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Abstract  This paper reviews the recent advances on the combination of component
mode synthesis and model order reduction for geometrically nonlinear analysis, focusing on 
fixed-interface substructures and non-intrusive reduced-order models. These approaches offer 
significant potential for engineering applications by enabling accurate mechanical behavior
prediction without detailed geometric and material information. Additionally, they facilitate safe 
sharing and collaboration between companies, reducing design times and production costs
while also offering computational efficiency. However, challenges remain, indicating the need
for future improvements in this area. 

 
1. Introduction   

Designing complex structures such as airplanes, ships, and automobiles is a challenging and 
time-consuming process. To reduce the design time and improve the design quality, the entire 
structure is often divided into multiple substructures and assigned to different departments. This 
approach enables parallel processing and allows multiple teams to work on different parts of 
the structure simultaneously, which significantly reduces the overall design time. Additionally, it 
allows each department to focus on specific substructures and become experts in their respec-
tive areas, resulting in improved overall design quality [1, 2]. 

To further reduce design time, model order reduction techniques can be applied to substruc-
tures. This involves constructing reduced-order models (ROM) for the substructures, which are 
then assembled to form a ROM of the entire structure. The ROM has a significantly lower com-
putational cost than the finite element (FE) model, especially in simulations of structural dynam-
ics. 

Furthermore, a ROM has an advantage over a FE model in that it does not require geometry 
and material information of the structure. This can be particularly important in projects involving 
multiple independent companies, such as collaborations between an original equipment manu-
facturer and its partners. Each company is responsible for designing and manufacturing spe-
cific components of the structure. ROMs of these components can be securely shared between 
companies for design optimization purposes. 

The structure of vehicles is often made as thin as possible to reduce weight, thereby improv-
ing energy efficiency [3–5]. In such cases, the structure is allowed to undergo large displace-
ments, as long as the material still remains elastic. However, striking a balance between econ-
omy and safety presents a challenge that requires geometrically nonlinear analysis. Therefore, 
the development of nonlinear ROMs has become necessary and has attracted the attention of 
many scientists in recent years. 

The objective of this paper is to provide a review of recent advances in the combination of 
component mode synthesis and model order reduction techniques for substructures. The proc-
ess of constructing ROMs for substructures is shown in Fig. 1. The remainder of this paper is 
organized as follows: Sec. 2 provides an overview of component mode synthesis, Sec. 3 cov-

© The Korean Society of Mechanical 
Engineers and Springer-Verlag GmbH 
Germany, part of Springer Nature 2024 



 Journal of Mechanical Science and Technology 38 (9) 2024  DOI 10.1007/s12206-024-0807-4 
 
 

 
4700  

ers geometrically nonlinear ROM, Sec. 4 evaluates the combi-
nation of component mode synthesis and ROM, and Sec. 5 
presents conclusions and perspectives. 

 
2. Component mode synthesis 
2.1 Overview of component mode synthesis 

Component mode synthesis was initially introduced for linear 
dynamic analysis of complex and discontinuous geometric 
structures, which could not be effectively simulated due to their 
high number of degrees of freedom (DOFs) [2]. Component 
mode synthesis addresses such structures by dividing them 
into several components that are geometrically simpler or con-
tain a limited number of DOFs for processing (see Fig. 2), and 
then reassembling them later. Recognizing the potential of 
component mode synthesis, the research community collabo-
rated to further develop this method. Today, it is commonly 
used to address structures that are discontinuous in both ge-
ometry and materials. Structures with local nonlinearities, such 
as contact or material nonlinearities, can be divided into linear 
and nonlinear components for processing, thereby keeping 
computational costs reasonable. 

Component mode synthesis is built on the assumption that 
the physical displacement of substructures is a linear combina-
tion of a small number of vibration modes and static modes. 
This assumption is effective because high-frequency vibration 
modes contribute very little to the dynamic behavior of struc-
tures. 

There are three approaches in component mode synthesis 
techniques concerning the constraints at the interface of sub-
structures: fixed [6, 7], free [8, 9], and hybrid [10, 11]. This pa-
per focuses on the fixed interface approach because of its 
simplicity and robustness, which has made it widely adopted in 
engineering [12–23].  

