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Abstract A multi-objective optimization of non-uniform

beams is presented for minimum radiated sound power and

weight. The transfer matrix method is used to compute the

structural and acoustic responses of a non-uniform beam

accurately and efficiently. The multi-objective particle

swarm optimization technique is applied to search the

Pareto optimal solutions that represent various compro-

mises between weight and sound radiation. Several con-

straints are imposed, which substantially reduce the volume

fraction of feasible solutions in the design space. Two non-

uniform beams with different boundary conditions are

studied to demonstrate the multi-objective optimal designs

of the structure.

Keywords Non-uniform beams � Sound radiation �
Transfer matrix method � Multi-objective optimization �
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Introduction

Engineering structures are often designed and optimized to

meet multiple and possibly conflicting objectives such as

minimum weight and maximum strength. The merit of

multi-objective optimization is to obtain a wide range of

structural design choices so that the best tradeoff among

different objectives can be achieved. This paper presents a

multi-objective structural–acoustic optimization study of

engineering structures. Specifically, we take non-uniform

beams as an example.

A non-uniform beam is a common structural element in

many applications. Many studies have been conducted on

vibration, stability, and fatigue of non-uniform beams

[1–3]. Numerous methods for solving vibration problems

have also been studied, such as the finite element method

[4], transfer matrix [5], and differential transfer [6]. Opti-

mization of structural–acoustic properties is an important

study of non-uniform beams. Adali studied the Pareto

optimization of beams with a moving boundary in the

1980s [7]. Eschenauer et al. applied both deterministic and

stochastic optimization for weight and static deflection

reduction of non-uniform beams [8]. Continuous non-uni-

form beam optimization was considered in [9]. Optimiza-

tion of boundary conditions was studied in [10]. Vibro-

acoustic optimization was studied in [4, 11].

Two general categories of algorithms for solving multi-

objective optimization problems (MOPs) exist. One is

deterministic, and the other is evolutionary; the latter

dominates among these categories. Representative deter-

ministic search algorithms include multi-objective steepest

descent [12], direct search [13], tangent space continuation

[14], set-oriented algorithms [15], and cell mapping [16].

The convergence and global coverage of the Pareto set by

deterministic algorithms can be usually guaranteed

[12, 17]. However, for high-dimensional MOPs, deter-

ministic algorithms face the curse of dimensionality. In

addition, deterministic algorithms also have the drawback

of being trapped in the local minima.
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Evolutionary algorithms are stochastic and obtain the

Pareto set in the form of a collection of random points in

the design space. Therefore, evolutionary algorithms are

not limited by the dimension of the problem. The main-

stream evolutionary algorithms for MOPs include genetic

algorithms [18, 19], multi-objective particle swarm opti-

mization (MOPSO) [20], and the strength Pareto evolu-

tionary algorithm [21]. This paper aims to solve the MOP

of non-uniform beams with a modified particle swarm

optimization (PSO) technique.

Multi-objective Particle Swarm Optimization

An MOP usually involves more than one conflicting

objective. Unlike single-objective optimization problems,

the solution of MOP usually forms a set. The definition of

Pareto optimality is based on the concept of dominance.

Consider an MOP as

min
k2Q

fFðkÞg; ð1Þ

where k 2 Q � Rq is a q-dimensional vector of design

parameters; F is the map that consists of the objective

function fi : Q ! R1.

F : Q ! Rm; FðkÞ ¼ ½f1ðkÞ; . . .; fmðkÞ�: ð2Þ

The design space Q � Rq can be expressed in terms of

inequality and equality constraints

Q :¼ fk 2 Rq j gjðkÞ� 0; j ¼ 1; . . .; l;

and gjðkÞ ¼ 0; j ¼ lþ 1; . . .; mg:
ð3Þ

(a) Let v, w 2 Rm. The vector v is said to be less than or

equal to w denoted as v� pw if vi �wi for all

i 2 f1; . . .; mg.
(b) A vector v 2 Q is said to be dominated by a vector

w 2 Q denoted as w � v with respect to MOP (1) if

FðwÞ� pFðvÞ and FðwÞ 6¼ FðvÞ. Otherwise, v is non-

dominated by w.

(c) A point w 2 Q is called Pareto optimal or a Pareto

point of MOP (1) if no v 2 Q dominates w.

