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Abstract A brief historical overview of the Italian geo-

physical studies using satellite positioning observations.
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1 The rise of satellite positioning

Precise positioning refers to the determination of geomet-

rical quantities that enables to locate any arbitrary event in

space. On a global scale, it requires the establishment of the

terrestrial and celestial reference frames, and the transfor-

mation between the two or, in other words, the monitoring

of the Earth’s rotation. In the past, the art of precisely lo-

cating a target, to range over the oceans or to plan a new

commercial route, was a critical issue for many societies.

The early Greeks were especially fascinated by different

theories and conceptual representations of the Earth. In the

6th century BC Anaximander of Mileto was probably the

first ‘‘scientist’’ who realized that the Earth is freely floating

in space founding his theory on simple observations and

logical reasoning, a pleasant review of these early

achievements is given by Rovelli (2011). Since then, many

scientists developed a manifold of innovative solutions to

determine the position on the Earth’s surface, using basi-

cally ground-based and astronomical (optical) techniques.

Only more recently, after the beginning of the space age in

1957, the use of artificial satellites became a tool for geo-

detic measurements allowing the achievement of unprece-

dented positioning accuracies. The artificial satellite

Sputnik-1, launched on 4 October 1957 by the former

Soviet Union, carried only a small radio beacon that beeped

at regular intervals; nevertheless, it was the circumstance

that triggered the outbreak of satellite positioning systems.

In fact, shortly after Sputnik’s launch, William Guier and

George Weiffenbach at the John Hopkin’s applied physics

laboratory (APL), exploiting their skills and great enthusi-

asm in solving math and physics problems, were the first

pioneering researchers to successfully recover the Sputnik’s

orbital parameters. Soon after their first experiments, a

fruitful interaction with the chairman of APL, F. McClure,

allowed them to solve the ‘‘inverse’’ problem, i.e. recov-

ering the station position while assuming the orbit as

known. These first enthusiastic achievements at APL were

certainly motivated and strongly influenced by the cold war,

namely positioning was strongly driven by the problem of

locating the Navy ballistic missile submarines, but in fact

they marked the rise of modern satellite navigation tech-

niques and, more broadly, led to the development of satel-

lite geodesy. A fascinating account of their experiences and

efforts at APL at those times is given by the authors

themselves in Guier and Weiffenbach (1998). These pi-

oneering efforts yielded soon a new satellite system, the

TRANSIT, also known as Navy Navigation Satellite Sys-

tem (NAVSAT) sponsored by the US Navy that was suc-

cessfully tested in 1960. It was widely used as a navigation

system by military and civilian watercraft, as well as for
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hydrographic and geodetic surveying. The TRANSIT sys-

tem became obsolete only after the establishment of the

actual US navigation system, the global positioning system

(GPS) and ceased the service in 1996.

In 1964, a laser-based technique was developed, in

which short energetic light pulses, sent out by an astro-

nomical telescope, are reflected by special corner cubes

mounted on satellites (Satellite Laser Ranging, SLR) or on

the Moon (Lunar Laser Ranging, LLR) and detected back

by the telescope. The measured distances between the

target and the station enable the estimation of precise po-

sitions as well as Earth’s variable gravity field parameters

(gravity coefficients and geocenter).

During the same epoch, an essential development in

geodesy was the very long baseline interferometry (VLBI),

a non-satellite positioning technique based on astronomical

radio source observations. Its fundamental contribution to

geodesy and astronomy, even today, is the realization of

the celestial reference system, and the long-term and short-

term monitoring of the transformation between the celestial

and terrestrial reference frames. Today, satellite position-

ing systems and VLBI are jointly referred to as space

geodetic techniques.

Space geodetic techniques are now primary tools to

study the size, figure and deformation of the Earth. They

still have a great impact in many scientific disciplines,

especially in geodesy, geodetic astronomy and geody-

namics. The current generation of navigation systems, the

so-called global navigation satellite system (GNSS), in

which the GPS represents the best known system, has also

an important impact on the society as a whole: it revolu-

tionized surveying, timing, and pedestrian, car, marine and

aircraft navigation. A comprehensive and interesting re-

view of this revolution is outlined by Beutler (2004).