Commercial FE software, such as Abaqus and Nastran, in-

cludes the fixed interface component mode synthesis. How-
ever, it still has certain limitations. Firstly, it is not possible to 
apply force or displacement to the internal nodes of the sub-
structure. Additionally, the stiffness and mass matrices of the 
substructure are assumed to be constant, which means that 
the substructure model cannot account for geometric nonlin-
earity. Unfortunately, these limitations are increasingly becom-
ing necessary in the structural design process. While commer-
cial FE software has not yet improved component mode syn-
thesis techniques to address these shortcomings, users may 
need to develop their own code to overcome such limitations. 
In such case, the commercial FE software, as well as open-
source software (e.g., Eigen, SLEPc), can be used to extract 
eigenvalues and eigenvectors, serving to build nonlinear 
ROMs for substructures. 

 
2.2 Linear projection onto a smaller-dimensional 

space 

The linear equation of motion (undamped) for a substructure 
is as follows [1]: 

 
s s s s s s+ = +M u K u f g ,  (1) 

 
in which the subscript s  denotes the substructure. M  
represents the mass matrix, K  the linear stiffness matrix, u  
the nodal displacement vector, f  the external force, and g  
the connecting force between substructures. The nodal dis-
placement vector, which includes N  DOFs, can be reduced 
in size by projecting onto a smaller-dimensional space as fol-
lows [1]: 

 
s s s=u V q ,  (2) 

 
where sq  is a vector consisting of n  generalized coordinates, 
and sV  is a reduction basis ( N n

s
×∈ℜV ). Eq. (1) is then re-

duced in size as follows: 

 
 
Fig. 1. Flow chart for the correction of the roll forming process design. 

 

 
 
Fig. 2. The division of the entire structure into two substructures. 
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( ) ( ) ( )T T T
s s s s s s s s s s s+ = +V M V q V K V q V f g . (3) 

 
Consequently, the choice of the reduction basis is crucial be-

cause it directly influences the accuracy and computational 
cost of the linear ROM. 

The substructure’s nodes can be distinguished between in-
terface nodes (denoted by the superscript B ) and interior 
nodes (denoted by the superscript I ), as shown in Fig. 2. Eq. 
(1) can be rewritten with the decomposition of the interface 
DOFs and the interior DOFs as follows [7]: 

 
BB BI B BB BI B B
s s s s s s s s
IB II I IB II I I
s s s s s s s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M M u K K u f g
M M u K K u f

. (4) 

 
Typically, reducing the number of interior DOFs is given pri-

ority since their count is usually greater than that of interface 
DOFs. Nevertheless, the number of interface DOFs can be 
significant in some cases, and researchers have also proposed 
several methods to reduce their count. 

To reduce the DOFs of substructures, it is necessary to con-
sider constraints at the interface. These interface constraints 
can take different forms, such as fixed [6, 7], free [8, 9], or hy-
brid [10, 11]. In this section, we provide a brief overview of the 
fixed interface method, which is widely adopted in engineering 
[24–26]. With the fixed interface approach, the connecting 
force between the substructures ( sg ) is not taken into account 
during the assembly of ROMs for the substructures, because 
they mutually cancel each other out. For a more detailed explo-
ration of other approaches, please refer to Refs. [1, 2, 27-29]. 

 
2.3 Reducing interior DOFs 

For the fixed interface approach, the displacement of the in-
terior nodes depends on the displacement of the interface 
nodes and the generalized interior coordinates, as suggested 
by Ref. [7]. The relationship is as follows: 

 
I B I
s s s s s≈ +u Ψ u Φ q  , (5) 

 
where I

sq  is a vector consisting of generalized interior coordi-
nates. sΨ  is a matrix consisting of constraint modes. The 
number of constraint modes is equal to the number of interface 
DOFs. By giving each interface DOF a unit displacement while 
fixing the remaining interface DOFs, one can obtain a corre-
sponding constraint mode, as illustrated in Fig. 3. The con-
straint modes can be computed as follows [7]: 

 

( ) 1II IB
s s s

−
= −Ψ K K . (6) 

 
sΦ  is a matrix consisting of selected vibration modes. Fig. 3 

illustrates a vibration mode of a substructure with the fixed 
constraint at the interface. The vibration modes are obtained by 
solving the eigenvalue equation of the substructure, as below 

[7]: 
 
( )2

, ,
II II
s s i s s iω− =K M Φ 0 . (7) 

 
Thus, the reduction basis of the substructure model is as fol-

lows [7]: 
 

B B
s s
I I

s ss s

⎡ ⎤ ⎡ ⎤⎡ ⎤
≈⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

I 0u u
Ψ Φu q

 (8) 

 
where I  is an identity matrix. 