(d) The set P of all Pareto optimal solutions is called the

Pareto set. The image FðPÞ of P is called the Pareto front.

MOPSO integrates the non-dominant sorting and adap-

tive meshing in the objective space to reach the conver-

gence and spreading of an evolutionary algorithm [20, 22].

The basic procedure of MOPSO is similar to that of the

traditional single-objective PSO where the movements of

each particle are influenced by the local best position and

the current global best position [23].

The velocity mmi of particle i in the mth generation is

updated to vmþ1
i in the next generation according to the

following equation:

vmþ1
i ¼ x vmi þ R1ðBi � piÞ þ R2ðAh � piÞ; ð4Þ

where pi is the current position of particle i in the design

space; Bi is the best position occupied by particle i; x is

the inertia factor; R1 and R2 are two uniformly dis-

tributed random numbers in ½0; 1�; and Ah is the refer-

ence particle of the current generation selected according

to the measurement of particle distribution in the

objective space. In this study, we set x ¼ 0:4 as sug-

gested in [24]. Equation (4) has the same form as that of

the single-objective PSO. However, the local and global

best positions are determined by non-dominant

relationships.

Table 1 presents the procedure of MOPSO. An archive

denoted as A is created to store non-dominant particles

generated at each iteration. The archive is updated con-

stantly to ensure its non-dominancy. As will be shown in

the following section, feasible points occupy only a small

portion of the volume of the design space.

Before Eq. (4) is applied, a fitness function is evaluated

to determine Ah. The procedure is listed in Table 2. The

objective space is discretized into a collection of cells, and

the number of points that fall in each cell is counted. A

fitness value is assigned, and cells that contain more par-

ticles are penalized. In other words, a greater number of

particles in one cell correspond to a lower fitness value

assigned to that cell to maintain an even level of particle

spreading. The normalized fitness value serves as the

selection probability of a cell from the roulette wheel run.

Let z denote the cell chosen from the roulette wheel

selection. Ah is determined by selecting a random particle

from cell z.

The dominance check is applied to update the archive

when a new position of one particle is calculated. Let pi
denote the new position of particle i at a certain generation.

The principle to update the archive is to keep all non-empty

positions being occupied with non-dominant points in the

archive. Therefore, if pi dominates Aj 2 A, then Aj will be

removed. On the other hand, if pi is dominated by any

element in the archive A, then pi will not be added to the

archive. Hence, the current position of particle i is not a

potential solution.

Note that the capacity of the archive is usually larger

than the population size but is still finite. During the evo-

lution, the archive might be full. Under this circumstance, a

secondary criterion will be applied to determine whether to

add the new particle position to the archive. The code to

enforce this criterion is presented in Table 3.

To avoid the population from being trapped in the local

optimum, the mutation operator is introduced. The per-

centage of the mutated population decays exponentially

with respect to the number of the current generation [20],
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Table 1 Main structure of the MOPSO algorithm
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pr ¼ exp � 15gen

gmax

� �
; ð5Þ

where pr is the percentage of population being mutated;

gen is the current number of generations; and gmax is the

maximum number of generations. The mutation occurs

only in the first few generations where the landscape of the

potential solutions is unknown. The pseudo code of the

mutation operator is shown in Table 4.

Structural–Acoustic Analysis

Before we formulate a multi-objective structural–acoustic

optimization problem, we present the structural–acoustic

analysis of non-uniform beams by applying the transfer

matrix method [5].

Vibration Analysis

We use a Euler–Bernoulli beam to demonstrate the multi-

objective structural–acoustic optimization problem in this

study. The equation of motion is given by

DðxÞ o
4w

ox4
þ cðxÞ ow

ot
þ cðxÞ o

2w

ot2
¼ gðx; tÞ; 0� x� L; ð6Þ

where DðxÞ is the beam rigidity; cðxÞ is the mass per unit

area; cðxÞ is the structural damping; gðx; tÞ is the external

excitation; and wðx; tÞ is the deflection of the beam. We

consider the Rayleigh damping here, namely

cðxÞ ¼ acðxÞ þ gDðxÞ. Furthermore, we assume that DðxÞ,
cðxÞ, and cðxÞ are given smooth functions of x.

