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Abstract
PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyr-
rolidone blend reinforced with various contents of sulfonated inorganic filler. Sulfuric acid was employed as the sulfonating 
agent to functionalize the external surface of the inorganic filler, i.e., graphene oxide. The proton conductivities of the newly 
prepared proton exchange membranes (PEMs) were increased by increasing the temperature and content of sulfonated gra-
phene oxide (SGO), i.e., ranging from 0.025 S/cm to 0.060 S/cm. The induction of the optimum level of SGO is determined 
to be an excellent route to enhance ionic conductivity. The single-cell performance test was conducted by sandwiching the 
newly prepared PEMs between an anode (0.2 mg/cm2 Pt/Ru) and a cathode (0.2 mg/cm2 Pt) to prepare membrane electrode 
assemblies, followed by hot pressing under a pressure of approximately 100 kg/cm2 at 60 °C for 5–10 min. The highest power 
densities achieved with PPMG PEMs were 14.9 and 35.60 mW/cm2 at 25 °C and 70 °C, respectively, at ambient pressure 
with 100% relative humidity. Results showed that the newly prepared PEMs exhibit good electrochemical performance. 
The results indicated that the prepared composite membrane with 6 wt% filler can be used as an alternative membrane for 
applications of high-performance proton exchange membrane fuel cell.

Keywords  Proton exchange membrane fuel cell · Sulfonated graphene oxide · Polyvinylpyrrolidone · Solution casting · 
Membrane electrode assembly · Fuel cell performance

Introduction

Future energy resources should be not only energy efficient 
but also environmentally friendly to minimize the fast deple-
tion of fossil fuels and mitigate their detrimental effects on 
the environment [1]. To address this issue, many emerging 

technologies have been employed to increase the efficiencies 
of energy conversion devices, such as supercapacitors, bat-
teries, and fuel cells (FCs) [2, 3], depending on their appli-
cations. Among FC selections, proton exchange membrane 
fuel cells (PEMFCs) are more promising in the field of clean 
energy conversion devices [4]. A single PEMFC is com-
posed of a membrane electrode assembly (MEA; presented 
in Fig. 1) consisting of a porous anode, a cathode, and an 
electrolyte that can conduct protons. The working principle 
of PEMFCs is simple, i.e., air (oxygen) and fuel (hydrogen) 
are supplied at the cathode and anode sides, respectively. 
The H2 molecules first flow from the anode to the gas diffu-
sion layer and then reach the catalyst layer (CL). The CL is 
the site where hydrogen oxidation occurs to produce protons 
and electrons. The protons are carried by membrane elec-
trolytes toward the porous cathode, whereas the electrons 
flow through the outer path and generate electricity. Oxygen 
undergoes reduction in the CL, resulting in the production 
of water as a by-product [5].
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PEMFCs are widely regarded as one of the most promis-
ing power sources and offer several significant advantages 
[6, 7], such as compact design, high current prototype effi-
ciency of up to 60%, fast start-up, excellent power densi-
ties (compared with batteries), long lifetime, eco-friendly 
exhaust, the capability to operate at low temperature, and the 
provision of the option for quick refueling [8]. These proper-
ties enable the commercialization of PEMFCs for transpor-
tation, as well as stationary and portable applications [9]. 
Despite these benefits, some noteworthy challenges are still 
present that hinder the commercialization of PEMFC tech-
nologies. The major challenges are high cost and reliability 
issues concerning the availability of suitable materials and 
components [10, 11].

Primary attention in proton exchange membrane (PEM) 
technologies has been focused on the modification and 
replacement of Nafion® membrane, mostly utilized for the 

development of PEM, also called polymer electrolyte mem-
brane (the major component of PEMFCs) [12], because of 
some of its extraordinary characteristics, including chemical, 
mechanical, and electrochemical stabilities and high proton 
conductivity [13]. Indeed, Nafion® membranes are consid-
ered the standard PEMs, and the performance of all newly 
prepared composite membranes is compared with that of 
Nafion® membranes. However, some drawbacks of Nafion® 
membranes [14] (i.e., high fuel permeation, worsening of 
performance at high temperatures, high cost, and environ-
mental incompatibility) motivate the discovery of alternate 
PEMs for PEMFCs [15]. Among them, organic–inorganic 
composite PEMs have attracted considerable attention. The 
functions of the inorganic component are to increase the 
mechanical, chemical, and thermal stabilities and membrane 
durability, enhance proton conduction, and reduce fuel per-
meabilities [16].

Fig. 1   Illustration of the 
major components of a proton 
exchange membrane fuel cell 
and its working principle
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Polyvinyl alcohol (PVA) membranes have garnered con-
siderable interest in applications of PEMFC because of 
their unique features and potential advantages, such as good 
chemical and thermal properties, high water absorption, flex-
ibility, exceptional film formation, and cross-linking capac-
ity. The hydroxyl (OH) group of PVA can be utilized for this 
purpose. These membranes can be easily synthesized and 
tailored to meet specific requirements, making them attrac-
tive for PEMFCs and direct methanol fuel cells [17, 18]. 
In PVA-based materials, the doped impurities perform the 
functions of the primary charge-transferring agent. Pristine 
PVA does not show high proton conductivity, and its maxi-
mum proton conductivity can reach 10−10 S/cm. Hence, to 
utilize PVA-based membranes in PEMFCs, proton conduc-
tivity must be induced through the incorporation of other 
materials and additional processing steps. Among them, 
sulfonation (using sulfonating agents), other material/mor-
phological modifications (irradiation and chemical cross-
linking, freezing, and heat treatment), or blending (with 
other conductive polymers) were proposed and used for this 
purpose [19, 20]. Another way to enhance the properties 
of PVA is the preparation of inorganic material-based PVA 
composite membranes, such as PVA/titania/PSSA [21], 
PVA/alumina [22, 23], PVA/silica [24], PVA/sulfanilic acid 
tethered poly(methyl vinyl ether-alt-maleic anhydride) [25], 
PVA/zirconium phosphate [26], PVA/MMT [27], and PVA/
CNT [28] membranes.

Polyvinylpyrrolidone (PVP) is a widely used polymer in 
industrial applications because of its versatility and com-
patibility with N-heterocyclic compounds. In the realm 
of FC technology, PVP has been utilized in the synthesis 
of PEMs. However, pure PVP membranes tend to be brit-
tle and hydrophilic, which can limit their effectiveness in 
practical applications. To address these limitations, PVP is 
blended with other polymers, which results in the formation 
of homogeneous composite electrolytes for PEMFCs with 
high mechanical strength and flexibility [29]. One notable 
example is the polyethersulfone (PES)–PVP composite 
membrane, where PVP is blended with PES. PES is an engi-
neering thermoplastic with high mechanical properties and 
chemical inertness, making it an ideal material for enhanc-
ing the performance of PVP membranes [30]. Other blends 
include PVP with PVDF, which exhibited superb mechanical 
and thermal stabilities and the highest ionic conductivity 
of 0.093 S/cm [31]. PVP with PFSA is another blend that 
exhibited good proton conduction because of the acid–base 
interaction between the sulfonic acid (–SO3H) and amino 
(–NH2) groups of PFSA and PVP, respectively. Another sys-
tem is the PVP–PVA composite with barium zirconate [32].