 
2.4 Reducing interface DOFs 

Today, structural models often try to describe the physics as 
closely to reality as possible. Consequently, the size of FE 
models is increasing. While the number of interior DOFs has 
been reduced, the number of interface DOFs remains signifi-
cant in certain cases. Therefore, the reduction of interface 
DOFs has been proposed by Craig and Chang since 1977 [30]. 
However, it is only in recent years that this task has garnered 
significant attention from researchers [31–38]. 

The reduction of interface DOFs can be performed on the 
model of the entire structure (global level) or on each model of 
the substructures (local level). In both cases, the displacement 
at the interface is approximated by a linear combination of a 
small number of eigenvectors (referred to as the characteristic 
constraint modes by Ref. [31]) as follows: 

 
B CC B≈u Φ q , (9) 

 
where Bq  is a vector consisting of generalized interface coor-
dinates. CCΦ  is a matrix consisting of selected characteristic 
constraint modes. 

The characteristic constraint modes can be calculated at the 
global level as follows [31]: 

 
( )2BB BB CC

i iω− =K M Φ 0  , (10) 
 

in which BBK  and BBM  are the stiffness and mass matrices 
of the interface part in the model of entire structure, respec-
tively. 

Computing the characteristic constraint modes at the global 
level must be performed after assembling the models of all 

 
Fig. 3. A constraint mode (left) and a vibration mode (right) of a plate with 
fixed interface. 
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substructures into a single model of the entire structure. It may 
be cumbersome if the entire structure is divided into numerous 
substructures. Therefore, the characteristic constraint modes 
have been proposed to compute at the local level in several 
studies [32, 36, 37]. 

The characteristic constraint modes can be calculated at the 
local level as follows [36]: 

 
( )2

, ,
BB BB CC
s s i s s iω− =K M Φ 0 , (11) 

 
in which BB

sK  and BB
sM  are the stiffness and mass matrices 

of the interface part in the model of substructure, respectively. 
The reduction basis for the fixed-interface model, including the 
reduction of the interface DOFs, is calculated as follows: 

 
B BCC
s ss
I I

s ss s

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
≈ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

I 0u qΦ 0
Ψ Φu q0 I

. (12) 

 
The reduction of local-level interface DOFs is performed on 

each substructure prior to assembly, making it very convenient 
for subsequent assembly. When assembling two models of two 
substructures connected by an interface, the same characteris-
tic constraint modes must be used for both models. However, 
in the case of an interface with complex geometry, the charac-
teristic constraint modes of adjacent substructures may not be 
the same. In such cases, one might need to apply methods 
such as singular value decomposition [32, 36, 39], weak com-
patibility [32, 35], or uncoupled weak compatibility [32] to en-
sure that the local characteristic constraint modes of adjacent 
substructures are identical. 

In addition, the reduction of interface DOFs has also been 
successfully performed for other interface constraint methods. 
For more details, one can refer to the Refs. [11, 40, 41]. 

 
3. Nonlinear ROM for substructure 
3.1 Overview of geometrically nonlinear ROMs 

When the structure vibrates with large amplitude, the as-
sumption of a linear relationship between displacement and 
load becomes invalid, making linear analysis inaccurate. In 
such cases, analyzing geometric nonlinearity is necessary, 
requiring the recalculation of tangential stiffness and internal 
forces each time the structure's displacement changes. Geo-
metrically nonlinear analysis has been recommended for air-
craft engine design [42]. However, dynamic analysis often in-
volves numerous iterations, thus considering geometric nonlin-
earity significantly increases computational cost. 

Nonlinear ROM can be used to predict the geometrically 
nonlinear behavior of structures at low computational cost. To 
reduce computational cost, the number of DOFs of the model 
must be reduced by projecting the displacement vector onto a 
smaller-dimensional space. The projection from the physical 
displacement space to the reduced space can be linear or 

nonlinear (i.e., a quadratic manifold) [43]. In the context of sub-
structures, linear projection is naturally compatible with compo-
nent mode synthesis while the applicability of nonlinear projec-
tion is questionable, especially when considering interface 
reduction. Therefore, this study focuses on linear projection-
based ROMs. 

In geometrically nonlinear ROM, the nonlinear internal force 
of the structure is assumed to be a polynomial of the general-
ized coordinates. This assumption is derived from the Taylor 
series expansion of functions. The simplicity of calculating a 
polynomial is also a reason why this assumption is widely used. 