The transfer matrix method proposes to divide the beam

into N uniform segments such that DðxÞ and cðxÞ can be

written as

Table 2 Pseudo code of fitness

assignment in the objective

space

Table 3 Pseudo code of

archive update when the archive

is full

Multi-objective Optimization of Non-uniform Beam for Minimum Weight and Sound Radiation 383

123



DðxÞ ¼

D1; b1 � x� b2

..

.

Di; bi � x� biþ1

..

.

DN ; bN � x� bNþ1

8>>>>>>>><
>>>>>>>>:

;

cðxÞ ¼

c1; b1 � x� b2

..

.

ci; bi � x� biþ1

..

.

cN ; bN � x� bNþ1

8>>>>>>>><
>>>>>>>>:

;

ð7Þ

where bi and biþ1 are the coordinates of both ends of the ith

segment, and b1 ¼ 0 and bNþ1 ¼ L. The free undamped

vibration of each segment satisfies the following equation:

Di

o4w

ox4
þ ci

o2w

ot2
¼ 0; bi � x� biþ1: ð8Þ

Consider the harmonic response of the ith segment as

wðx; tÞ ¼ XiðxÞ ejx t. We have

DiX
0000

i � cix
2Xi ¼ 0; bi � x� biþ1: ð9Þ

The general solution of Eq. (9) is given by

XiðxÞ ¼ XiðbiÞf1ðuiÞ þ
X

0
iðbiÞ
ki

f2ðuiÞ þ
MiðbiÞ
Dik

2
i

f3ðuiÞ

þ QiðbiÞ
Dik

3
i

f4ðuiÞ ; ð10Þ

where k4i ¼ ci x
2

Di
, ui ¼ kiðx� biÞ and

MiðxÞ ¼ Di

o2Xi

ox2
; QiðxÞ ¼ Di

o3Xi

ox3
; ð11Þ

and

Table 4 Pseudo code of the mutation process
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f1ðuiÞ ¼ 1
2
cosh ðuiÞþ cos ðuiÞ½ �; f2ðuiÞ ¼ 1

2
sinh ðuiÞþ sin ðuiÞ½ �;

f3ðuiÞ ¼ 1
2
cosh ðuiÞ� cos ðuiÞ½ �; f4ðuiÞ ¼ 1

2
sinh ðuiÞ� sin ðuiÞ½ �:

ð12Þ

The functions in Eq. (12) satisfy the following relations:

of1

ox
¼ kif4;

of2

ox
¼ kif1;

of3

ox
¼ kif2;

of4

ox
¼ kif3: ð13Þ

Define a vector ui ¼ XiðbiÞ; X
0
iðbiÞ; MiðbiÞ; QiðbiÞ

� �T
.

From Eqs. (10) and (11), we can evaluate uiþ1 ¼
Xiðbiþ1Þ; X

0

iðbiþ1Þ; Miðbiþ1Þ; Qiðbiþ1Þ
� �T

, leading to the

following transfer relationship:

uiþ1 ¼ Ai ui; ð14Þ

Ai ¼

f1
f2
ki

f3
Dik

2
i

f4
Dik

3
i

kif4 f1
f2
Diki

f3
Dik

2
i

Dik
2
i f3 Dikif4 f1

f1
ki

Dik
3
i f2 Dik

2
i f3 kif4 f1

2
664

3
775
x¼biþ1

; ð15Þ

where Ai is known as the transfer matrix of one segment.

By repeating this process over all segments, we obtain the

transfer relationship from u1 to uNþ1 as

uNþ1 ¼ ANAN�1 � � �A2A1u1 � Bu1; ð16Þ

where the matrix B is the transfer matrix of the beam from

x ¼ 0 to x ¼ L. Note that B is a function of the frequency x
and that u1 and uNþ1 must satisfy the boundary conditions.

After imposing the boundary conditions to u1 and uNþ1

in Eq. (16), we obtain the transcendental equation for

determining the natural frequencies of the beam. Examples

of transcendental equations for different boundary condi-

tions are shown in Table 5.

Let xn be the nth natural frequency of the beam

obtained from the transcendental equation and XniðxÞ be the
corresponding mode function of the ith segment. The nth

mode function of the beam can be written as

unðxÞ ¼

Xn1ðxÞ; b1 � x� b2
..
.