2 Paths towards a global and integrated monitoring

network

2.1 CDP: 1979–1990

The first scientific project that promoted the development of

satellite positioning on a global scale, was the Crustal Dy-

namics Project (CDP) supported by NASA in the late 1970s.

The international partners involved in the CDP have made

measurements of crustal motion between numerous sites

around the world and retrieved the rotational dynamics of

the Earth with unprecedented accuracy. The objectives of

CDP required the development of a global geodetic system

that could measure distances with high accuracy. As a

consequence, in the 1980s, SLR and VLBI techniques were

developed and improved to accuracy levels that would en-

able the scientific problems to be addressed. Several Italian

researchers took part to the CDP topics and the first SLR

station in Italy was installed by the Agenzia Spaziale Ital-

iana (ASI) in strict cooperation with NASA and the

Smithsonian Astrophysical Observatory, near the city of

Matera in southern Italy (http://geodaf.mt.asi.it/).

2.2 DOSE: 1991–2001

A major emphasis in Dynamics of the Solid Earth (DOSE)

was granted by NASA in the 1990s, a key contribution to

the implementation and operation of an international geo-

physical network. This network incorporates VLBI, SLR,

and GPS systems which are operated on a permanent,

continuous basis, and which will provide the backbone

network for the establishment of a global terrestrial refer-

ence frame. It is in these years that the international

community organized cooperative services responsible for

data and product delivery. The International Laser Ranging

Service (ILRS), the International VLBI Service for Geo-

desy and Astrometry (IVS), the International GNSS Ser-

vice (IGS) were established and conventional procedures

and standards were recognized and put in operation. In

Italy, fundamental geodetic stations became operative at

Matera, Medicina (Bologna), Noto (Sicily) and Cagliari

(Sardinia) and later on, many other GPS stations operated

by ASI took part in the construction of a global monitoring

network coordinated by the International Earth Rotation

and Reference Systems Service (IERS) and regionally by

the EUREF consortium.

2.3 GGOS: 2003–present

The Global Geodetic Observing System (GGOS) is the

current observing system supported by the International

Association of Geodesy (IAG). It was established by IAG

in July 2003 and it represents IAG’s contribution to the

Global Earth Observation System of Systems (GEOSS).

GGOS integrates different geodetic techniques, different

models, and different approaches to ensure a long-term,

precise monitoring of the geodetic observables. The Italian

scientific community, since the very beginning, participates

in several international consortia and activities, contribut-

ing with observing networks, archiving facilities, and

analysis centers, contributing to the technological and sci-

entific achievements in satellite positioning techniques.

Over 20 permanent GPS stations in Italy are now active

and operated in the framework of the EUREF Permanent

Network (EPN), 3 Radio Telescopes (Matera, Medicina

and Noto) participate to the VLBI measurement campaigns

and the Matera Space Geodesy Centre has been recognized

as a ‘‘fundamental station’’ in the GGOS core network, see

Fig. 1.
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3 First steps for precise position measurements in Italy

Geodesy techniques in the pre-space age, were essentially

based on astronomical methods or on ground observations

that are intrinsically relative measurements. In most cases,

the estimated positions were solved in one or two dimen-

sions, which were adequate for most cartographic appli-

cations. During the 19th and first half of 20th century, spirit

leveling and triangulation surveys were mainly used to

realize the Italian reference frame and to monitor the de-

formation processes of the ground.

The possibility of establishing a single geodetic refer-

ence frame at national scale, was taken into account only

after the Italian unification (1861). The Istituto Geografico

Militare (IGM) was appointed to initiate a first-order tri-

angulation network, aggregating old and isolated geodetic

benchmarks with the aim to provide the first topographic

map at national scale. It so happened that after the 1908

Messina earthquake (M *7.1), that terribly struck the Si-

cilian and Calabrian coasts, it was possible to reconstruct

the height variations caused by the earthquake along the

borders of the Messina Straits thanks to a leveling cam-

paign carried out on both sides of the Straits shortly before

the seismic event. The repetition of this survey (Loperfido

1909; De Stefani 1910) showed therefore a considerable

coseismic subsidence, up to -70 cm in Sicily and -50 cm

along the Calabrian coast, giving for the first time the de-

scription of the surface deformation due to a high magni-

tude earthquake in Italy.