The coefficients of the polynomial, referred to as nonlinear 
stiffness coefficients, can be computed by intrusive or non-
intrusive methods, as classified in Ref. [44]. Non-intrusive 
methods do not require intervention in the source code of FE 
software. They only require the extraction of internal forces or 
displacement vectors; therefore, they are compatible with com-
mercial FE software, leading to wide applicability in engineering. 
Therefore, this paper focuses on non-intrusive methods. 

In geometrically nonlinear analysis, the nonlinear internal 
force component is considered, resulting in the equation of 
motion (undamped) for a substructure as follows [1]: 

 
( )s s s s s s s s+ + = +M u K u Γ u f g , (13) 

 
in which Γ  represents the nonlinear component of internal 
force. 

Two problems arise when constructing geometrically nonlin-
ear ROMs [45]. The first problem is to build an efficient reduc-
tion basis that accurately represents the nonlinear displace-
ment of the structure while minimizing the number of modes. 
The second problem involves reproducing the nonlinear inter-
nal force components of the structure within the ROM. These 
two problems are reviewed in the following two subsections. 

 
3.2 Reduction basis 

The reduction basis is a mapping between the displace-
ments of the FE model and the generalized coordinates of the 
ROM. One can use linear or nonlinear mapping for geometri-
cally nonlinear ROMs. Nonlinear mapping (manifold) methods 
have been reviewed in detail in the Ref. [43]. This paper fo-
cuses only on linear mapping due to its simplicity and robust-
ness. This means that the model is still reduced in size accord-
ing to Eqs. (2) and (3), but the reduction basis must be en-
hanced by some basis vectors to ensure the accuracy of the 
projection when dealing with geometric nonlinearities. The 
following subsections briefly review the basis vectors that have 
been proposed to enhance the reduction basis of substructure 
models. 

 
3.2.1 Modal derivative 

The modal derivative, which is the derivative of the eigenvec-
tor with respect to the generalized coordinates, was first pro-
posed for nonlinear dynamics analysis by Idehlson and Cardo-
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na [46, 47]. It is possible to compute the modal derivatives 
exactly, but the computational cost is high [48]. To reduce the 
cost, the modal derivatives can be approximated using Eq. (14) 
[46]. It should be noted that the derivative of the stiffness matrix 
with respect to the generalized coordinates can be calculated 
using the finite difference method. The modal derivative calcu-
lated in this way is called the static modal derivative, as it ig-
nores the inertial components. 

 

( ) 1

0

0 0

i
ij i

j j

−∂ ∂= = −
∂ ∂
Φ KΘ K Φ
q q

. (14) 

 
More recently, the static modal derivatives have been used 

to enhance the reduction basis of nonlinear ROM of substruc-
tures [49–51]. The static modal derivatives may need to be 
modified to satisfy the constraint assumption at the interface. 
For example, in the case of a classical fixed-interface model, 
the static modal derivatives must be computed as follows [52]:  

 

( ) 1

, , ,0
, ,0 0

II IB
II I Bs s

s ij s s j s j
s i s iγ γ

− ⎛ ⎞∂ ∂⎜ ⎟= − +
⎜ ⎟∂ ∂⎝ ⎠

K KΘ K X X , (15) 

 
in which 

TB I
s s s⎡ ⎤= ⎣ ⎦γ u q , [ ]I

s s s=X Ψ Φ , and [ ]B
s =X I 0 . 

The reduction basis and the generalized coordinates will be 
further expanded as follows [52]: 

 
B
sB
Is
sI

s s s Is
s

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥≈⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

u
I 0 0u

q
Ψ Φ Θu

ξ
, (16) 

 
where I

sξ  is extra coordinates, sΘ  is a matrix that includes 
selected static modal derivatives. 

By using a reduction basis as expressed in Eq. (16), the non-
linear ROM can accurately predict the mechanical behavior of 
the substructure under various load cases. This is possible 
because the linear vibration modes and static modal deriva-
tives are independent of the applied load. However, the main 
challenge of this method lies in selecting the appropriate basis 
vectors to achieve a minimal reduction basis size while main-
taining high projection accuracy. Several strategies have been 
proposed to address this challenge, involving the selection of 
necessary modes and the elimination of duplicated or unnec-
essary modes [53–56].  

 
3.2.2 Proper orthogonal mode 

Data-driven methods such as Proper orthogonal decomposi-
tion can be used to calculate the best-fit space for projection 
[42, 57–65]. Firstly, the substructure's nodal displacements at 
various time instances are stored in a matrix ( sA ) known as 
the snapshot matrix, as illustrated in Eq. (17). The proper or-
thogonal modes POD

sΦ  are then obtained through the singular 
value decomposition of the snapshot matrix, as expressed in 
Eq. (18). These modes constitute a projection space where the 

projection error is minimized. To optimize the size of the reduc-
tion basis, only the modes with the largest corresponding sin-
gular values are selected, while the ones with small singular 
values can be discarded. 