XniðxÞ; bi � x� biþ1

..

.

XnNðxÞ; bN � x� bNþ1

8>>>>>><
>>>>>>:

ð17Þ

We assume that unðxÞ is normalized such that

Z L

0

cðxÞu2
nðxÞ dx ¼

XN
i¼1

ci

Z biþ1

bi

X2
niðxÞ dx ¼ 1: ð18Þ

The mode functions are orthogonal,

Z L

0

cðxÞumðxÞunðxÞdx ¼
XN
i¼1

ci

Z biþ1

bi

XmiðxÞXniðxÞdx ¼ dmn;

ð19Þ
Z L

0

DðxÞu0000

m ðxÞunðxÞ dx ¼
XN
i¼1

Di

Z biþ1

bi

X
0000

miðxÞXniðxÞdx

¼ x2
ndmn:

ð20Þ

Consider a harmonic external excitation gðx; tÞ ¼
GðxÞ ejx t and a complex harmonic response of the beam

w ðx; tÞ ¼ XðxÞ ejx t such that the spatial part of the function

can be expanded in terms of the mode functions

XðxÞ ¼
X1
n¼1

Wn unðxÞ; GðxÞ ¼
X1
n¼1

Gn cðxÞunðxÞ; ð21Þ

where Wn is the modal expansion coefficient of the

response, and Gn can be computed as

Gn ¼
Z L

0

cðxÞGðxÞunðxÞdx: ð22Þ

From Eq. (6) together with the orthogonality properties

of the mode functions, we obtain

Wn ¼
Gn

x2
n � x2 þ jx ðaþ gx2

nÞ
: ð23Þ

The forced damped solution of Eq. (6) then reads

wðx; tÞ ¼
X1
n¼1

Wn unðxÞ ejx t

¼
X1
n¼1

Gn � unðxÞ
x2

n � x2 þ jxðaþ gx2
nÞ
ejx t: ð24Þ

Acoustic Analysis

The wavenumber transformation of a mode function is

defined as [5]

UnðkÞ ¼
Z 1

�1
unðxÞ ejkxdx ¼

Z L

0

unðxÞ ejkxdx

¼
XN
i¼1

Z biþ1

bi

XniðxÞ ejkxdx:
ð25Þ

Table 5 Transcendental

equations for different boundary

conditions of the non-uniform

beam

Boundary condition Component form Transcendental equation

Simply supported Xð0Þ ¼ Mð0Þ ¼ XðLÞ ¼ MðLÞ ¼ 0 B12B34 � B32B14 ¼ 0

Clamped–clamped Xð0Þ ¼ X0ð0Þ ¼ XðLÞ ¼ X0ðLÞ ¼ 0 B13B24 � B23B14 ¼ 0

Cantilever Xð0Þ ¼ X0ð0Þ ¼ MðLÞ ¼ QðLÞ ¼ 0 B33B44 � B34B43 ¼ 0
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The wavenumber transformation of the deflection

velocity of the forced response of the beam is an interesting

function that reveals the acoustic property [5].

The spatial distribution of the deflection velocity of the

forced response of the beam can be derived from the

closed-form solution in Eq. (24),

vðxÞ ¼
X1
n¼1

jxWn unðxÞ: ð26Þ

The wavenumber transformation of the velocity is given

by

VðkÞ ¼
Z 1

�1
vðxÞ ejkxdx ¼

Z L

0

vðxÞ ejkxdx

¼
X1
n¼1

jxWn UnðkÞ: ð27Þ

The average acoustic power radiated by the vibrating

beam per unit width over one period of vibrations can be

computed as [5]

�P ¼ xq0
4p

Z k

�k

Vðk̂ÞV	ðk̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k̂2

p dk̂; ð28Þ

where k ¼ x=c0 is the wavenumber of the air at the fre-

quency x; c0 is the speed of sound; and q0 is the air

density. ( )	 denotes the complex conjugate.

Let v2
� �

be the spatial and temporal average of the

deflection velocity field of the beam given by

v2
� �

¼ 1

L

Z L

0

vðxÞ v	ðxÞdx: ð29Þ

The radiation efficiency of the vibrating beam is defined

as

r ¼
�P

1
2
q0 c0L v2h i : ð30Þ

Some computational notes are in order. The computa-

tions of Eqs. (28) and (30) require numerical integrations.