Carbon allotropes have been used in many electrochemi-
cal devices because of some specific features, such as their 
abundant supply, easy processability, good stability, and 
environmental versatility [29]. Graphene (G) is one of the 

most marvelous allotropes of carbon with sp2 hybridization 
along with a two-dimensional (2D) monolayer lattice. G is 
composed of a thick sheet of single carbon atoms with a 
honeycomb arrangement. The excellent thermal, mechanical, 
and electrical characteristics of G make it useful in the field 
of materials science [33, 34].

Graphene oxide (GO) has been associated with nota-
ble improvements in the thermal, chemical, and mechani-
cal properties of polymer matrix, even with low content. 
GO, a derivative of G, has the same carbon sheet but has 
additional functionalities, such as –COOH, −OH, C=O, 
and −O− anchored to its surface and edges [35]. These func-
tionalities play a crucial role in promoting interfacial interac-
tions between polymer matrix and filler, thereby enhancing 
the overall compatibility and performance of the composite 
material [36].

Moreover, GO serves as an effective inorganic filler in 
PEMFCs because of its distinctive properties [37]. With its 
substantial surface area and hydrophilic functional groups, 
GO promotes proton conduction through the hopping 
mechanism [38], which facilitates the movement of protons 
across the membrane and enhances the efficiency of the FC. 
Furthermore, the presence of GO in composite membranes 
enhances their water retention capabilities [39]. However, 
these properties of GO can be further improved by anchor-
ing sulfonic acid groups (SO3H) at its surface through sul-
fonation (acid functionalization). Free-standing GO has an 
ionic conductivity value of 0.04 S/cm at 303 K. However, by 
incorporating SGO within the polymer matrix, the ionic con-
ductivity will further increase (because of the large number 
of SO3H moieties). Higher water uptake and chemical and 
mechanical strengths of the resultant composite PEMs have 
also been observed [40]. GO can easily disperse in many 
polar and nonpolar solvents, such as water [41]. Heo and 
coworkers [42] have synthesized novel sulfonated graphene 
oxide (SGO)/sulfonated poly(ether ether ketone) (SPEEK) 
composite membranes by enhancing the interfacial interac-
tion between SPEEK polymer and SGO filler by developing 
hydrogen bonds.

Hariprasad et al. [43] fabricated the SPVdF-HFP/SGO 
hybrid membrane and obtained better water uptake and pro-
ton conductivity than the pristine SPVdF-HFP membrane. 
In addition, the complex structure generated between SGO 
and membrane chains helps to lower the fuel crossover and 
swelling ratio of the hybrid membrane.

Beydaghi and colleagues [44] prepared composite 
membranes by incorporating aryl SGO into the PVA 
matrix and determined that the resultant composite elec-
trolyte has enhanced proton conductivity and mechanical, 
chemical, and thermal stabilities. Chien and coworkers 
[45] claimed that GO/Nafion® nanocomposite membrane 
exhibited improved water content and increased proton 
conductivity (four times) compared with pristine Nafion® 
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at 120 °C. Beydaghi and colleagues [44] also prepared 
nanohybrid PEMs composed of SPEEK/PVA/SGO/Fe3O4 
that showed improved results in terms of 51.2 MPa tensile 
strength, 0.084 S/cm proton conductivity, and 122.7 mW/
cm2 power density. Zhang and coworkers [46] reported that 
SPEEK/DGO nanohybrid membrane exhibited increased 
ionic conductivity and single-cell performance results at 
higher temperatures compared with pristine SPEEK under 
anhydrous and hydrated environments. In their work, Pan-
dey et al. [47] observed that nanohybrid membranes based 
on sulfonated imidized GO showed excellent stability and 
ionic conductivity.

Kumar et al. [48] prepared composite membranes by 
incorporating sulfonic acid-functionalized GO into SPEEK 
and obtained remarkable results in terms of proton con-
ductivity (0.055 S/cm), cation exchange capacity (CEC; 
2.3 meq/g), power density (378 mW/cm2), and FC perfor-
mance compared with that of pristine SPEEK membrane.

In the present work, a novel strategy for fabricating com-
posite electrolytes for PEMFCs is reported, where we pre-
pared PPMG-based electrolytes using a PVA–PVP blend 
and varying concentrations of sulfonated filler. The polymer 
blend was crosslinked using tetraethyl orthosilicate (TEOS). 
The structural and morphological characteristics of PEMs 
were characterized using Fourier transform infrared (FTIR) 
spectroscopy, X-ray diffraction (XRD), and scanning elec-
tron microscopy (SEM). The proton conductivities were 
measured using the independent method.

Experimental

Materials

PVA, graphite powder, hydrochloric acid (HCl), PVP, 
Nafion® (15%) solution, and isopropyl alcohol were 
obtained from Sigma-Aldrich and used as received with-
out undergoing additional purification processes. Methanol 
(MeOH) and TEOS were purchased from Sigma-Aldrich 
and were of analytical grade. Potassium permanganate 
(KMnO4), sulfuric acid (H2SO4), sodium nitrate (NaNO3), 
sodium hydroxide (NaOH), and sodium chloride (NaCl) 
were of analytical reagent grade (Scheme 1).

Development of PPMG Composite Electrolytes

The depiction of the experimental setup for the preparation 
of PPMG composite electrolytes is given in Scheme 2 and 
involves the following steps:

Preparation of GO

The synthesis of graphite oxide from flake graphite powder 
via the modified Hummer’s method [49] involves the oxi-
dation of natural graphite using a mixture of strong acids 
and oxidizing agents, leading to the introduction of oxygen-
containing functionalities to the G layers. Briefly, the pro-
cess involved oxidizing graphite using NaNO3 and H2SO4, 

Scheme 1   Possible proton conduction mechanism for PPMG composite electrolytes
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specifically 200 mL of H2SO4 per 5 g of graphite served 
as the dispersion medium. To this graphite dispersion, 3 g 
of NaNO3 was added, and the mixture was cooled to 0 °C 
using an ice-cold water bath. For 6 h, 25 g of KMnO4 was 
gradually added. After completing the addition of KMnO4, 
the resulting mixture was stirred at room temperature for 
an additional 6 h. The reaction was terminated by adding 
ice-cold water and 5% H2O2 to neutralize any remaining 
KMnO4.

Then, the obtained graphite oxide was recovered and 
washed with deionized (DI) water and HCl(aq), followed 
by vacuum drying. Next, GO was produced by dispers-
ing 5 g of graphite oxide in 50 mL of DI water and soni-
cated for several hours until the transparent solution was 
obtained. Subsequently, the GO solution was centrifuged 
at 4,000 r/min for 15 min to eliminate any unexfoliated 
GO particles. The resulting precipitates were washed with 

Scheme 2   Depiction of the experimental setup for preparation of PPMG composite electrolytes
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water and HCl solution. Finally, the product was dried in 
a vacuum overnight for further use.

Synthesis of SGO

In this procedure, 30 mg of GO was introduced to a mixture 
of MeOH and 0.5 mol/L H2SO4 solution at 65 °C for 1.5 h. 
In the next step, 5 mL of 0.1 mol/L sodium nitrite solution 
was dropwise added, and the resulting mixture was main-
tained at 70 °C for a duration of 2 h to facilitate the reaction. 
Following the completion of the reaction, the mixture was 
washed, and the SGO nanoparticles were collected by cen-
trifugation. Then, the collected particles were subjected to 
multiple washes with water until reaching a neutral pH [50].

