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Abstract：After a necessary condition is given, 3-rainbow coloring of split graphs with time complexity ( )O m is 

obtained by constructive method. The number of corresponding colors is at most 2 or 3 more than the minimum num-

ber of colors needed in a 3-rainbow coloring. 
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All graphs considered in this paper are simple, con-
nected and undirected. We follow the terminology and 
notation of Bondy and Murty [1]. A graph G  is a split 
graph, if ( )V G  can be partitioned into a clique and an 
independent set. Let G be a nontrivial connected graph of 
order n  on which an edge coloring is defined, where the 
adjacent edges may be colored with the same color. A 
path P  is a rainbow path if no two edges of P are col-
ored with the same color. A graph G is rainbow con-
nected if G  contains a ( u v ) rainbow path for every 
pair u , v  of distinct vertices of G . If G  is a rainbow 
connected by coloring c , then c  is called a rainbow col-
oring of G . The rainbow connection number ( )rc G  of 
G  is the minimum number of colors that results in a 
rainbow connected graph G , which is introduced by 
Chartrand et al[2]. Nowadays, there have been various 
investigations on the good upper bounds for rainbow 
connection number in terms of graph parameters [3-6].  

In 2007, Ericksen [7] stated that in the case of emer-
gency, the information transfer paths should be assigned 
between agencies, which may have other agencies as in-
termediaries that require a large enough number of pass-
words and firewalls. The organization is prohibitive to 
intruders, but small enough to ensure that any path be-
tween agencies has no password repeated. This situation 
can be studied by means of rainbow colorings of graphs. 

Subsequently, the rainbow connection number was 
generalized[8]. A tree T  is a rainbow tree if no two edges 
of T  are colored with the same color. Let k  be a fixed 
integer with 2 k n≤ ≤ . An edge coloring of G  is called 
a k-rainbow coloring if for every set S of k  vertices of 

G , there exists a rainbow tree in G  containing the verti-
ces of S . The k-rainbow index ( )krx G  is the minimum 
number of colors needed in a k-rainbow coloring of G . 
Clearly, when k＝2, 2 ( )rx G  is the rainbow connection 
number ( )rc G . 

For k  ＝ 3, Chartrand et al[8] determined the precise 
value of 3-rainbow index for trees and complete graphs. 

Lemma 1[8] Let T  be a tree of order 3n≥ , then 

3( ) 1rx T n  . 
Lemma 2[8] Let nK  be a complete graph of order 
3n≥ , then 3( )rx G  2, 3 5;n≤ ≤ 3 ( )rx G ＝3, 6n≥ .  
For the complexity of rainbow connection, it was 

shown that computing the rainbow connection number of 
an arbitrary graph is NP-hard, and the determination of 
whether a given edge-colored graph is rainbow connected 
is NP-complete[9]. Chandran and Rajendraprasad[10] also 
showed that determining whether ( ) 3rc G ≤  remains NP-

complete even for split graphs; an algorithm using at 
most ( ) 1rc G   colors to ensure that G  is rainbow con-
nected was also given with time-complexity ( )O m . 

For the k-rainbow index of split graphs, it should be 
NP-hard to compute the 3-rainbow index of graphs since 
whether ( ) 3rc G ≤  remains NP-complete. Thus, it is 
unlikely that there exists a polynomial-time algorithm to 
give a 3-rainbow coloring of split graphs with exact col-
ors. In this paper, we try to show a polynomial-time algo-
rithm of 3-rainbow coloring for a split graph G . First, by 
a constructive method, the desired algorithm is given in 
Section 1. Then, by analyzing the necessary condition, 
we show the effectiveness of the algorithm in Section 2. 
And we will prove that the time complexity is ( )O m . 
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Besides, it is worth mentioning some related re-
sults[11-15]. Hammer and Simeone[11] showed that for a 
split graph with the degree sequence 1 2 nd d d≥ ≥ ≥ , 
{ ( ) : 1}i iv V G d i ≥  is a maximum clique in G  and 
{ ( ) : 1}i iv V G d i ≤   is a maximum independent set in 
G . Furthermore, the vertices of a graph can be sorted on 
the basis of degrees in ( )O n  times. Therefore, when we 
input a split graph, we assume that the order of the verti-
ces, even a maximum clique and a maximum independ-
ent set also can be given as input to our algorithm. 

