosion

in 59 % of agricultural lands, 54 % of forest lands, and

64 % of rangelands of Turkey.

The soil organic carbon content is a key component of

any terrestrial ecosystem, and any change in its abundance

and composition has substantial effects on many of the

processes in the system. Closely linked to the process of

soil erosion is the widespread and substantial decline in soil

organic carbon content in arid and semi-arid areas. Soil

organic carbon, which is extremely important in all soil

processes, is essentially derived from plant and animal

residues, and is produced by microbes and decomposed at a

rate determined by temperature, moisture, and ambient soil

conditions. There are two groups of factors that influence

soil organic carbon level; natural factors (climate, soil

parent material, land cover and/or vegetation type, and

topography) and human-induced factors (land use, man-

agement, and degradation).

Simulation models are the most effective means of

predicting soil erosion processes and their effects through

the use of geographic information system (GIS) and remote

sensing (RS) for large areas. Recent advances in space and

computer technologies have provided us with the oppor-

tunity to process large amounts of data (multi-source), not

only spectral data but data such as elevation, slope, aspect

and relief (Bayramin 1998). Therefore, models have the

potential to make major contributions toward developing

better conservation practices and improving the manage-

ment of land resources (Meyer 1980; Edwards et al. 2008;

Csafordi et al. 2012).

Empirical models, such as the universal soil loss equa-

tion (USLE) and its revised version RUSLE (Renard et al.

1991), have been used in many regions for large scale

catchment risk mapping. Burrough (1986) introduced the

principles of GIS tools for collecting, storing, manipulat-

ing, and displaying spatial data, and Eedy (1995) reported

the advantages of using GIS in environmental assessment.

The estimation of soil erosion risk and its spatial distri-

bution can be performed at reasonable cost and with

improved accuracy across larger areas using RS and GIS

techniques (Millward and Mersey 1999; Wang et al. 2003).

Ouyang and Bartholic (2001) developed an interactive

web-based approach to using RUSLE and GIS to predict

soil erosion and Martin et al. (2003) used a GIS/RUSLE

model to estimate sheet erosion in a watershed. They

reported the ease with which GIS could be integrated with

the RUSLE to identify discrete locations with relatively

precise spatial boundaries that have a high sheet erosion

potential together with the areas where management

practices might be implemented to prevent soil erosion.

Martin et al. (2003) also stated that GIS/RUSLE modeling

represented a quick and inexpensive tool for estimating

sheet erosion within watersheds when using publicly

available information. Furthermore, Lu et al. (2004)

applied RUSLE, remote sensing and GIS to the mapping of

soil erosion risk in the Brazilian Amazonia. To contribute

to improved land management practices and to establishing

sustainable natural resources and environmental assess-

ment in Turkey, the main objective of the current research

was to integrate GIS and RUSLE to model soil erosion risk

and carbon loss in a catchment in the Central Black Sea

region.

2 Materials and methods

2.1 Field description of the study area

This study was carried out in the Alaca catchment which is

located in Çorum and Yozgat Provinces in the Central

Black Sea region of Turkey (Fig. 1).

The total study area is 1656.4 km2. Geological forma-

tions in the catchment are generally dominated by Meso-

zoic–Tertiary ophiolitic series and limestones. In addition,

the low lying lands of the study area are occupied by

Quaternary alluvial and colluvial deposits, consisting of

mixed gravel materials. The study area consists of various

topographic features and is characterized by mountains

(especially intermediate and low relief mountain ranges),

hills and plains, and the south-western and south-eastern

areas are characterized by steep slopes. Average elevation

of the catchment is 1275-m above sea level. The highest

elevation is at a mountain named Toprakdede Tepesi

(1765 m) that is located in the eastern part of the catch-

ment. A continental climate prevails in the basin, with very

cold and rainy/snowy days in winter and very hot and dry

weather in summer. Annual mean precipitation and mean
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temperature of the study area, which is different from the

general Black Sea climate, are 364.8 mm and 9.5 �C,
respectively. Koçhisar and Alaca reservoirs are two water

storage structures in the catchment.

The soils of the basin are mainly brown soil (65.2 %)

and brown forest soil (9.3 %). The distribution of the other

soil types in the study area is as follows: alluvial soil

(6.9 %), chestnut soil (6.4 %), non-calcaric brown soil

(6.3 %), and colluvial soil (5.9 %). In addition, 5 % of the

area is composed of water surface, settlement areas, and

bare rocks. The areas and ratios of the soil types were

generated with GIS from 1:25,000 soil maps produced

Fig. 1 Location map of the study area
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under the former United States of America classification

system [United States Department of Agriculture (USDA)

soil classification system 1938] and provided by the Gen-

eral Directorate of Rural Services of Turkey (KHGM).