A few years later in 1915, another catastrophic earth-

quake struck central Italy, near Avezzano (M *7), and

once again Antonio Loperfido lead a leveling survey to

evaluate the vertical deformation induced by the seismic

event. The field operations and the works were concluded

successfully in the following years (Loperfido 1919).

Thereon the IGM post-event survey became a standard

procedure after major earthquakes in Italy (Talamo et al.

1978; Arca and Marchioni 1983; Arca et al. 1985).

In the first half of the 20th century, the vertical defor-

mation velocity in the Po plain was also depicted by Sal-

vioni (1957) and Boaga (1957). The results of these studies

pointed out a dominant subsidence in the eastern Po Valley

and a prevalent uplift in the western part. In many areas of

the Po Valley, the natural and tectonic processes were

modified by a rapid anthropogenic subsidence induced by

underground extraction from aquifer systems and gas

fields. The economic impact of man-induced subsidence

was extremely high; for this reason this phenomenon has

been systematically monitored during the last century

(Caputo et al. 1970, 1972; Arca and Beretta 1985; Bon-

desan et al. 1997; Zerbini et al. 2007), providing the

groundwork for a drastic reduction of water withdrawal in

that area (Baldi et al. 2009, and references therein).

Since the early 1970s the Italian scientific community

started to fully exploit geodetic techniques to investigate

more general geophysical phenomena. At the very early

stage, classical measurement techniques were extensively

practiced (triangulation, electronic distance and geometric

Fig. 1 The fundamental

geodetic station ‘‘G. Colombo’’

at Matera, Italy. The three main

space geodetic observing

techniques are highlighted by

labels next to their respective

sensors
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leveling) and more recently, the use of space geodetic ob-

servables (SLR, VLBI and GPS) has been widely explored,

allowing figuring out a fully three-dimensional picture of the

ongoing deformation processes. These positioning obser-

vations allow to study and to comprehend a large spectrum of

active geophysical phenomena with exceptionally high time

resolution, addressing complex tectonic processes, volcanic

activity, natural and anthropogenic-induced subsidence, and

gravitational instabilities.

4 Positioning and Geophysical investigations in Italy

The first satellite navigation system TRANSIT, based on

Doppler observations, became available to civilian users in

1967. These data provided a substantial contribution to the

operational definition of conventional terrestrial reference

systems, giving the possibility to establish geodetic net-

works on regional, continental or global scale with accu-

racies of a fraction of meter. In Italy, a few measurement

campaigns were performed to determine the coordinates of

several control points. The data collected during the IDOC

(ltaly Doppler Observation Campaign) in 1982, have been

used to strengthen the Italian terrestrial network (Baldi

et al. 1984, 1985).

Around 1970, the Messina Straits area was the location

of an important engineering project devoted to the con-

struction of a single-span bridge to connect Sicily to the

mainland. The scientific community was involved in

studying the details of the tectonic processes. In this con-

text, a geodetic network was set up across the Straits and

was first repeatedly measured using principally theodolites

and laser geodimeters (Caputo et al. 1974, 1981; Bencini

1975; Baldi et al. 1983) and since 1987, with the use of GPS

receivers. In 1994, the network was upgraded and widened

and the GPS surveys were systematically repeated in sub-

sequent years. At that time, the tectonic deformations across

the Straits turned out to be not significant and probably

below the centimeter level (Achilli et al. 1988; Anzidei

et al. 1998). Nowadays, the Straits area is monitored by a

large number of permanent and periodic surveyed GPS

stations showing a rather complex tectonic deformation

pattern at the few mm/yr level (D’Agostino and Selvaggi

2004; Mattia et al. 2006; Serpelloni et al. 2010; Palano et al.

2012). Figure 2 outlines the recent past, and present

knowledge of the ongoing deformations in that area.

As the GPS receivers became more reliable and their use

in the field was economically sustainable, the scientific

community started a pilot project aimed to study the on-

going crustal strain rates in the whole Mediterranean area.