Preparation of the Polymer Blend and Cross‑Linking

To prepare the polymer blend, a predetermined concentra-
tion of PVP and PVA was carefully added to DI water. Then, 
the mixture was stirred thoroughly at the optimal tempera-
ture until a uniform blend was achieved, ensuring proper 
dispersion of the polymers within the solvent. Meanwhile, 
a separate solution of TEOS was meticulously prepared. 
Once the polymer blend reached the desired consistency, 
the TEOS solution was slowly introduced to the blend using 
a dropping funnel, enabling controlled incorporation of the 
silicate precursor. The composite mixture underwent ther-
mal treatment, i.e., heated to 50 °C and maintained at this 
temperature for a duration of 4 h, enabling the initiation of 
chemical reactions between the polymer components and the 
silicate precursor, which promoted cross-linking and inter-
molecular bonding within the blend.

Following thermal treatment, the resulting mixture was 
filtered to remove any impurities or undissolved particles, 
ensuring the purity and homogeneity of the polymer blend. 
Subsequently, the filtrate was dried, yielding a solid product 
ready for further utilization in subsequent processing steps 
or applications.

Preparation of the Composite Electrolytes

The incorporation of SGO into the crosslinked PVA–PVP 
blend proceeded by adding SGO at five different weight 
percentages (i.e., 2 wt%, 4 wt%, 6 wt%, 8 wt%, and 10 
wt%). Initially, GO was added to DI water and sonicated 
for 30 min. In the next step, a homogeneous GO solution 
was added to the PVA–PVP blend. The mixture was first 
stirred at 80 °C for 4–5 h and then sonicated for 30 min to 
ensure an even dispersion. After settling overnight to remove 
bubbles, the solutions were cast onto Petri dishes using a 
dissolution casting technique. Following evaporation at 
room temperature for 24 h, the membrane electrolyte was 
carefully extracted. The same process was repeated for all 

composite electrolyte PEMs. The resultant composite PEMs 
were labeled accordingly, i.e., 2PPMG, 4PPMG, 6PPMG, 
8PPMG, and 10PPMG. The proposed reaction mechanism 
for PPMG composite electrolytes is presented in Scheme 3.

Membrane Characterizations

Fourier Transform Infrared Spectroscopy

The presence of functional moieties in pristine filler (GO), 
sulfonated filler (SGO), and PPMG samples was investigated 
using the FTIR spectrophotometer Nicolet 650 through the 
direct contact of the ATR tip with the samples. All spectra 
were recorded at 64 scans with spectral resolution in the 
range of 4000–400 cm−1.

X‑ray Diffraction

XRD was employed to examine the crystallographic struc-
tures of all synthesized samples. An X-ray powder dif-
fractometer (D/Max-3A Rigaku) with Cu Kα radiation 
(λ = 1.5418 Å), 35 kV voltage, and 30 mA current was used 
to record the XRD patterns at ambient temperature.

Scanning Electron Microscopy

The scanning electron micrographs were taken using the 
LEO 1530 scanning electron microscope. The prepared 
samples were sputtered with gold for approximately 120 s 
before SEM analysis to ensure that the sample surface did 
not have a charge.

Atomic Force Microscopy

Atomic force microscopy (AFM; Bruker MM8, USA) was 
employed to examine the surface morphology of the coat-
ings and evaluate their surface roughness. Imaging was 
conducted in tapping mode, covering areas of 1 × 1 μm. 
The images were initially fitted to the first-order x–y plane 
and subsequently flattened using the Nanoscope software 
(v1.30). Surface roughness measurements were conducted 
based on the root-mean-square (RMS) roughness values 
at various locations on each sample. For each coating, 10 
scans of different areas were analyzed to quantify surface 
roughness.

Water Uptake

To determine their water uptake capacities, all composite 
electrolyte samples were vacuum-dried at 50 °C for 5 h. 
The weight of the fully dried samples was measured and 
recorded. Subsequently, the dried samples were soaked in 
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DI water at ambient temperature for 24 h. After soaking, 
any water content on their surface was carefully eliminated 
using tissue paper before weighing again.

The water uptake capacity was calculated using Eq. (1):

where Ww and Wd were the masses of the dried and wet 
samples, respectively.

(1)Uptake =

[

Ww−Wd

Wd

]

× 100%

Swelling Percentage

The swelling behavior of composite electrolytes in the 
presence of water was evaluated by comparing their 
lengths in the wet and dry states. Initially, the electrolyte 
samples were dried at 50 °C overnight before their lengths 
were measured. In the next step, the dried samples were 
submerged in DI water for 10 h at room temperature. Fol-
lowing this, the wet samples were dried carefully with 

Scheme 3   Proposed reaction mechanism for PPMG composite electrolytes
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the help of tissue paper, and their lengths were evaluated 
once more.

The swelling ratio (SW) for each PEM was subsequently 
calculated using Eq. (2):

where Lw is the wet membrane length, and Ld is the dry 
membrane length.

Cation Exchange Capacity

The CEC values of all electrolyte samples were assessed by 
the traditional acid–base titration method. Initially, a piece 
of the sample was added to a 50 mL solution of 1 mol/L 
NaCl for 1 day. This step aimed to prompt an ion exchange 
reaction, wherein H+ ions from the membrane electrolyte 
would replace Na+ ions in the solution. Following this, the 
solution containing the liberated H+ ions was subjected to 
titration employing a 0.01 mol/L NaOH solution. Through-
out the titration process, phenolphthalein functioned as the 
indicator to detect the titration endpoint. To ensure the reli-
ability of the results, each measurement was repeated at least 
three times until a consistent titration endpoint was achieved.

The CEC was calculated using Eq. (3):

where CEC is the cation exchange capacity (meq/g); VNaOH 
is the volume of added titrant (mL), CNaOH is the molar con-
centration of the titrant; and Wd is the mass of the dried 
sample (g).

Proton Conductivity Analysis

The proton conductivities of all prepared composite elec-
trolytes were determined by employing the alternating 
current (AC) impedance method. Each membrane sample 
was first activated by immersing in a 2 mol/L H2SO4 solu-
tion at ambient temperature and then rinsed with DI water. 
Each activated electrolyte was placed between two platinum 
electrodes. Subsequently, resistance measurements were 
performed across frequencies spanning from 100 kHz to 
10 Hz, employing an AC amplitude of 5 mV. The measure-
ments were conducted at temperatures ranging from 25 °C 
to 80 °C within dry O2 and H2 atmospheres. Each prepared 
electrolyte underwent testing five times to ensure reliability. 
The reported conductivity values represent the average of 
measurements taken from four different samples.

The ionic conductivity values were calculated using 
Eq. (4):

(2)SW =

[
(

Lw − Ld

)

Ld

]

× 100%

(3)CEC =

(

VNaOH × CNaOH

)

Wd

where σ is the proton conductivity (S/cm), L is the thick-
ness (cm) of the membrane, R is the resistance derived from 
impedance data, and A is the cross-sectional area (cm2) of 
the membranes.