 
( ) ( ) ( )1 2s s s s mt t t= ⎡ ⎤⎣ ⎦A u u u… , (17) 

POD T
s s=A Φ ZR . (18) 

 
These modes may have non-zero displacements at interface 

nodes, as shown in Eq. (19). In such cases, it is necessary to 
modify these modes, as depicted in Eq. (20), to ensure zero 
displacement at the interface nodes [42]. Finally, the reduction 
basis of the substructure is expressed by Eq. (21). 

 
,

,

POD B
POD s
s POD I

s

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Φ
Φ

Φ
, (19) 

, , ,POD I POD I POD B
s s s s= −Φ Φ Ψ Φ , (20) 

,

B B
s s

POD II I
s ss s

⎡ ⎤ ⎡ ⎤⎡ ⎤
≈⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

I 0u u
Ψ Φu q

. (21) 

 
The advantage of the reduction basis indicated in Eq. (21) is 

its relatively compact size. However, a drawback of this ap-
proach is the high computational cost associated with obtaining 
the snapshot matrix. Furthermore, when changing the type of 
load, it is necessary to recalculate the proper orthogonal 
modes. 

 
3.2.3 Krylov-subspace 

Another method to generate a reduction basis, which also 
uses information about the spatial distribution of the applied 
load, involves relying on Krylov-subspace [66]. Let's consider a 
linear equation of motion (undamped) for a structure, as shown 
in Eq. (22). The linear displacement of the structure can be 
approximated through a linear combination of static modes, as 
demonstrated in Eq. (23) [1, 67–72]. The first static mode 
represents the static displacements induced by external forces 
(Eq. (24)). The second static mode corresponds to the dis-
placement of the structure under a pseudo load, which is the 
inertial force 1

staticMφ . Consequently, the calculation of the ith 
static mode is based on the previous static mode, as ex-
pressed in Eq. (25). To ensure mutual orthogonality in terms of 
mass and stiffness and to mitigate round-off errors, it is neces-
sary to modify the static modes following the guidelines pro-
vided in the Refs. [1, 70]. 

 
+ =Mu Ku f , (22) 

1

n
static

linear i i
i=

≈∑u φ q , (23) 

1
1
static −=φ K f , (24) 

1
1

static static
i i

−
−=φ K Mφ . (25) 

 
For geometrically nonlinear analysis, the modal derivatives of 

the static modes, which are also computed using Eqs. (14) and 
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(15), are further enriched for the reduction basis. The reduction 
basis of a substructure model is as follows: 

 
B
sB
Is
sstatic staticI

s s s Is
s

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥≈⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

u
I 0 0u

q
Ψ Φ Θu

ξ
 . (26) 

 
The Krylov-subspace offers several advantages compared to 

the linear vibration modes and the proper orthogonal modes. It 
requires a smaller subspace size to achieve similar projection 
accuracy compared to the linear vibration modes. Additionally, 
calculating the static modes can be more cost-effective than 
the vibration modes since it avoids the need to solve an eigen-
value problem, particularly for large-sized FE models. In con-
trast to the proper orthogonal modes, the computation of the 
static modes is less expensive as it only requires linear analy-
sis, while generating the proper orthogonal modes necessitates 
nonlinear analysis. However, similar to the proper orthogonal 
modes, the Krylov-subspace shares the disadvantage of being 
load-dependent. Therefore, when the type of load changes, 
recalculating the Krylov-subspace becomes necessary. 

 
3.3 Nonlinear stiffness coefficients 

This section reviews methods for calculating nonlinear stiff-
ness coefficients, which aid in reconstructing the nonlinear 
internal forces of the nonlinear ROM. The nonlinear stiffness 
coefficients can be computed using either intrusive methods 
(which necessitate permission to interfere the FE code) or non-
intrusive methods (which do not require permission to interfere 
the FE code) [44]. This paper focuses on non-intrusive meth-
ods because they are compatible with commercial finite ele-
ment software, thereby broadening their applicability in engi-
neering. 

 
3.3.1 Taylor-expansion-based stiffness 

The internal force of the substructure can be approximated 
by a polynomial of generalized coordinates through a Taylor 
series expansion around the equilibrium position, as depicted 
in Refs. [73–75]: 

 
2 3

int int int
int 2 3

0 0 0

1 1
2! 3!