The TYRGEONET project started in 1989, thanks to the

cooperation between the University of Bologna, the Istituto

Nazionale di Geofisica (ING) and other Italian and

European research institutions. The project was soon rec-

ognized as an important contribution to constrain the

geodynamical models. The first GPS campaign was per-

formed in 1990, using alternatively dual- and single-fre-

quency GPS receivers, and measuring 33 geodetic

benchmarks distributed in Italy, France and Tunisia. In

1991, the network was extended to the Ionian and Adriatic

area including stations in Greece and Yugoslavia, more-

over, the number of vertices in the Central Apennines was

increased to achieve a better coverage of that peculiar

seismogenetic area (Achilli et al. 1993; Anzidei et al.

2001).

At the same time, also the IGM set up and measured a

new national geodetic network (the IGM95) based on a

wide GPS survey including 1,260 benchmarks. The pri-

mary scope of this activity was to provide a set of 3D

coordinates useful for cartography and civilian users (the

average accuracy of the horizontal and vertical coordinates

was estimated to be respectively, 2.2 and 3.5 cm (Surace

1997).

All these activities disclosed the possibility to monitor

continuously the regional tectonic motion to understand

and model the Eurasia–Africa convergence, in a peculiar

region where continental collision, slab rollback and back-

arc basin formation are coeval. The Italian Space Agency

(ASI) was the first agency that fosters a nation-wide net-

work of permanent GPS stations in the early 1990s. The

GPS data were centrally collected and made available to

the public, and ASI’s network, after 20 years of continuous

operation, is still contributing actively to the European

reference frame definition, serving as regional archive

center and analysis center of the EUREF consortium.

Afterwards a series of geophysical monitoring projects

promoted the development of GPS networks with carefully

designed geodetic monumentation. The OGS built a re-

gional monitoring network in NE Italy (FREDNET).

Moreover, a follow-on of the CAT/SCAN project (http://

www.ldeo.columbia.edu/res/pi/catscan) managed a transect

of nine stations in the Calabria region and recently INGV

(Istituto Nazionale di Geofisica e Vulcanologia) estab-

lished a dense national network of permanent GPS stations,

RING (Avallone et al. 2010). After these research efforts,

in the second half of 2000, many regional authorities and

private companies built proprietary GPS networks for

cartographic and commercial purposes. Today many re-

searchers are using all such GNSS data to study and model

the geodynamics of the plate boundaries and their associ-

ated orogens (D’Agostino et al. 2005; Serpelloni et al.

2005; Devoti et al. 2011; Palano et al. 2012; Caporali et al.

2013; Serpelloni et al. 2013; Cheloni et al. 2014a), to

constrain the Adria sub-plate kinematics (Battaglia et al.

2004; D’Agostino et al. 2008; Devoti et al. 2008; Cuffaro

et al. 2010) and to correlate surface deformations (strain-
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rate) with earthquake occurrences (Riguzzi et al. 2012;

D’Agostino 2014). In particular, Fig. 3 shows the crustal

deformations projected in the horizontal and vertical di-

rections, with respect to Eurasia fixed plate. The general

northeastern motion of the Italian peninsula identifies the

Adriatic microplate moving towards the Dinarides, while

Corse and Sardinia represent the stable Eurasia. The

southernmost velocities reveal the details of the Africa–

Eurasia collision zone. The Alps show little horizontal

deformations and a clear uplift signal, active extension and

coeval uplift (at the mm/yr level) is instead evident along

the Apennine chain. Areas subject to subsidence at dif-

ferent rates has been detected in the Po plain, mostly to-

ward the Po estuary, in the Eolian back-arc area and in the

Sicily channel.