Cell Design for FC Performance

The single-cell performance test was conducted by develop-
ing MEA using the catalyst-coated electrode method, and 
results were obtained by analyzing the polarization curves. 
A design featuring interdigitated flow fields was employed 
in this study. In this design, the flow channels are terminated, 
enabling the reactant to flow through the porous reactant 
layer under pressure. This setup effectively removes water 
from the electrode structure, preventing flooding and boost-
ing the overall performance of the cell. In addition, the flow 
field design induces forced convection, addressing concerns 
related to flooding and gas diffusion limitations and ulti-
mately enhancing the efficiency of the FC [51]. The catalyst 
ink was synthesized by mixing Pt/Ru/C catalyst (60% Pt/Ru 
and 40% C) for the anode and Pt/C catalyst (60% Pt and 40% 
C) for the cathode, along with a 15% solution of Nafion® 
binder and DI water. Following this, the ink was applied 
to a carbon cloth and then dried and baked at 100 °C for a 
duration of 15 h.

The prepared composite electrolytes were sandwiched 
between two electrodes. The anode consisted of 0.2 mg/cm2 
of Pt/Ru/C, while the cathode consisted of 0.2 mg/cm2 of 
Pt/C. Following this, the assembly underwent hot pressing at 
60 °C under 100 kg/cm2 pressure for 10 min to form MEA. 
The electrochemical performance of PEMFCs was evaluated 
under ambient pressure conditions, with H2 gas supplied at a 
rate of 100 mL/min and O2 gas supplied at a rate of 80 mL/
min. These assessments were conducted at temperatures of 
25 °C and 70 °C.

Results and Discussion

Fourier Transform Infrared Spectroscopy

Figure 2 presents the FTIR results of pristine GO, SGO, 
and PPMG membranes. Pristine graphite shows weak 
infrared peaks at 1573 cm−1 corresponding to the C = C 
bond because of high symmetry. However, this peak in GO 
appeared at 1570 cm−1 and became sharper because of the 
asymmetry of GO (Fig. 2a Plot i), as the sonication and 
use of Hummer’s method disrupt the symmetry of graphite 
[52]. The band at 1399 cm−1 corresponds to the skeletal 
vibrations of C–O–C and C–OH in the oxidized graphitic 

(4)� =
L

RA
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phase [53]. Figure 2a (Plot ii) shows the FTIR spectrum 
of SGO. The process of sulfonation generates a functional 
group at the surface of GO, which is shown by the appear-
ance of new bands at 1292 and 1172 cm−1 attributed to the 
sulfonic acid (SO3H) group of SGO [42]. The band that 
appeared at 3833 cm−1 relates to –OH groups of PEMs. 
The broad bands that appeared at 3401 and 3418 cm−1 
in both spectra are attributed to the stretching vibration 
of OH moieties [54]. The band observed at 2955 cm−1 
becomes broad because of the O–H stretch (acidic group) 
in sulfonated filler [55].

Pure PVA shows a characteristic peak at 3254 cm−1. In 
the case of composite electrolytes, the broad band observed 
at 3002–3510 cm−1 is attributed to the stretching vibration 
of PVA hydroxyl groups (OH) (Fig. 2b Plot iii). The high-
intensity –OH band detected in all prepared electrolytes is 
attributed to the occurrence of hydrogen bonding among 
C=O (PVP), OH (PVA), and SGO. The –OH stretching band 
is highly dependent on hydrogen bonding [56], shifts to a 
lower wavenumber, and broadens when the SGO content is 
increased (Fig. 2b Plot iv). As the filler content was further 
increased, the O–H bond changed into S–O–H, causing the 
band to constantly broaden (Fig. 2b, Plot v) with the increase 
in SGO content (Fig. 2b Plots vi and vii).

The band that appeared at 2910 cm−1 is associated with 
the C–H stretching vibration of PVA. The distinguishing 
vibration bands that appeared at 1650 and 1245 cm−1 are 
attributed to the C=O and C–N stretching vibrations of the 
PVP polymer [57, 58]. The band at 1733 cm−1 confirmed the 
presence of such free C=O moieties but appeared to be hid-
den by the vicinity bands [59, 60]. The sharp band observed 
at 1062 cm−1 is attributed to sulfonic acid (SO3H) stretch-
ing [61]. This band becomes broader and thicker with the 
increase in filler content (2–10 wt%). The Si–O–Si band at 
1062 cm−1 is attributed to the formation of a fresh covalent 

bond by the condensation reaction that occurred between 
C–OH (PVA) and Si–OH (hydrolyzed TEOS) [62].

X‑ray Diffraction

The XRD pattern of graphite typically shows a sharp and 
intense peak at approximately 2θ = 26°, corresponding to 
the (002) plane of graphite, which represents the interlayer 
spacing between G layers. Natural graphite shows a highly 
ordered crystal framework having a 0.34 nm layer-to-layer 
gap. However, after employing Hummer’s method, the peak 
that appeared at 2θ = 26° expanded, and an additional peak 
detected at 2θ = 11.10 (001) was attributed to GO, as shown 
in Fig. 3a Plot i.

The d-spacing (interlayer spacing) was determined using 
Bragg’s law (λ = 2dsinθ) and was 0.80 nm, confirming the 
presence of oxygen in the network of G sheets [63]. This 
increase in the value of d-spacing is attributed to the addi-
tion of oxygen-containing functionalities between layers. 
Figure 3a Plot ii showed that sulfonation of GO results in 
a peak shift from 2θ = 11.10° to 2θ = 26.9° (002) having 
d = 0.52 nm. The reduction of d-spacing values after sul-
fonation is related to the fact that sulfonation removes oxy-
gen functional moieties and causes restacking of exfoliated 
GO sheets because of the π–π interaction. The peak shifting 
toward the higher 2θ value is attributed to the presence of 
the SO3H group of sulfonated filler [64].

The XRD spectrum of pure PVA exhibits two peaks, i.e., 
a small peak at 2θ = 36° indicating the presence of a crys-
talline phase with a certain arrangement of polymer chains 
and a broad peak at 2θ = 21°, indicating the existence of 
an amorphous phase [65]. The blending of PVA with PVP 
leads to a decrease in the intensity of the PVA peak and an 
increase in the amorphous nature of the resultant composite 
membrane [66].

Fig. 2   FTIR spectra of a graphene oxide (GO), sulfonated graphene oxide (SGO), and b PPMG electrolytes
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Upon the addition of 2 wt% filler to polymeric blends, the 
peak intensity decreases, and the peak broadens (Fig. 3b Plot 
iii). A further decrease in the peak intensity occurred with 
the increase in SGO content from 4 wt% to 10 wt% (Fig. 3b 
Plots iv, v, vi, and vii). This phenomenon can be attributed 
to the establishment of hydrogen bonds between the –SO3H 
groups of the nanofiller and the –OH groups of the polymer 
matrix [67]. The occurrence of such interactions enhances 
the intermolecular bonding within the system, resulting 
in a decrease in the crystalline phase and an expansion of 
amorphous regions [68]. These amorphous regions lower 
the energy barrier and enhance the segmental motion of 

the polymer chain, consequently leading to increased ionic 
conductivity. Interestingly, the XRD spectra do not exhibit 
peaks associated with SGO because of its inherently amor-
phous nature.