∂ ∂ ∂≈ + + +
∂ ∂ ∂
f f ff q qq qqq
q q q

… . (27) 

 
Therefore, the internal force vector after size reduction is al-

so approximated by a polynomial, as follows: 
 

( ) ( ) ( )1 2 3
int, int

T
red = ≈ + + +f V f K q K qq K qqq … . (28) 

 
where the stiffness tensors are calculated as follows: 

 
( )1

0
T=K V K V , (29) 

( )2

0

1
2!

T ∂=
∂
KK V V
q

, (30) 

( )
2

3
2

0

1
3!

T ∂=
∂

KK V V
q

. (31) 

 
The derivatives of the stiffness matrix (or internal force vec-

tor) with respect to the generalized coordinates can be calcu-
lated using the central difference method. This method is com-
patible with commercial finite element software, offers good 
accuracy, and is cost-effective [73, 75]. 

In the case of the FE model of the structure generated based 
on the von Kármán or St. Venant-Kirchhoff theories, the inter-
nal force of the structure precisely follows a cubic polynomial of 
the physical coordinates as well as the generalized coordinates 
[74, 76–79]. However, in other cases, the cubic polynomial is 
merely an approximation, which may introduce varying de-
grees of error. Unfortunately, many commercial FE software 
packages do not employ these special theories, necessitating 
careful consideration of the polynomial order. 

When using commercial FE software to construct a nonlinear 
ROM, representing the nonlinear internal forces with a cubic 
polynomial still produces satisfactory results in certain bound-
ary conditions. These scenarios typically involve boundary 
conditions that restrict the in-plane displacement of the struc-
ture, such as clamped-clamped beams or fully clamped plates 
[73, 75]. However, if the in-plane displacement of the structure 
is significant, such as in the case of cantilever beams subjected 
to transverse loads, a cubic polynomial assumption is insuffi-
cient. In such cases, a fifth-order polynomial provides better 
results [73, 75]. Furthermore, it has been demonstrated that 
the use of a fifth-order polynomial also yields better results for 
curved beam substructures [80]. 

 
3.3.2 Identified stiffness 

The nonlinear stiffness coefficients can also be identified by 
solving a system of linear algebraic equations, as shown in Eq. 
(32), where x is a vector containing the unknown stiffness coef-
ficients. There are two strategies to obtain this system of equa-
tions. The first strategy involves imposing selected displace-
ments on the structure, while the second strategy involves 
imposing selected loads on the structure. 

 
=Cx D . (32) 

 
The first strategy includes two methods: Enforced displace-

ment (ED) and enhanced enforced displacement (EED). In the 
ED method, the nonlinear stiffness coefficients are identified 
based on the static displacements and the corresponding in-
ternal forces [81, 82]. Meanwhile, in the EED method, the 
nonlinear stiffness coefficients are identified based on the static 
displacements and the corresponding tangent stiffness matri-
ces of the structure [83, 84]. The process of these two methods 
is illustrated in Fig. 4.  

To solve a system of linear equations, the number of equa-
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tions must be greater than or equal to the unknowns. In each 
displacement case, the EED method obtains more equations 
than the ED method. Therefore, the number of calculation 
cases required by the EED method (NEED) is fewer than that of 
the ED method (NED), resulting in a lower computational cost 
for the EED method compared to the ED method [45]. How-
ever, the ED method is compatible with most commercial FE 
software, while the EED method may not be feasible due to the 
potential inability to extract the tangent stiffness matrix with 
certain commercial FE software. 

To ensure that the stiffness coefficients are always deter-
mined, sets of up to three equations are constructed and 
solved sequentially instead of solving a large system of equa-
tions. The construction of small equation sets is achieved by 
isolating a few generalized coordinates [45, 81–84]. Addition-
ally, the choice of magnitude for the generalized coordinates 
during identification can impact the identified stiffness coeffi-
cients, which in turn influences the outcome of the ROM [76, 
82, 85, 86]. Further details can be found in the Refs. [45, 81, 84, 
85].  

The second strategy, known as the implicit condensation and 
expansion (ICE) method, identifies the nonlinear stiffness coef-
ficients based on the static loads and the corresponding dis-
placements of the structure [87–92]. This method assumes that 
the membrane displacement of the structure is small, thereby 
having negligible influence on the internal forces. Consequently, 
the reduction base only includes transverse vibration modes. 
The internal force is assumed to be a cubic polynomial of the 
generalized coordinates associated with the transverse vibra-
tion modes. The coefficients of this polynomial are determined 
using least squares methods. In situations where the calcula-

tion of the membrane displacement is necessary to determine 
the structural stress, it can be calculated based on its assumed 
relationship with the transverse displacement. 