1 Algorithm 

  Algorithm 1 Coloring split graphs 
  Input ([ ], )G n E , a connected split graph with a 
maximum clique K . 
  Output A 3-rainbow coloring 3( ) {1, , ( )Gc G rx G   
 2} or 3{1, , ( )rx G ＋3} 

   { ( ) \ , }, jj i i j
NN v V G K d j n    , for 1,2j   

   3 3 3{ ( ) \ , 3},i iN v V G K d n N  ≥  

   1 2 3l n n n     

  if 3l≥  then 
  let j

ie  be the edges incident with jN , 1,2,3j   
  1( )G ic e i ，for every edge 

1

1 1 1 1
1 2{ , , , }i ne e e e   

  for 3iv N  do 
   3 3 3 3 3 3

1 2 3( ) 1, ( ) 2, ( ) 3, { , , }
iG G G dc e c e c e e e e      

  end for 

   1 2min{ : ( 1) }t x n x x x n   ≥   

   for 2iv N  do 
   let 

1 2

2 2{ , }i ie e  be the edges incident with iv . 
  

1 2

2 2( ( ), ( )) ( , )G i G ic e c e p q ,where 1 1{1,2, , , 1, ,p n n    

1n t } 
  1 1{ 1, , }, .q n n t p q     And for different , ',i i  

1

2( ( ),G ic e
2

2( ))G ic e
1 2

2 2
' '( ( ), ( ))G i G ic e c e   

  // Since 1 2( 1)n t t t n  ≥ , we can guarantee that dif-
ferent vertices correspond to different ( , )p q . 
  end for 
    1r n t   
end if 
if 2l ≤  then 
  label the l  vertex in 1 2 3N N N   by 1,2, ,l , the 
label of iv  is denoted by ( )code i , ( ) ( )Gc e code i , for all 
edges incident with iv . 
   r l   
end if  
   ( ) '( )Gc e c e , for all edges ( )e E K . 
  // 'c is the 3-rainbow coloring of Lemma 2, 

   if 3 | | 5K≤ ≤ , '( ) { 1, 2}c e r r   ;  

   if | | 6K ≥ , '( ) { 1, 2, 3}c e r r r     

  return Gc   

2 Effectiveness 

For a given connected split graph G , let iE  be the 
edge set that is incident with , 1, 2, 3,iN i   where iN  is 
introduced in Section 1. Let c  be any 3-rainbow coloring 
and 1( )c E  the set of colors used in 1E . 

Lemma 3 Let 1
1e  and 1

2e  be any two edges in 1E , 
then every 3-rainbow coloring of G  must assign different 
colors to 1

1e  and 1
2e . 

Proof Without loss of generality, we assume that 
1 '
1 1 1e v v , 1 '

2 2 2e v v , where 1 2 1,v v N . We choose 

1 2{ , }v v S , then the tree connecting S  must con-
tain 1 1

1 2,e e , thus there is no rainbow tree connecting S , a 
contradiction. Hence, the Lemma 3 holds. 

Lemma 4 For any 3-rainbow coloring c and any 
vertex v  in 2N , 2 2

1 1 2
1( ) ( ( ) ( ))c E c e c e  ≤ , where 2

1e and 
2
2e  are two edges that are incident with the vertex v . 

Proof Assume that 2 2
1 1 1 1 1 2

2( ) ( ( ) ( ))c E c e c e  ≥ , 
i.e., there is some vertex 'v and 3-rainbow coloring 1c  
such that the two edges incident with vertex 'v  receive 
different colors all used in 1E  in the 3-rainbow coloring 

1c . Then we choose vertex 'v  and vertices in 1N  corre-
sponding to edges obtaining the above different colors. 
Clearly, there is no rainbow tree connecting them, a con-
tradiction. 

Note that according to Lemma 4, the choice of color 
sets in Section 1 is reasonable. 

Lemma 5 For any 3-rainbow coloring, if one edge 
that is incident with some vertex in 2N  obtains color p  
(the color used in 1E  ), and the other edge that is inci-
dent with the same vertex receives color q  that is not 
used in 1E , then there is no vertex corresponding to two 
edges colored by color ,p q  in 2N . 

Proof Assume that there are two vertices in 2N  
such that their corresponding edges obtain colors ,p q , 
then we choose the two vertices and the vertex in 1N  
whose corresponding edge receives color p  to be set S. 
Then we cannot find any tree containing S, a contradic-
tion. Hence, Lemma 5 holds. 

We call a set of colors to be shown completely in 
vertices if there is no other color appearing on the edges 
incident with the vertices besides the set of colors. 

Lemma 6 For any 3-rainbow coloring, any two col-
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ors that are not used in 1E  are shown to be completely in 
at most two vertices of 2N . 