The analytical expression of the integration in Eq. (25)

helps speed up these numerical integrations. The transfer

matrix method for structural–acoustic analysis offers a fast

and accurate approach for multi-objective optimization

studies.

Structural–Acoustic Optimization

Design Variables

The geometric and material properties of the non-uniform

beam are assumed to be continuous functions of the spatial

coordinate x. In the following discussions, we assume that

only the thickness of the beam denoted as h ðxÞ is non-

uniform. We take a number of the sampled thickness h ðxiÞ
along the beam as design variables and use them to con-

struct the smooth function h ðxÞ by means of spline

interpolation.

Figure 1 shows an example of a cubic spline represen-

tation of the thickness profile h ðxÞ with five sampled

points. Figure 1b shows 10 sampled thicknesses, while

Fig. 1c shows the 10-segment stepped beam based on the

sampled thicknesses that are used with the transfer matrix

method. The number of segments is a user-defined variable

for the structural–acoustic analysis with the transfer matrix

method. It affects the accuracy of the solution but does not

increase the complexity of the optimization problem.

Objective Functions

The primary goal of structural–acoustic design is to create

a lightweight and quiet structure. The multi-objective

optimization of non-uniform beams aims to seek a balance

between weight reduction and sound isolation.

The total mass of the beam can be expressed as

mtot ¼
XN
i¼1

qhi L
N

; ð31Þ

where q is the mass density of the beam; L is the length of

the beam; hi is the average thickness of the ith segment

determined by the thickness profile; and N is the number of

segments of the beam.

The second objective function is the integration of the

radiated sound power in Eq. (28) over a range of

frequencies

Fig. 1 Spline interpolation for the thickness profile h(x) with the

design variables h(xi). a the spline curve with five sampled points,

b the spline curve with 10 sampled points, c the stepped beam of ten

segments used in the solution with the transfer matrix method
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I ¼
Z x2

x1

�P dx; ð32Þ

where x1 and x2 define the lower and upper bounds of the

frequencies of interest, respectively. These bounds are

determined based on practical considerations in engineering

applications. In this study, we assume that they are given.

Constraints

To ensure that the optimally designed structure meets

engineering requirements, we impose three constraints for

optimization.

1. The lower and upper bounds of the mass mtot:

mmin\mtot\mmax: ð33Þ

2. The lower bound of the fundamental frequency x1:

xmin\x1: ð34Þ

This constraint guarantees minimum static strength for

structural integrity.

Table 6 Parameters of the non-

uniform beam
Young’s modulus

(Pa)

Mass density

(kg=m3)

Air density

(kg=m3)

Sound speed

(m=s)
Beam width

(m)

7
 1010 2643 1.26 343 0.1

Table 7 Statistical study of the

volumetric fraction of feasible

solutions in the design space

Number of sampled points in design space 1000 5000 10000 50000 100000 500000

Number of feasible points in five samplings 1 15 31 172 316 1522

3 14 35 145 306 1528

3 9 41 156 289 1512

6 16 27 130 298 1499

5 15 36 149 311 1518

Percent average of feasible points 0.36% 0.276% 0.34% 0.3008% 0.304% 0.3032%

Fig. 2 Pareto front of the clamped–clamped beam. The population

size of the MOPSO method is 100 with 80 generations. Twenty-one

Pareto solutions are found

Fig. 3 Optimized thickness profile for the clamped–clamped beam.

The harmonic load is applied in the interval marked by the red lines.

a beam No. 1 has the minimum weight, while b beam No. 2 has the

minimum integrated sound power

Table 8 Spline coordinates of the optimal clamped–clamped beam

xi (m) hðxiÞ of beam No. 1 (mm) hðxiÞ of beam No. 2 (mm)

0 3.7282 3.7790

0.1667 2.9248 3.8781

0.3333 1.2039 1.5281

0.5000 1.1018 2.5685

0.6667 1.1118 3.9453

0.8333 1.2505 3.6051

1.0000 2.6231 5.2999

1.1667 4.5633 8.0084

1.3333 5.9476 8.7516

1.5000 4.7774 5.9250
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3. The smoothness of the beam

max
i¼1;...;N

hiþ1 � hij j\Dh: ð35Þ

Although the spline interpolation generates a smooth

profile of the non-uniform beam, this constraint on the

maximum height difference between two neighboring

segments in the transfer matrix solution limits the

sharp change in the thickness.