(Note: these soil maps have not yet been updated using the

modern soil taxonomy classification system.)

2.2 Methods

2.2.1 The RUSLE model

The USLE model consists of a set of calculations to esti-

mate soil erosion from a plot of land with homogeneous

characteristics (Wischmeier and Smith 1978). The RUSLE

model retains the general framework of the USLE but

refines the calculations for each of the five erosion factors

through greater temporal and spatial precision (Renard

et al. 1997). With the RUSLE function, the average amount

of soil loss is expressed as a function of five factors

(Wischmeier and Smith 1965, 1978; Renard et al. 1997) as

follows:

A ¼ R � K � LS � C � P;

where A is the computed average amount of soil loss in

Mg ha-1 year-1, R is the rainfall-runoff erosivity factor

(MJ mm ha-1 h-1 year-1), K is the soil erodibility factor

(Mg h MJ-1 mm-1), LS is a combination of the slope

length and steepness factors, C is the cover and manage-

ment factor, and P is the support practices factor (LS, C,

and P are dimensionless).

2.2.1.1 Rainfall erosivity factor (R) According to Wis-

chmeier and Smith (1978), the rainfall erosivity (R) factor

represents the effect of rainfall intensity on soil erosion and

requires continuous, detailed data. To calculate the R factor

using monthly and annual rainfall data, Arnoldus (1980)

reported a modified Fournier index (MFI):

MFI ¼
P12

i¼1
ðpiÞ2

P
;

where pi is the mean rainfall amount (mm) for month i, and

P is the mean annual rainfall amount (mm).

According to Arnoldus (1980), the MFI is a good

approximation of the R factor, with which it is linearly

correlated. For the current investigation, precipitation data

from 1960 to 2014 from ten meteorological stations located

in and around the study area were collected, and the MFI

was estimated for each station. Coordinate information of

the meteorological stations is listed in Table 1.

To approximate the R factor using the calculated MFI

for each station, the following R–MFI relationship, as

suggested by Irvem et al. (2007) for a climatologically

similar area, in terms of rainy days, amount and range of

precipitation distributed over the four seasons, was used as

follows:

R ¼ 0:1215�MFI2:2421:

The MFI and R values for each meteorological station

were calculated, and the R factor map of the current study

area was generated by interpolation in GIS.

2.2.1.2 Soil erodibility factor (K) K is defined as the rate

of soil loss per unit of R as measured on a unit plot, and it

accounts for the influence of soil properties on soil loss

during storm events. The study area was divided into grid

squares (Fig. 2).

A total of 348 soil samples were collected from the

surface (0–20 cm) of the study area, according to the grid

squares. The samples were transported to the laboratory

where root material was removed, while the soil sample

was being gently crumbled. These samples were used to

Table 1 Meteorological stations used in the study and computed MFI and R factor values for each station

Meteorology station Coordinates (UTM-ED50, zone 36, m) Altitude (m) MFI R factor

mm ha-1 h-1 year-1

Easting Northing

Çorum–Boğazkale 636,869 4,431,331 1033 44.17 593.19

Yozgat–Merkez 655,406 4,409,834 1308 58.44 1111.07

Yozgat–Sorgun 686,672 4,408,011 1112 39.28 456.06

Tokat–Zile 745,680 4,464,620 728 42.89 555.4

Çorum–Mecitözü 694,639 4,488,477 782 39.63 465.27

Çorum–Merkez 663,954 4,490,173 778 41.00 502.02

Çorum–Sungurlu 619,323 4,447,844 783 41.83 525.03

Çorum–Ortaköy 691,515 4,460,403 799 39.01 449.03

Çorum–Alaca 656,644 4,447,304 931 35.59 365.64

Yozgat–Akdağmadeni 744,829 4,393,948 1335 53.54 913.11

MFI modified Fournier index, R rainfall erosivity factor
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determine physicochemical soil properties, including: sand

%, silt %, clay %, organic matter %, structure, and per-

meability classes. The K values were computed from these

soil properties with the following equation (Wischmeier

and Smith 1978):

K ¼ 1

100
2:1� 10�4 � 12� OMð Þ � SI� SAþ SIð Þ½ �1:14

n

þ 2:5� PE� 3ð Þ þ 3:25� ST � 2ð Þg;

where K is expressed in units of Mg h MJ-1 mm-1, and

OM, SI, SA, PE, and ST are percentages of soil organic

matter content, silt content, sand content, permeability

class, and structure code, respectively. If soil organic

matter content was equal to or greater than 4 %, OM was

assumed constant at 4 % (Renard et al. 1997).