Scanning Electron Microscopy

The SEM micrographs of GO, SGO, and the prepared com-
posite PEMs are shown in Fig. 4. Both GO and SGO have 
different morphologies. Figure 4a shows that GO has a thin, 
transparent nanosheet 2D structure with a wrinkled or crum-
pled morphology [69]. These sheets vary in size and shape, 

Fig. 3   XRD patterns of a GO, SGO, and b PPMG composite electrolyte/membranes

Fig. 4   SEM images of a GO, b SGO, c 2PPMG, d 4PPMG, e 6PPMG, f 8PPMG, and g 10PPMG composite electrolyte/membranes
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and the edges of the GO sheets often appear irregular or jag-
ged because of the oxidation process. In addition, the SEM 
images revealed some degree of aggregation or face-to-face 
stacking of the sheets, resulting in overlapping layers. GO 
was functionalized using H2SO4 as the sulfonating agent. 
Figure 4b shows that SGO also has a 2D structure even after 
functionalization but has foreign matter covering its surface 
[70]. A comparison between GO and SGO indicated that 
the surface of SGO appeared rougher than that of GO, likely 
because of the functionalization process.

PVA is known for its highly hydrophilic nature, and the 
SEM images show a smooth and uniform surface with no 
distinct features or irregularities. The surface morphology 
may appear homogeneous, with a lack of visible pores or 
voids [71]. The incorporation of SGO into the PVA–PVP 
blend leads to the emergence of whitish nano-moieties at 
the surface of the resultant composite PEMs, thereby con-
firming the successful integration of sulfonated filler into 
the polymer matrix. Here, we used different weight percent-
ages of SGO nanoparticles (2–10 wt%) to incorporate into 
the prepared polymer blend. The SEM results revealed the 
uniform dispersion of nanofillers within the blend mem-
brane, which can be attributed to the formation of hydrogen 
bonding between filler and polymer matrix [72, 73]. The 
existence of SO3H groups might accelerate the nanofiller 
dispersion within the polymer matrix and provide more pro-
ton pathways [74]. However, by increasing the amount of 
SGO, agglomeration of fillers occurred at the surface of the 
membrane, similar to other inorganic fillers [75].

Figure 4c, d illustrates that, at lower filler content, the 
PPMG composite membranes are homogeneous. By con-
trast, the PPMG composite membranes are no longer homo-
geneous in Fig. 4e. Noteworthy agglomerations of SGO 
nanoparticles were observable (Fig. 4f). The higher amount 
of SGO fillers results in the formation of agglomerates at 
the surface of nanocomposite PEMs, thus leading to poor 
dispersion of SGO in the PVA–PVP blend, mainly when the 
filler content is over 6 wt% (Fig. 4g). The poor dispersion 
of SGO is clear from the presence of several large uneven 
SGO agglomerates that are randomly scattered on the top 
surface, indicating that the SGO nanofillers were thoroughly 
dispersed throughout the polymer matrix. The agglomera-
tion of nanofiller leads to a reduction in the active surface 
area, resulting in decreased membrane water content and, 
consequently, lower proton conduction. To prepare a homo-
geneous and fully dispersed composite polymer membrane, 
controlling the contents of the polymer and inorganic filler 
is necessary [76, 77].

Atomic Force Microscopy Analysis

The surfaces surface roughness of PPMG composite PEMs 
was compared by analyzing the roughness parameters, 

including average roughness (Sa) and RMS roughness 
(Sq) (Table 1). The AFM images were obtained in tapping 
mode, and the samples were affixed to glass slides using 
adhesive tape. The AFM images and line mapping of the 
PVA–PVP blend and composite PEMs are presented in 
Fig. 5.

The pristine PVA polymeric PEM exhibits a relatively 
smooth surface topography with low average roughness 
(Sa) and RMS roughness (Sq) values [78], as shown in the 
AFM images. However, when PVA is blended with PVP 
and crosslinked with TEOS, the surface roughness param-
eters increase significantly. Furthermore, in the case of com-
posite PEMs, where different weight percentages of SGO 
were incorporated into the polymer blend, an increase in 
surface roughness is observed. Specifically, the Sa value of 
the composite PEM membranes is higher than that of the 
pristine PVA membrane. The surface roughness associated 
with the composite PEM is an order of magnitude higher 
than that of the pristine PVA membrane. The increased sur-
face roughness of the composite membranes is attributed to 
the incorporation of the SGO component, which introduces 
nanoscale convolutions and topographical features to the 
membrane surface.

For the pristine PVA membrane, the values of Sa and Sq 
are low, while for PPMG composite PEMs, the values of 
Sa and Sq are high, which confirmed that the introduction 
of nanofiller (SGO) to the PVA–PVP blend caused surface 
roughness to increase significantly. PVA exhibits narrow 
hydrophilic channels, yielding a smooth surface with low 
roughness. Conversely, the inclusion of SGO nanopar-
ticles that effectively occupy these channels in the poly-
meric matrix leads to increased roughness. The connection 
between hydrophilic and hydrophobic domains establishes 
clear ionic pathways for proton or water transport within 
the hybrid membrane. Consequently, PPMG composite 
membranes improve water sorption by generating hydro-
philic nanodomains, which serve as fresh active sites for 
water retention, thereby aiding proton transport across dif-
ferent humidity levels. However, at higher loading, SGO 

Table 1   Surface roughness parameters of the prepared PPMG com-
posite PEMs obtained from the AFM images

Sr. No. Membrane type Surface rough-
ness (Sa (nm))

Root-mean-
square roughness 
(Sq)

1 PVA 7.51 10.10
2 PVA–PVP 31.20 41.20
3 2PPMG 58.60 65.12
4 4PPMG 68.45 79.43
5 6PPMG 76.31 83.56
6 8PPMG 81.43 89.00
8 10PPMG 88.23 93.05
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nanoparticles tend to aggregate with each other and result 
in lower water uptake and ionic conductivity.

The AFM results showed that the surface of the com-
posite was rough (Sa = 88.23 nm for 10 wt% GO), while the 
surface of the PVA–PVP blend membrane was relatively 
smooth (Sa = 31.2 nm). In addition, the Sq also increased 
from 10.10 nm for the PVA membrane to 93.05 nm for the 
PMMG composite with an SGO content of 10 wt%.

The increase in the Sq stems from the strong compatibility 
between PVA, PVP, and SGO alongside the uniform disper-
sion of SGO within the blend matrix. This compatibility is 
attributed to the abundance of oxygen-containing functional 
groups on the surface of GO, fostering strong hydrogen 
bonding with polymer chains.

Water Uptake Determination

Water uptake refers to the absorption or uptake of water 
molecules by a material. In the context of FCs, water uptake 
typically refers to the process by which a membrane absorbs 
water molecules [79]. In PEMFCs, water plays a vital role 
in the proton transfer mechanism because water molecules 
within the FC environment contain protons in the form of 
hydronium ions (H3O+) and H5O2, which are critical for 
the proton transport process. These protons are transferred 
through the membrane electrolyte via ionic channels, which 

are typically hydrogen-bonded, and through a cationic mix-
ture. Indeed, the presence of a sufficient hydration level in 
membrane electrolytes is crucial for achieving high proton 
conduction. Proper hydration guarantees a sufficient sup-
ply of water molecules, which is essential for facilitating 
the movement of protons through the membrane, thereby 
enhancing the overall performance of the FC.

However, excessive water uptake by the polymeric mem-
brane can lead to detrimental effects, such as extreme swell-
ing. When the membrane absorbs an excessive amount of 
water, it can swell beyond its designed dimensions. This 
swelling not only compromises the mechanical properties of 
the membrane but also negatively impacts its dimensional 
stability. Decreases in mechanical properties, such as tensile 
strength and elasticity, can result in membrane deformation 
or even rupture under operational conditions.