Numerical Results

Two case studies are presented in this section with different

boundary conditions. For both cases, the number of inter-

polation coordinates, i.e., the number of design variables, is

10. The number of segments used by the transfer matrix

method is 50. The material properties of the non-uniform

beam are listed in Table 6. For all the optimization studies,

we set the population size of the MOPSOmethod as 100, the

Fig. 4 a Sound radiation

efficiency and b radiated sound

power of beam No. 1 in Fig. 3.

Solid lines the optimized non-

uniform beam. Dashed lines the

uniform beam with the same

mass. The targeted frequency

range is from 50 to 150 Hz

Fig. 5 Zoomed view of Fig. 4

in the frequency range

50–150 Hz. Solid lines the

optimal non-uniform beam.

Dashed lines the uniform beam

with the same mass. Radiated

sound power reduction of the

optimal design is 68.99 dB

compared with the baseline

beam
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number of generations as 80, and the archive size as 120. The

mutation rate is 0.025. TheMOPSOmethod is executed eight

times for each scenario. The non-dominant solutions from all

eight experiments are taken as the final result. The partition

of the objective space for fitness value assignment is

30
 30. All computations presented in this paper are con-

ducted in a laptop with a 2.4 GHz i7-4700MQ CPU.

Clamped–Clamped Beam

The constraints defined in Eqs. (33)–(35) significantly

reduce the feasible solutions in the design space. We dis-

cuss the feasible solutions in the design space first under

the following constraints:

Fig. 6 a Sound radiation

efficiency and b radiated sound

power of beam No. 2 in Fig. 3.

Solid lines the optimized non-

uniform beam. Dashed lines the

uniform beam with the same

mass. The targeted frequency

range is from 50 to 150 Hz

Fig. 7 Zoomed view of Fig. 6

in the frequency range

50–150 Hz. Solid lines the

optimized non-uniform beam.

Dashed line the uniform beam

with the same mass. Radiated

sound power reduction of the

optimal design is 77.97 dB

compared with the baseline

beam
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10 kg\mtot\30 kg;
x1

2p
[ 10Hz;

max
i¼1;...;N

hiþ1 � hij j\1:75mm:
ð36Þ

A uniform unit magnitude loading is applied to the beam

in the interval x 2 ½1:0125; 1:3125�m. The frequency of

the excitation sweep is in the range from 50 to 150 Hz.

Hence, the excitation is equivalent to a bandlimited noise

defined in this frequency range. This range represents the

frequencies of interest. The bounds of the spline coordi-

nates xi are given by 1� xi � 10 mm. The beam length is

1.5 m. The first 10 modes of the beam are used for the

structural–acoustic analysis.

Table 7 presents the results of random samplings of

feasible solutions in the design space for the clamped–

clamped beam. The number of random sampling ranges

from 1000 to half a million. We repeat the experiments five

times to compute the average ratio of the feasible solutions.

For this example, only 0.3% of the 10-dimensional design

space is occupied by the feasible points. Therefore, the

search for the Pareto set will be constrained within the

0.3% volume of the design space.

Figure 2 shows the Pareto front for the clamped–

clamped beam, which consists of 21 solutions. The average

computational time is 4765.2 s in the laptop. Figure 3

presents the thickness profile of two extreme designs,

namely, the minimum weight and minimum sound radia-

tion. The spline coordinates of the two extreme solutions

are listed in Table 8. Figures 4 and 6 show the sound

radiation efficiency and radiated sound power of the two

beams. Both quantities are reduced in the frequency range

½50; 150� Hz as compared with the baseline uniform beam

of the same mass, as highlighted in Figs. 5 and 7. The

average reduction of the radiated sound power over the

frequency range is defined as

D�P ¼ 10 lg
D�PI

P0

� �
ðdBÞ; ð37Þ

D�PI ¼
1

x2 � x1

Z x2

x1

�Pu � �Pnð Þdx; ð38Þ

where �Pu and �Pn are the radiated sound power of the uni-

form and non-uniform beam, respectively; and P0 ¼ 10�12

W is the sound power reference. The sound power reduc-

tions in the frequency range are 68.88 and 77.97 dB for the

optimal designs shown in Figs. 5 and 7, respectively.