Soil samples were analyzed, and particle size distribu-

tion (Gee and Bauder 1986), hydraulic conductivity (Klute

Fig. 2 Soil sampling design on the study area

Table 2 LULC classes and C factors

LULC class C factor value

Broad-leaf forest 0.001

Coniferous forest 0.010

Sparsely coniferous forest 0.050

Heathland 0.038

Pasture 0.090

Vineyard and fruit orchards (agriculture) 0.180

Complex cultivation pattern (agriculture) 0.280

Rainfed agriculture 0.400

Irrigated agriculture 0.200

Water body 0.000

Pasture-rainfed agriculture 0.040

Forest-pasture 0.040

Bare rocks and construction sites 1.000

LULC land use and land cover, C land cover and management factor
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Table 3 Cross validation

according to interpolation

methods

Interpolation

models

Power/semivariogram RMSE

R K SOCD

IDW 1 247.3 0.0285 0.904

2 254.1 0.0289 0.911

3 265.0 0.0294 0.921

RBF Completely regularized spline 254.3 0.0293 0.922

Thin plate spline 307.4 0.0364 1.091

Kriging

OK Spherical 241.2 0.0285 0.902

Exponential 241.0 0.0285 0.903

Gaussian 241.2 0.0285 0.902

SK Spherical 226.4 0.0283 0.886

Exponential 224.4 0.0285 0.889

Gaussian 227.4 0.0284 0.888

UK Spherical 241.2 0.0285 0.902

Exponential 241.0 0.0285 0.903

Gaussian 241.2 0.0285 0.902

RMSE root mean square error, IDW inverse distance weighing, RBF radial basis function, OK ordinary

kriging, SK simple, UK kriging universal kriging, R rainfall erosivity factor, K soil erodibility factor, SOCD

soil organic carbon density

Fig. 3 The R factor map of the study area (MJ mm ha-1 h-1 year-1)
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and Dirksen 1986), aggregate stability (Kemper and

Rosenau 1986), and organic matter content (Jackson 1958)

were determined in the laboratory. The K factor map of the

study area was generated with the interpolation models of

GIS.

2.2.1.3 Slope length and steepness factor (LS) Slope is

an important factor influencing overland flow generation

and soil erosion, particularly beyond the critical slope

degree. The slope length and steepness (LS) factor

accounts for the effect of topography on soil erosion (Re-

nard et al. 1997). Slope length is defined as the horizontal

distance from the point of origin of the overland flow to the

point where either the slope gradient decreases sufficiently

for deposition to begin or runoff is concentrated in a

defined channel (Wischmeier and Smith 1978). An increase

in the LS factor indicates higher overland flow velocities

and correspondingly greater erosion (Onori et al. 2006).

Hickey (2000), Boggs et al. (2001), Kinnel (2001),

Gertner et al. (2002), Wang et al. (2003), and van Remortel

et al. (2004) used digital elevation model (DEM) to esti-

mate the LS factor. In the present study, the grid-based

DEM was generated from contour vector data which were

digitized using a 1:25.000 scale topographic map.

2.2.1.4 Land cover and management factor (C) The land

cover and management factor (C) is defined as the ratio of

soil loss from land with specific vegetation cover to the

corresponding soil loss from continuous fallow (Wis-

chmeier and Smith 1978). In the present study, remotely

sensed data were used to estimate the C distribution based

on land use and land cover (LULC) classification results

(Millward and Mersey 1999; Reusing et al. 2000),

assuming that areas with the same amount of land cover

have the same C values.

The supervised classification method (maximum likeli-

hood) was used to produce the LULC classes, as described

by Lillesand and Kiefer (2000), for determining the C

factor. The LULC classes are listed in Table 2. The

C factors used in this study were adopted from Renard

et al. (1997), Yang et al. (2003) and İrvem and Tülücü

(2004).

After creating the LULC map of the study basin, the

C factors for the land classes were entered as attributes, and

Fig. 4 The K factor map of the study area (Mg h MJ-1 mm-1)
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a C factor map of the study area was generated using the

reclassification method in the GIS.

2.2.1.5 Support practice factor (P) Renard et al. (1997)

indicated that the support practice factor (P) is the ratio of

soil loss using a specific support practice to the corre-

sponding loss with upslope and downslope tillage. As in

most agricultural lands in Turkey, agricultural practices in

the study area consist of upslope and downslope tillage

without any conservation support practices, such as con-

touring or terracing. This situation is particularly evident

during ground truthing observations. To remove the P

factor from the soil erosion estimates, P was set at one, as

suggested by Wischmeier and Smith (1978).