The process of the ICE method is illustrated in Fig. 5. With 
the same number of generalized coordinates, the computa-
tional cost of this method may be higher than that of the ED 

 
 
Fig. 4. Process of ED and EED identification methods. 

 

 
 
Fig. 5. Process of ICE identification method. 
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and EED methods because, in each load case, the FE analysis 
may require several iterations to achieve convergent results. In 
this method, all unknown stiffness coefficients are determined 
simultaneously instead of in small groups like the ED and EED 
methods. The amplitude of the applied force also influences 
the identified stiffness coefficients [93, 94]. Recently, higher-
order polynomials, up to the eleventh order, have been consid-
ered for ICE ROMs to enhance the ability to predict the behav-
ior of the structure when subjected to an extremely high magni-
tude load [94–98]. Further details of this method can be found 
in the Refs. [1, 87, 88].  

 
3.3.3 Challenges 

Accurately predicting the geometrically nonlinear displace-
ments of cantilever structures poses a significant challenge for 
ROMs constructed using commercial FE software. This chal-
lenge arises from the unique characteristics of cantilever struc-
ture displacements. In the case of a cantilever beam subjected 
to a moderate-magnitude transverse load, the out-of-plane 
displacement of the beam exhibits near linearity, while the in-
plane displacement displays a high degree of nonlinearity. 
Nonlinearity in the out-of-plane displacement only becomes 
apparent when the magnitude of the applied load is sufficiently 
high. 

For flat cantilever structures subjected to transverse loads, 
Wang et al. [99] proposed a strategy to improve the accuracy 
of the stiffness coefficients of the ROM. First, it is necessary to 
separate the pure membrane displacement from the pure 
bending displacement. This separation is feasible for flat struc-
tures because one can easily choose the basis vectors that 
represent either the pure bending mode or the pure membrane 
mode. Then, according to Ref. [100], the stiffness coefficients 
represented in Eq. (33) should be eliminated, with subscripts b 
and m denoting the bending and membrane modes, respec-
tively. Subsequently, the remaining stiffness coefficients can be 
further corrected to enhance the accuracy of the ROM [85, 99]. 
This strategy can also be applied to slightly curved structures, 
as it is also possible to identify the dominant bending modes 
and dominant membrane modes. 

 
( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 0bbmm mmbb bmbm mbmb bmmb mbbmK K K K K K= = = = = = . (33) 

 
When comparing a clamped-clamped beam and a cantilever 

beam of the same material and dimensions, both subjected to 
an identical transverse load, it becomes evident that the canti-
lever beam exhibits a significantly lower ratio of axial internal 
force to membrane displacement compared to the clamped-
clamped beam. Consequently, it is reasonable to reduce the 
higher-order stiffness coefficients associated with membrane 
displacement in the case of cantilever structures. However, this 
strategy may prove less effective when the cantilever beam 
experiences simultaneous transverse and axial loads. Addi-
tionally, for structures with high curvature, this strategy may 
also be less effective due to the strong coupling between 

membrane and bending displacements present in each of the 
basis vectors. 

 
4. Combining component mode synthesis 

and model order reduction 
4.1 Overview of combination 

There are three possibilities to combine the component 
mode synthesis with model order reduction technique as fol-
lows: 

Combination 1: Component mode synthesis and explicit 
ROM; 

Combination 2: Component mode synthesis and displace-
ment-based identified ROM; 

Combination 3: Component mode synthesis and force-based 
identified ROM. 

Combination 1 offers the advantage of simplicity and ease 
of implementation. It also has the capability to enhance the 
accuracy of the ROM by increasing the order of the polyno-
mial representing the internal force. However, its drawback 
lies in its higher computational cost compared to the other two 
combinations. Therefore, it is best suited for predicting the 
dynamic behavior of structures with complex geometries, such 
as curved structures, where high prediction accuracy is re-
quired. 

Combination 2 offers the advantage of lower computational 
cost compared to combination 1. However, its limitation lies in 
the inability to increase the order of the polynomial represent-
ing the internal force. Therefore, it is best suited for predicting 
the dynamic behavior of flat or shallowly curved structures with 
boundary conditions that constrain membrane displacement, 
such as plates being clamped at all edges. 