Simply Supported Beam

A uniform unit magnitude loading is applied to the beam in

the interval ½0:4714 ; 0:7071�m. The frequency sweeps in

the range from 200 to 600 Hz. The bounds of the spline

coordinates xi are given by 1� xi � 15 mm. The beam

Fig. 8 Pareto front of the simply supported beam. The population

size of the MOPSO method is 100 with 80 generations. Fifty-five

Pareto solutions are found

Fig. 9 Optimized thickness profile for the simply supported beam.

The harmonic load is applied in the interval marked by the red lines.

a beam No. 1 has the minimum mass, while b beam No. 2 has the

minimum integrated sound power

Table 9 Spline coordinates of the optimal simply supported beam

xi (m) hðxiÞ of beam No. 1 (mm) hðxiÞ of beam No. 2 (mm)

0 4.0342 4.8759

0.1111 3.6601 3.9679

0.2222 2.9467 2.8652

0.3333 3.6577 3.8399

0.4444 3.7620 5.7222

0.5556 5.3637 7.1958

0.6667 4.0507 5.4859

0.7778 2.5819 3.1875

0.8889 4.0279 2.6919

1.0000 2.7926 3.9287
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length is 1.0 m. The first 10 modes of the beam are used for

the structural–acoustic analysis. The lower bound of the

minimum fundamental frequency is set as 8 Hz.

Figure 8 shows the Pareto front for the simply supported

beam. Fifty-five solutions are found. The average compu-

tational time is 5042.7 s. Figure 9 presents the beam shape

of two extreme designs. The corresponding spline coordi-

nates are listed in Table 9. Figures 10 and 12 show the

sound radiation efficiency and radiated sound power of the

two beams. Both quantities are reduced in the frequency

range ½200; 600� Hz as compared with the baseline uni-

form beam of the same mass, as highlighted in Figs. 11 and

13 (Fig .12). The reductions of the radiated sound power

are 35.13 and 39.19 dB in the frequency range of interest

as shown in Figs. 11 and 13, respectively.

Fig. 10 a Sound radiation

efficiency and b radiated sound

power of beam No. 1 in Fig. 9.

Solid lines the optimized non-

uniform beam. Dashed lines the

uniform beam with the same

mass. The targeted frequency

range is from 200 to 600 Hz

Fig. 11 Zoomed view of

Fig. 10 in the frequency range

200–600 Hz. Solid lines the

optimized non-uniform beam.

Dashed lines the uniform beam

with the same mass. Radiated

sound power reduction of the

optimal design is 35.13 dB

compared with the baseline

beam
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Concluding Remarks

This paper studied the multi-objective optimal design of

non-uniform beams for minimum sound radiation. The

structural weight and radiated sound power are two

objective functions. The MOPSO algorithm is used to

search for the optimal solutions. The transfer matrix

method is used to obtain solutions of vibration and sound

radiation of non-uniform beams with high efficiency and

accuracy that are required in optimization studies. We

discovered that when practical constraints such as the

smoothness and lower bound of the fundamental frequency

of the structure are imposed, the feasible solutions can be

found in only a very small subset of the design space.

Numerical results of multi-objective optimal design of non-

uniform beams with two different boundary conditions are

presented. We have shown that the optimized non-uniform

beam has a smaller radiated sound power and radiation

Fig. 13 Zoomed view of

Fig. 12 in the frequency range

200–600 Hz. Solid lines the

optimized non-uniform beam.

Dashed lines the uniform beam

with the same mass. The

radiated sound power reduction

of the optimal design is

39.19 dB compared with the

baseline beam

Fig. 12 a Sound radiation

efficiency and b radiated sound

power of beam No. 2 in Fig. 9.

Solid lines the optimized non-

uniform beam. Dashed lines the

uniform beam with the same

mass. The targeted frequency

range is from 200 to 600 Hz
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efficiency in the targeted frequency range compared with

the uniform beam of the same mass.
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