2.2.2 Soil organic carbon density estimation

Soil organic carbon density (SOCD) for each soil sample

was estimated with the following equation:

SOCDD ¼ 1� di %ð Þ � qi � Ci � Ti

100
;

where SOCDD represents the SOC density of a soil sample

with a depth (20 cm); di % represents the volumetric per-

centage of the fraction[2 mm (rock fragments), qi is the
bulk density (g cm-3), Ci is the SOC content (g kg-1), and

Ti represents the thickness (cm) of the layer i.

2.2.3 Interpolation analysis

In this study, different interpolation methods (inverse dis-

tance weighing—IDW, radial basis function—RBF and

kriging) were applied for predicting the spatial distribution

of R, K and SOCD. Kriging is a geostatistical technique

similar to IDW in that it uses a linear combination of

weights at known points to estimate the value at an

unknown point. Kriging uses a semivariogram, a measure

of spatial correlation between two points, so that weight-

ings change according to the spatial arrangement of the

samples. In contrast to other estimation procedures, kriging

provides a measure of the error or uncertainty of the esti-

mated surface. Several forms of kriging interpolation exist,

including ordinary kriging (OK), simple kriging (SK), and

universal kriging (UK).

Fig. 5 Spatial distribution of SOCD (kg m-2)
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In the present study, root mean square error (RMSE)

was used to evaluate the interpolation techniques, with the

lowest RMSE indicating the most accurate prediction.

Estimates were determined with the following formula:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

ðzi� � ziÞ2

n

s

;

where zi is the predicted value, zi* is the observed value,

and n is the number of observations.

3 Results and discussion

3.1 Distribution of R, K, and SOCD was determined

with geostatistical analysis

Interpolation analyses for R, K, and SOCD were used to

identify the best predictive model from among 14 different

semivariogram models, namely, inverse distance weight-

ing—IDW with weightings of 1, 2, and 3 powers and radial

basis function—RBF with thin plate spline (TPS), ordinary

kriging (OK), simple kriging (SK), and universal kriging

(UK) with spherical, exponential, and Gaussian vari-

ograms. Following that, the variogram or function of each

interpolation method yielding the best results was deter-

mined. Comparison of interpolation methods for R, K, and

SOCD is provided in Table 3. Finally, according to the

interpolation analyses, simple kriging with the spherical

model was used to estimate or predict K and SOCD, while

the exponential model was found to determine the R value

at unsampled locations. The spatial distribution maps of R,

K, and SOCD are shown in Figs. 3, 4 and 5.

Figure 4 shows the R factor map of the study area. The

average annual R factor ranged from 362.51 to

966.27 MJ mm ha-1 h-1 year-1. The computed MFI and

R factors for each meteorological station are listed in

Table 1. There was more rainfall erosivity in the south-

western part than in the north and north-eastern parts,

because rainfall erosivity is closely related to precipitation,

which increases from north to south in the catchment

(Fig. 3).

Başkan and Dengiz (2008) compared soil erodibility

(K) maps prepared by traditional and geostatistical methods

Fig. 6 The LS factor map of the study area
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for Sogulca Basin soils and reported that a kriged K map

displayed significantly better results than a K map devel-

oped with traditional methods. Figure 4 shows the map for

the K factor, generated with the geostatistical approach,

which varied from 0.01 to 0.14 Mg h MJ-1 mm-1. The

K factors were low in the southwest and southeast of the

study area, whereas high K values were determined in

northern parts of the catchment where the river has formed

and streamed throughout an alluvial land located almost in

the central part of the catchment at the discharge point into

Koçhisar Dam. The K values were also typically high in the

eastern parts of the catchment on steep slopes where mostly

medium and sandy textured soils occur.

In this study, for the SOCD in surface soil (0–20 cm),

the isotropic spherical model provided the best fit for the

computed semi-variance points (the distribution map of

SOCD of the surface soil is shown in Fig. 5). In addition,

SOCD values were between 0.18 and 4.92 kg m-2 in the

catchment (Fig. 5). Guggenberger et al. (1995) stated that

the type of land use system is an important determinant of

SOC levels, particularly in top soils. Furthermore, changes

in land use and management practices influence the amount

and rate of SOCD gain or loss.

3.2 Slope length and steepness (LS)

Figure 6 shows the map of the LS distribution, which ran-

ged from 0.01 in the flat areas in the north-central part of the

basin to 28.85 in the highlands (elevation approximately

1700 m) in the Southwestern, and some northern parts of

the basin which have the steepest slopes, the greatest vari-

ability in elevation and high LS values. The LS values were

highest in the mountainous areas and deep valleys. These

areas were mostly located in the upper part of the basin.