Geodetic monuments located in relevant tectonic areas,

such as the Italian peninsula, provide the geophysical

community with invaluable information on ground dis-

placements in case of occurrence of moderate and large

earthquakes. During the three main shocks of the Umbria–

Marche seismic sequence (M 5.7, 6.0, 5.6) in September–

October 1997, nineteen stations of the IGM95 network

were available around the epicentral area. A GPS surveying

campaign, performed by INGV in October that year, al-

lowed to measure for the first time in Italy the coseismic

horizontal displacement and to use the data to constrain the

source model of the earthquake (Anzidei et al. 1999;

Stramondo et al. 1999; Hunstad et al. 1999). The same

approach was followed in 2002 after the Molise seismic

sequence (main shock M 5.7): the coseismic displacements

obtained from the difference between pre- and post-event

coordinates allowed defining the source fault (Giuliani

et al. 2007). However, the total lack of knowledge of the

interseismic motion, hampered the correct reconstruction

of the coseismic displacements for both the Umbria–

Marche and the Molise events. For this reason INGV

promoted an intensive GPS measuring campaign in the first

decade of 2000. Later in 2009, after the L’Aquila earth-

quake (M 6.3), the surveyed network allowed the recon-

struction of a very detailed coseismic deformation field

reported in Fig. 4 (Devoti et al. 2012). At the same time, it

was then possible to study the post-seismic response of the

crust in the neighborhood of the epicenter (Cheloni et al.

2014b). In this occasion, two receivers were also acquiring

high rate GPS observations, and for the first time in Italy

the earthquake ground shaking was registered at 10 Hz in

two different places very close to the epicenter. These

high-rate GPS observations has proven to be useful in

seismological studies, to solve the kinematics of the fault

rupture (Avallone et al. 2011) and also stimulated an Italian

research team of La Sapienza University to develop a novel

approach for precise, real-time displacement estimations

from a single standalone GPS receiver (Colosimo et al.

2011). Figure 4 shows the two fundamental GPS signals

observed during L’Aquila earthquake. In May 2012, two

earthquakes (M 5.9, 5.8) occurred in the Emilia–Romagna

Fig. 2 On the left panel the Messina Straits deformation pattern as measured by leveling and the very first GPS surveys (Anzidei et al. 1998). On

the right panel, a slightly wider area showing the GPS inferred surface deformation after more than a decade (Serpelloni et al. 2010)
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region, Northern Italy. For this event the Department of

Civil Protection (DPC) activated an emergency procedure

to produce a geodetic data set (mainly from the COSMO-

SkyMed satellite constellation) and a prompt source model

was produced using coseismic displacements from both

GPS and SAR observations (Pezzo et al. 2013).

Fig. 3 A typical GPS velocity solution (horizontal with respect to

Eurasia and vertical components, respectively on the left and right

panels) obtained from the combined analysis of all existing

permanent networks in Italy. The reference Eurasian plate has been

realized by minimizing the rigid motion of 15 selected EUREF

stations located in central Europe (Devoti et al. 2014)
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Fig. 4 The M 6.3 earthquake of L’Aquila on April 6, 2009. The left

panel shows the coseismic displacement as observed by analysing

long-lasting GPS surveys before and after the event (Devoti et al.

2012). On the right, the 10 Hz ground shakings in the three

components (vertical-top, east-middle, north-bottom) as measured

by two GPS stations
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Satellite positioning provides also an important data

source for monitoring volcanic-induced deformations in

different areas of the Italian peninsula: Campi Flegrei,

Ischia, Somma–Vesuvio, Etna and Eolian islands are the

most investigated areas (Puglisi et al. 2001; Mattia et al.

2008; Palano et al. 2010; Del Gaudio et al. 2011; De

Martino et al. 2011, 2014; Tammaro et al. 2013; Amoruso

et al. 2014).

All these monitoring networks constitute now valuable

and important research tools for many geophysical inves-

tigations, and current GNSS systems are able to deliver

precise absolute positions for a wide range of frequencies,

from secular variations down to periods of seconds, span-

ning many applications in geodesy, geodynamics and

seismology. GNSS revolutionized our perception of space

and permitted so far significant advances in scientific

knowledge, but its real-time capabilities and its sensitivity

to different natural processes (lithosphere, troposphere,

ionosphere, cryosphere and hydrosphere) will certainly

assure further important developments in the fields of real-

time monitoring and natural risk surveillance.
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(2008) Tectonic features of the Lipari-Vulcano complex

(Aeolian Archipelago, Italy) from 10 years (1996–2006) of

GPS data. Terra Nova. doi:10.1111/j.1365-3121.2008.00830.x
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