Furthermore, changes in dimensional stability can lead to 
issues, such as membrane delamination or distortion, which 
can impair the overall functionality and longevity of the FC. 
Therefore, adequate hydration is essential for optimal proton 
conductivity, and water uptake needs to be controlled within 
the membrane to prevent excessive swelling and maintain 
mechanical integrity and dimensional stability, which can 
be accomplished through the careful design of the mem-
brane material and structure, as well as the implementation 
of effective water management strategies in FC systems [80].

Fig. 5   AFM images of a PVA–PVP blend, b 2PPMG, c 4PPMG, d 6PPMG, e 8PPMG, and f 10PPMG. Line mapping of a* PVA–PVP blend, 
b* 2PPMG, c* 4PPMG, d* 6PPMG, e* 8PPMG, and f* 10PPMG composite PEMs
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Water uptake affects some of the properties of the mem-
brane, such as dimensional stability and cation selectivity. 
Several parameters that can influence water uptake include 
the degree of sulfonation, membrane pretreatment, hydration 
and humidity level, and water temperature [81, 82]. Pure 
PVA shows high water uptake because of its hydrophilic-
ity; however, its water uptake is affected by the addition 
of cross-linkers, induction of inorganic fillers, and creation 
of blends with other polymers to make PVA thermally and 
mechanically stable and induce proton conductivity [82].

The prepared PPMG composite electrolytes exhibit less 
water uptake compared with pure PVA membranes. Fig-
ure 6a shows that, among all samples, pure PVA membrane 
has the highest value of water uptake, i.e., 64%. The water 
uptake tended to decrease after the introduction of filler 
content and will continuously decrease with the increase in 
filler content. 2PPMG (2 wt% filler content) had the high-
est water uptake value of 51.6%, while 10PPMG (10 wt% 
filler content) had the lowest water uptake value of 44.8% 
because the –SO3H moieties of the nanofiller interact with 

the –OH groups of the polymer and develop hydrogen bonds, 
hence enhancing the interfacial strength and compactness of 
the membrane structure [83, 84], which, in turn, causes the 
constriction of water-transferring channels and decreases the 
water uptake.

In addition, when TEOS is used for cross-linking of the 
polymer matrix it also decreases the water uptake values by 
increasing the mechanical stability of the resultant PEMs 
[85]. The inclusion of PVP has been observed to have a 
limiting effect on the mobility of free polymer chains within 
the membrane structure. This phenomenon contributes to a 
reduction in water uptake by the membrane.

Swelling Percentage Measurement

The swelling of a polymer membrane refers to its capabil-
ity to absorb and retain solvent molecules, typically water, 
which increases its volume. This phenomenon occurs 
because of the interaction between the polymer chains and 

Fig. 6   a Water uptake percentage, b swelling percentage, and c ion exchange capacity of samples vs. filler weight percentage



275Probing the Efficiency of PPMG‑Based Composite Electrolytes for Applications of Proton Exchange…

the solvent molecules, which causes the polymer chains to 
expand and separate from one another.

Swelling can have both negative and positive impacts on 
the performance of the polymer membrane. On the one hand, 
swelling can enhance the transport properties of membranes, 
such as ionic conductivity, by increasing the availability of 
pathways for the diffusion of solutes, which is particularly 
important in applications such as FCs, where effective ion 
transport is key for device performance. On the other hand, 
excessive swelling can lead to negative consequences. For 
instance, excessive swelling can cause mechanical instabil-
ity and dimensional changes in the membrane, leading to 
deformation or even rupture, which can compromise the 
integrity and functionality of the membrane, impacting its 
long-term durability and reliability. Therefore, controlling 
the swelling behavior of polymer membranes is important 
for optimizing their performance in various applications and 
can be achieved through the careful selection of polymer 
materials and adjustment of the membrane composition and 
structure to achieve the desired balance between swelling 
and mechanical properties. In addition, the implementation 
of appropriate water management strategies can help miti-
gate the effects of excessive swelling in applications where 
water uptake is a concern.

The swelling behavior of polymers in water is indeed 
influenced by their water uptake capacities, which, in turn, 
are determined by their inherent hydrophilic or hydrophobic 
nature. Hydrophilic polymers have a strong affinity for water 
molecules because of the presence of polar or ionic func-
tional groups in their chemical structure. When placed in an 
aqueous environment, these polymers readily absorb water, 
leading to swelling. The water molecules interact with the 
polar groups in the polymer chains through hydrogen bond-
ing, causing the polymer chains to separate and the overall 
volume of the polymer to increase.

By contrast, hydrophobic polymers repel water molecules 
and exhibit limited water uptake. These polymers have non-
polar chemical structures that are incompatible with water. 
As a result, these polymers tend to swell to a lesser extent 
or may not swell at all in water.

Figure 6b shows that pure PVA membrane has the high-
est swelling percentage of 30% because of its hydrophilic 
nature. However, when PVA is blended with PVP and rein-
forced with sulfonated inorganic filler (SGO), the swelling 
percentage gradually decreases from 21 to 14% with the 
increase in the amount of nanofiller (i.e., 2 wt% to 10 wt%) 
because of the formation of hydrogen bonds between –SO3H 
and OH groups of the fillers and matrix, which leads to the 
formation of composite membrane with good dimensional 
stability [83].

The degree of swelling exhibited by a polymer in water 
is directly proportional to its water uptake capacity, which 
is determined by several factors, such as the density and 

distribution of hydrophilic or hydrophobic groups within the 
polymer structure. By controlling these factors, the swell-
ing behavior of polymers can be tailored for specific appli-
cations, such as drug delivery systems, biomaterials, and 
membranes for separation processes [86].

Cation Exchange Capacity

CEC indicates the presence of exchangeable ions in the 
membrane. CEC is a secondary and reliable means of proton 
conductivity and provides information about the number of 
ionizable hydrophilic groups, typically sulfonic acid groups 
(–SO3H), present in the membrane matrix. These ionizable 
groups are responsible for facilitating proton conduction in 
PEMs by providing sites for proton transport.

The CEC of a PEM is typically expressed in units of mil-
liequivalents per gram and indicates the density of ioniz-
able groups within the membrane matrix. A higher CEC 
value indicates a higher concentration of ionizable groups 
and, consequently, a greater potential for proton conduction. 
Therefore, materials with high ion exchange capacity (IEC) 
values have a greater potential for proton uptake and, conse-
quently, exhibit enhanced proton conductivity, which is vital 
for achieving efficient proton transport within PEMFCs, ulti-
mately leading to improved FC performance. Thus, select-
ing membrane materials with high IEC values is crucial for 
optimizing the proton conductivity and overall efficiency of 
PEMFCs [87, 88].

A previous study [89] reported that the CEC value of 
GO-based composite membranes increases with the increase 
in GO content but is lower than that of SGO-based (SGO-
functionalized) membranes because of the absence of 
SO3H groups. The presence of SGO in the polymer matrix 
improves hydrophilicity and increases sulfonating sites, 
hence increasing the membrane proton carrier capacity [53, 
90].