Figure 7 shows the map of the C generated from satellite

imagery and forest inventory for the LULC map of the

study area. The study area was composed of 57.6 % rain-

fed agricultural lands, 32.2 % mixed rain-fed agriculture

and pasture, 9.2 % irrigated agriculture 0.9 % sparse

coniferous forest and pasture, and 0.1 % bare rocks, arti-

ficial area, and water bodies. The C values ranged from 0 to

1.0 (Table 2) and were especially low in southwestern parts

Fig. 7 The C factor map of the study area
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of the basin, indicating that forests (broad leaf and conif-

erous forests) and some pasture land have low erosion risk,

but most of the cultivated and fallow agricultural land and

degraded pasture areas have high or very high erosion

potential.

The P factor should be increased in agricultural areas to

decrease soil erosion to an acceptable level. However, in

flat or almost flat areas, where agriculture is the main land

use type, the erosion risk was found to be low (note: no

supporting practice was observed in the study area).

Therefore, the P value of 1 was not used in calculations

(Wischmeier and Smith 1978; Çanga 1985).

The RUSLE function estimates only local erosion

amounts and cannot be used to estimate the sediment yield

for an entire watershed (Renard et al. 1997). The map of

the potential soil losses predicted by the RUSLE as a

product of R, K, LS, and C is shown in Fig. 8. Annual soil

losses in tonnes per hectare per year with respect to the

different soil erosion classes of Bergsma et al. (1996) are

provided in Table 4. Table 4 shows that more than the half

of the study area is in the very low and low erosion risk

classes which range from 0 and 12 t ha-1 year-1, whereas

4.4 % of the total area (723.6 ha) is under high and very

high erosion risk of 35 to 150 t ha-1 year-1.

4 Conclusions

The RUSLE model was applied to estimate soil loss with

RS and GIS in the Alaca catchment located in the

Central Black Sea region of Turkey. Detailed

Fig. 8 Distribution the different soil erosion classes for the study area

Table 4 Annual soil loss predicted for the different soil erosion

classes of the study area

Description Classes (t ha-1 year-1) Area (km2) Ratio (%)

Very low 0–5 852.85 51.5

Low 5–12 391.32 23.6

Moderate 12–35 339.87 20.5

High 35–60 54.78 3.3

Very high 60–150 16.18 1.0

Severely 150? 1.4 0.1

Total 1656.4 100
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pluviograph data for calculating the R factor were not

available. Therefore, the R factor was estimated with

MFI data based on mean annual and monthly rainfall

data from the meteorological stations located in and

around the study area. Existing soil data were inadequate

for the determination of the K factor. A new K map was

produced by collecting soil samples from the field and

using a geostatistical method. An SODC map was also

produced. The LS values were estimated with a GIS

program automated hydrologic procedure to calculate the

slope length and steepness using DEM. The C values

were determined from the LULC map of the study area,

which was derived from satellite images and from forest

inventories. The P factor was assumed to be 1, meaning

that soil conservation support practices were not used in

the study area, as confirmed by field observations. Soils

and topographical properties of the watershed had a

greater influence on the magnitude of potential soil

losses than land use/land-cover type, since the R factor

did not change significantly in the study area. In addi-

tion, the distribution of SOC losses almost matched the

distribution of soil erosion risk classes in the study area.

Particularly, carbon levels on south west and northwest

parts of the study area associated with high soil erosion

levels.

The RUSLE erosion model is very useful for the

assessment of erosion risk status, because the conventional

methods impose high time and labor costs for data col-

lection, including the measurement of soil erosion in

heterogeneous, patchy, and large areas. Bayramin et al.

(2003) stated that these problems can be overcome using

predictive models and new techniques. With GIS, the

collected data can be easily analyzed and used to map soil

erosion risk and prepare a land management plan for the

sustainable use of land resources. Moreover, the model can

identify the areas with erosion risk for decision-makers, so

that they can develop soil and water conservation plans in

general, including research in the areas of high erosion risk

to mitigate the problem.

Finally, the application of the RUSLE methodology

produced a consistent pattern of soil erosion mapping

among different land uses, slope positions, and soil groups

and reasonably predicted the potential annual soil losses,

including the identification of the most erosion-prone areas

due to concentrated flow. This approach can also be used to

determine the area’s most sensitive to soil erosion on a

regional scale, which could help facilitate comprehensive

soil conservation management and sustainable land use

practices.
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