Proof If there are three vertices , ,i j kv v v  such that 

1

2( ( ),G ic e
2

2( ))G ic e { , }p q { , },p q
1

2( ( ),G jc e
2

2( ))G jc e 
{ , }p q  { , }p q ,

1

2( ( )G kc e
2

2, ( ))G kc e { , }p q { , }p q , where 

1 1, { 1, , }p q n n t   . By pigeonhole principle, the tree 
containing the three vertices must include the same color 
edge, a contradiction. The conclusion holds. 
  Note that in view of Lemma 5 and Lemma 6, in Sec-
tion 1 the format 

1 2

2 2( ( ), ( )) ( , )G i G ic e c e p q is justifiable,  
where 1 1 1{1,2, , , 1, , }p n n n t     , 1 1{ 1, , },q n n t    

.p q  
Now we can derive our main result as follows. 
Theorem 1 Let G  be a connected split graph, then 

the coloring obtained by Algorithm 1 is 3-rainbow color-
ing of G , using at most 3( ) 2rx G   or 3( ) 3rx G   colors. 
Moreover, the corresponding time-complexity is ( )O m . 
  Proof Firstly, we show that the Gc obtained by Algo-
rithm 1 is a 3-rainbow coloring. According to the defini-
tion, for any three vertices of ,G  we only need to find 
 a rainbow tree connecting them in G . Assume S   

1 2 3{ , , }v v v . If S K , then there is a rainbow tree con-
necting S  in G . For 1 2 3{ , } , \v v K v V K  , since G  is 
connected, there exists an edge e  connecting 3v  and K . 
Let 3 4e v v (in particular, 4 1v v or 2v ). By the above 
analysis, we can find a rainbow tree 'T contain-
ing 1 2 4{ , , }v v v . By the coloring schemes, ( )Gc e  receives 
the color different from 'T . Thus 'T T e   is the rain-
bow tree containing S . For 1 2 3, { , } \v K v v V K  , we 
can prove that the conclusion holds similarly. For 

\S V K , from the coloring schemes, whatever the three 
vertices of S  belong to 1 2 3N N N  , there exist three 
edges 1 2 3, ,e e e  colored by different colors connecting the 
three vertices in S  and some vertices in 'S  in K . Obvi-
ously, there is 'T  connecting 'S . 'S  may contain one, 
two, or three vertices, then the corresponding 'T  may be 
a vertex or a path. Hence, 1 2 3' { , , }T T e e e   is our de-
sired tree. 

Then, we check that at most 3( ) 2rx G   or 3( ) 3rx G   
colors are used. For a given connected split graph G , the 
set 1 2 3, ,N N N  of the algorithm may be empty, so we con-
sider the following cases. 

  Case 1 1 2 3,N N N     

1G K E  . By Lemma 1, 3 1( )rx G n r≥ . If 
3 | | 5K≤ ≤ , then 2r   colors are used. If | | 6K ≥ , then 

3r   colors are used.  

Case 2 3 2,N N    

  1 3G K E E   , where 3E  must be unempty and  

1E  may be empty. In this case, if 1 3n ≥ , by Lemma 3, 

the conclusion holds. Otherwise, 1 2n ≤ . When 3l≥ , we 

choose the three vertices of 1 3N N  as the set S . Then 

the rainbow tree connecting S  has size at least 3, thus we 

get 3( ) 3rx G ≥ . In such circumstances, the algorithm uses 

5 or 6 colors. When 2l ≤ , it is easy to see that a tree 

containing three vertices has size at least 2, i.e., 

3 ( ) 2rx G ≥ . It can be seen that Algorithm 1 uses 4 or 5 

colors. From the above discussion, the conclusion holds. 
Case 3 2N    

  1 2 3G K E E E    , where 2E  must be unempty, 

1E and 3E  may be empty.  
When 3l≥ , according to Lemmas 4, 5 and 6, we 

know that at least 1min{ :x n x   2( 1) }x x n ≥  colors are 
needed to guarantee that there exists a rainbow tree con-
necting the vertices in 2N . When 2l ≤ , it can be easily 
checked. In summary, if there is a rainbow tree connect-
ing any three vertices in 1 2 3N N N  , then the colors 
used in 1 2 3E E E   have at least r  colors, so 

3( )rx G r≥ . The algorithm uses at most 2r   or 3r   
colors. 

Finally, the algorithm visits each edge exactly once 
and 1 2min{ : ( 1) }t x n x x x n   ≥  can be solved in con-
stant time. Hence, the time-complexity is ( )O m . 

3 Conclusions 

  A 3-rainbow coloring of split graphs is given in this 
paper, which uses at most 3( ) 2rx G   or 3( ) 3rx G   col-
ors. Moreover, the time-complexity is ( )O m . 
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