Figure 6c shows that the CEC values of composite PEMs 
increased uniformly and continuously with the increase in 
SGO content from 2 wt% to 10 wt%. The maximum CEC 
value of 0.8 meq/g was obtained with 10PPMG. This phe-
nomenon is attributed to the high filler content, which leads 
to an increase in the number of SO3H groups, hence the high 
CEC value. This increasing CEC trend initially coincides 
with the increase in proton conductivity observed with the 
inclusion of SGO. This correlation indicates the contribu-
tion of SGO to proton conduction by augmenting sulfonic 
acid groups, which are pivotal as proton donors and carriers 
within the membrane.

Notably, sulfonated membranes boast exceptional 
water retention, which is crucial for efficient proton trans-
port mechanisms, such as the Grotthuss mechanism and 
vehicular transport. Sulfonated PEMs retain more water, 
which serves as a medium for proton transfer. As a result, 



276	 S. Ahmed et al.

sulfonated membranes have a high capacity for exchanging 
ions. In addition, this capacity increases as the SGO con-
tent increases. Thus, more functional groups are available 
for exchange because of the higher density of ionic sites 
distributed inside the polymer chains. However, after the 
addition of 6 wt% filler, the conductivity of the membranes 
decreased because filler agglomerates have a lower charge 
density than the matrix, which prevents cations from easily 
passing through the membrane [67, 91].

Higher SGO levels cause the SGO nanoparticles to clump 
together rather than dissolve into the polymer blend, which 
increases the barrier to proton transport and prevents proton 
conduction. An increase in SGO concentration causes the 
free volume that can be associated with water molecules 
to diminish, which is followed by a reduction in the size of 
the interconnected proton channels. Water has an impact on 
proton conductivity. Moreover, aggregated SGO nanoparti-
cles hinder the passage of ions and reduce the movement of 
polymer chains. Notably, the addition of the SO3H groups 
to these PEMs increases the CEC value but does not directly 
increase the proton conductivity.

The obtained water uptake, CEC, and swelling percent-
age values of the prepared PPMG composite membranes are 
compared with those of the composite membranes reported 
in Table 2.

Conductivity Measurements

Figure 7a depicts the proton conduction behavior of all syn-
thesized PPMG composite electrolytes across a temperature 

range of 25 °C to 80 °C. Notably, the conductivities tended 
to increase nearly linearly with the increase in filler con-
tent up to 10 wt% and temperature. The conductivity values 
are dependent on various factors related to GO, such as its 
aspect ratio, sulfonation or functionalization, and loading 
amount [93]. The sulfonation process may also induce more 
interactions between GO and the polymer matrix as sul-
fonated functionalities anchored on the surface of GO create 
a strong interaction, such as hydrogen bonding with the OH 
group in the PVA–PVP blend, compared with –COOH/OH 
of unmodified GO [94].

The possible proton conduction mechanism in PPMG 
composite electrolyte is illustrated in Scheme 1. The con-
ductivity results showed that by incorporating SGO nanopar-
ticles, the proton conductivity was considerably improved. 
This phenomenon can be attributed to the interaction 
between –sulfonic acid (SO3H) and hydroxyl (–OH) moieties 
of the nanofiller and H2O molecules, which results in more 
water uptake. In addition, SGO has a high surface area and 
large number of SO3H functionalities; hence, it can grasp 
more H2O molecules and transport protons more easily via 
the vehicle mechanism, thus enhancing proton conductiv-
ity [95]. Similar results were reported by Jang et al. [96] 
“integration of SGO into polymer matrix dramatically raises 
the water absorption and consequently proton conductivity.”

The blending of PVP with PVA can increase the amor-
phous phase and decrease the crystallinity of the resultant 
composite membrane, which facilitates ionic movement, 
another factor contributing to enhanced proton transfer. 
The proton conductivities of PPMG composite membranes 
are also associated with the hydrophilic characteristics of 
PVA, which results in increased water retention and a strong 
hydrogen connection between water and PVP [97]. PVP has 
significant hydrophilicity and could develop strong hydro-
gen bonding with water because of the high polarity of its 
–N–C=O group, which leads to increased water retention 
and improved proton conduction in the resultant composite 
membranes [32].

The higher ionic conductivity at higher filler content 
(SGO) is linked with the availability of SO3– groups at the 
surface of PEMs. This increased concentration of ionizable 
groups facilitates ionic transfer through the Grotthuss mech-
anism, wherein protons (H3O+) move from one molecule to 
another, often aided by SO3– groups, thus enabling efficient 
proton transport across the membrane [98].

The highest proton conductivity value of 0.060 S/cm is 
obtained with a polymer electrolyte membrane having 6 
wt% SGO content. Afterward, the value of proton conduc-
tivity tends to decrease with the further increase in SGO 
content, which can be attributed to the fact that nanomate-
rials with large surface areas are particularly unstable and 
try to interact with each other, leading to the formation of 
aggregates that affects their specific surface area and reduces 

Table 2   Comparison of the water uptake, ion exchange capacity 
(IEC), and swelling percentage values of various composite mem-
branes

Membranes IEC Water uptake Swelling (%) References

2PPPMG 0.47 51.6 21 Present work
4PPPMG 0.66 49.4 19 Present work
6PPPMG 0.71 46.1 17 Present work
8PPPMG 0.78 45.3 15 Present work
10PPPMG 0.80 48.8 14 Present work
Nafion 212 0.89 46.3 – [92]
Nafion 112 0.90 19.3 – [92]
Crosslinked 0.612 – –
Nafion/PVA 26.4 ± 0.1 0.47 ± 0.1 0.0 [92]
Nafion/PVA 19.3 ± 0.1 0.33 ± 0.1 0.012 [92]
Nafion/PVA 27.9 ± 0.1 0.45 ± 0.1 0.016 [92]
Nafion/PVA 25.8 ± 0.1 0.58 ± 0.1 0.025 [92]
Nafion/PVA 22.9 ± 0.1 0.57 ± 0.1 0100 [92]
Nafion® 227.0 ± 0.1 0.93 ± 0.1 0.027 [92]
Nafion® 27.0 ± 0.1 0.93 ± 0.1 0.034 [92]
Nafion 117 21.5 ± 0.1 0.91 ± 0.1 0.09 [92]
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their water uptake and proton transfer capability. In addition, 
aggregated SGO nanoparticles could inhibit the movement 
of the polymer chain, which would impede the passage of 
ions [99, 100]. The variation in conductivity of the prepared 
composite membrane with the increase in temperature is 
attributed to the enhancement of the segmental motion of the 
polymer chain, which, in turn, produces more free volume 
[32]. These segmental motions facilitate the transmission 
of ions by providing a passage for the transfer of protons 
or by hopping from one location to another. Consequently, 
the segmental motion of the polymer chain facilitates sim-
ple ionic mobility. In other words, the segmental motion of 
the polymer chain aids in facilitating smooth ionic motion. 
The maximum proton conductivity was observed at 70 °C 
and tended to decrease at temperatures higher than 70 °C, 
which can be attributed to the evaporation of membrane 
water [101] (Table 3).

The activation energy, representing the minimum energy 
necessary for proton transfer, is calculated for each mem-
brane using Eq. (5):

(5)In � =
Ea

RT

Fig. 7   a Proton conductivity of the prepared composite membranes at different temperatures, b Arrhenius plot, and c linear fit of the prepared 
composite membranes

Table 3   Proton conductivities of PPMG composite membranes at dif-
ferent temperatures

Tempera-
ture (°C)

Membranes

2PPMG 4PPMG 6PPMG 8PPMG 10PPMG

25 0.025 0.031 0.039 0.024 0.023
40 0.031 0.039 0.049 0.027 0.023
50 0.038 0.043 0.051 0.031 0.025
60 0.045 0.050 0.055 0.038 0.031
70 0.047 0.058 0.060 0.041 0.030
80 0.036 0.049 0.058 0.033 0.020
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where σ is the proton conductivity (S/cm), Ea is the acti-
vation energy (kJ/mol), R is the universal gas constant 
(= 8.314 J/(mol K), and T is the absolute temperature (K).

The activation energies for 2PPMG, 4PPMG, 6PPMG, 
8PPMG, and 10PPMG were 9.50, 11.15, 10.32, 10.93, and 
10.90 kJ/mol, respectively, as shown in Fig. 7b, c. These 
activation energies of PPMG composite PEMs, even with 
small SGO content, are close to that of pristine Nafion® 
PEMs (9 kJ/mol).

The higher value of activation energy with higher filler 
content is related to the bound water to free water ratios. The 
polymer matrix has a higher ratio, although the occurrence 
of free water facilitates proton transport, but it evaporates 
faster than bound water. The introduction of filler to the 
polymer matrix increases the ratio of bound water because 
of the strong hydrogen bonds between filler and polymer 
[102], which, in turn, enhances the ionic conductivity of 
the PPMG membrane compared with virgin polymer matrix 
[103]. Thus, in SGO-reinforced PEM membranes, the proton 
conductivity increases with the specific increase in tempera-
ture because of their good water retention capacity. Hence, 
the hybrid membranes exhibit significant advantages at 
higher temperatures. The proton conductivities of the pre-
pared PPMG composite PEMs are compared with those of 
other membranes reported in Table 4.

FC Performance

A single-cell performance test for PEMFCs using PPMG 
composite membranes is conducted with H2 (fuel) and O2 
(oxygen) at 25 °C and 70 °C (Fig. 8a. The results showed 
that the increase in temperature leads to the enhancement 
of the FC performance. Temperature is the pivotal factor 
that boosts the electrochemical characteristics of FCs [83]. 
With the increase in temperature from 25 °C to 70 °C, a 
notable shift in peak power density, i.e., 14.9–35.60 mW/
cm2, was observed. The current density was enhanced 
from 53.0 mA/cm2 to 219 mA/cm2 with 6PPMG (6 wt% 
SGO content).

For the durability test, the most conductive membrane, 
i.e., 6PPMG, was chosen and tested at a temperature of 
70 °C, with H2 supplied at a rate of 46 cm3/s and O2 sup-
plied at a rate of 100 cm3/s. The test was conducted for 
1,000 h with a constant voltage of 0.3 V. Initially, the current 
density value obtained was 97.7 mA/cm2, which continu-
ously decreased during the 1000 h operating time, as shown 
in Fig. 8b. The final current density of 89.6 mA/cm2 was 
reached after 1000 h of continuous operation. The decrease 
in cell performance can be attributed to the decrease in elec-
trolyte efficiency after continuous operation at 70 °C [106]. 
The durability results showed that the newly prepared PPMG 
composite membrane with 6 wt% SGO content exhibited 
high efficiency and sustainable performance during the 
1000 h operating time.

The durability of the pristine PVA–PVP blend membrane 
and the maximum OCV value of the pristine PV and PVP 
blend membrane were also analyzed, as depicted in Fig. 8c. 
The high durability of composite PEM is attributed to the 
presence of stable SGO filler, which strengthens the result-
ant composite PEM.

Vinothkannan et al. [43] prepared functionalized carbon 
nanotube-based PEMs and obtained good results in terms 
of durability and performance because of the presence of 
an inorganic filler. A similar study was reported by Kim 
et al. [107], where PEMs with enhanced electrochemical 
performance were prepared using phenylsulfonic acid-func-
tionalized and unzipped graphite nanofiber (SO3H-UGNF) 
and SPEEK matrix.

To examine the permanent degradation of PEMFCs, a 
single-cell performance test of 6PPMG was conducted after 
the durability test. The results are shown in Fig. 8d. The 
change in the current and power densities of the 6PPMG 
before and after the durability test was observed. Before the 
durability test, the current density was 219 mA/cm2, which 
was reduced to 189 mA/cm2. Meanwhile, the maximum 
power density was reduced to 28.83 W/cm2. The power loss 
depended on the current loss. The decrease in cell perfor-
mance was attributed to the decrease in electrolyte efficiency 
[108].

Table 4   Comparison of the proton conductivities of fuel cell compos-
ite membranes reported in the literature

Membranes Proton conductivity 
(σ) (S/cm) (25 °C)

References

CS/5 wt% Sulfonated GO 0.0033 [75]
Chitosan (CS) 0.0013 [104]
CS/5 wt% Graphene Oxide 0.0019 [104]
Chitosan/10 wt% sulfonated 0.0022 [104]
CS/SCS/5GO 0.0028 [104]
Cross-linkedSPEEK/ 0.0090 [92]
SPVA/SCS blend (90:10) ratio 0.00386 [104]
SPEEK membrane/ (BPO4) 0.00335 [105]
Nafion/PVA 0.012 [92]
Nafion/PVA 0.016 [92]
Nafion/PVA 0.012 [92]
Nafion/PVA 0.025 [92]
Nafion® 0.027 [92]
Nafion/PVA 0100 [92]
Nafion® 0.034 [92]
Nafion 117 0.090 [92]
2PPPMG 0.030 Present work
4PPMG 0.031 Present work
6PPMG 0.039 Present work
8PPMg 0.024 Present work
10PPMG 0.023 Present work
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The results showed that PEMFCs with PPMG composite 
membranes exhibited good electrochemical performance 
under ambient conditions. Importantly, the prepared PPMG 
composite membrane is a more cost-effective alternative to 
the expensive perfluorosulfonated Nafion® 117 membrane.

Summary and Conclusion

The prepared PPMG electrolytes composed of sulfonated 
filler and PVA–PVP matrix were fabricated by the solution 
casting procedure. Before its introduction to the PVA–PVP 
blend, GO was functionalized using a sulfonating agent 
to incorporate functional groups and achieve maximum 
dispersion. The proton conductivity, water uptake, swell-
ing percentage, and CEC of the prepared PEMs with SGO 
content ranging from 2 wt% to 10 wt% were investigated. 
The proton conductivities of the PPMG samples were ana-
lyzed by the increasing filler content and temperature. The 

conductivity values ranged from 0.025 S/cm to 0.060 S/
cm. The functionalized SGO filler containing –SO3H as 
the ionic source increased the CEC and ionic conduc-
tivity of the prepared composite membrane. The forma-
tion of strong hydrogen bonds between SO3H groups and 
organic polymer chains enabled hydrophilic–hydrophobic 
phase separation and provided a suitable system for proton 
conduction. The presence of SGO results in lower water 
uptake and swelling percentage because of improvement in 
the dimensional stability of the prepared composite mem-
branes. The performance test of the PEMFC utilizing H2 
and O2 feeds at temperatures of 25 °C and 70 °C yielded 
satisfactory results. This study underscores the significant 
potential of PPMG composite membranes for utilization 
in PEMFCs.
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