Combination 3 offers the advantage of flexibility in assuming 
the function representing the internal force. However, its limita-
tion lies in considering only a limited number of eigenvectors in 
the reduction base. Consequently, the reduction base fails to 
capture the displacements of structures with complex geome-
tries, such as curved structures. Hence, it is best suited for 
predicting the dynamic behavior of flat structures with boundary 
conditions that do not constrain membrane displacements, 
such as flat cantilever panels. 

The subsequent Subsec. 4.2 and 4.3, present the assembly 
of linear and nonlinear ROMs, respectively, using the Craig-
Bampton component mode synthesis technique. 

 
4.2 Assembly of linear ROMs 

The linear equation of motion for the assembled entire struc-
ture is as follows [1]: 

 
sys sys sys sys sys+ =M q K q f , (34) 

 
in which the stiffness and mass matrices of the entire structure 
are calculated as follows [1]: 
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,1
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⎡ ⎤
⎢ ⎥
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⎢ ⎥
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0 0 0
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,1

,2

, s

s

sT
sys

s n

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K 0 0 0
0 K 0 0

K L L
0 0 0
0 0 0 K

, (36) 

 
where ,s iM  and ,s iK  represent the reduced-order stiffness 
and mass matrices of the ith substructure, respectively. ns is the 
number of substructures in the system. L is the Boolean local-
ization matrix, which combines the connecting forces ( sg ) on 
both sides of each interface in such a way that they mutually 
cancel each other out, as follows [1]: 
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, (37) 

 
where ni is the number of interfaces in the system. The matrix 
L also serves as the mapping of the DOFs in each substruc-
ture to the DOFs in the system, ensuring the uniqueness of 
each DOF, as follows [1]: 
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. (38) 

 
For example, if a structure is divided into two substructures, 

L is the mapping from the DOFs of the two substructures to the 
DOFs of the entire structure, as follows: 
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u
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L q
u q
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. (39) 

 
Therefore, L is determined as follows: 

 
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

I 0 0
0 I 0

L
I 0 0
0 0 I

. (40) 

Then, Eq. (34) can be solved using an implicit Newmark 
scheme for the time integration [51]. 

 
4.3 Assembly of nonlinear ROMs 

The nonlinear equation of motion for the assembled entire 
structure is as follows [1]:  

 
( )sys sys sys sys sys sys sys+ + =M q K q Γ q f , (41) 

 
in which Γ  represents the nonlinear component of internal 
force. 

To solve Eq. (41), an implicit Newmark scheme combined 
with a Newton-Raphson iteration is employed [51]. The New-
ton-Raphson iteration is performed in each time step until con-
vergence is achieved. At each iteration, the internal force vec-
tor and the tangent stiffness matrix require updating, as dem-
onstrated below [1]:  

 

int, ,1

int, ,

int, , s
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T

red sys

red n

⎡ ⎤
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⎢ ⎥
⎣ ⎦
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, (43) 

 
where the tangent stiffness matrix of the ith substructure is cal-
culated as follows: 

 
( ) ( ) ( )1 2 3

, , , , , , ,2t
s i s i s i s i s i s i s i= + + +K K K q K q q …  . (44) 

 
5. Conclusions 

This paper has provided a comprehensive review of the 
combination of fixed-interface substructuring and non-intrusive 
model order reduction. This combination enables the creation 
of equivalent models for substructures, which accurately pre-
dict the mechanical behavior without requiring detailed geomet-
ric and material information. The use of equivalent models 
promotes safe sharing and collaboration between companies, 
leading to shorter design times and reduced production costs. 
Additionally, the reduction in computational time is a significant 
advantage of this approach. 

However, the major challenge faced by equivalent models 
lies in accurately predicting the mechanical behavior of struc-
tures with high curvature and/or large rigid rotations. In such 
cases, a fifth-order equivalent model may yield more accurate 
results compared to a third-order equivalent model. Currently, 
the calculation of stiffness tensors for the fifth-order equivalent 
model involves high computational costs, as they are derived 
from derivatives of the stiffness matrix or internal force vector. 
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Therefore, it is imperative to develop methods that can effi-
ciently identify the stiffness tensors of the fifth-order equivalent 
model, thereby reducing computation time. 

Furthermore, improvements can be made to the reduction 
base and interface reduction process employed in the equiva-
lent model. Through a comparison of reduction bases in Sec. 
3.2, it is evident that creating a compact reduction base capa-
ble of handling a wide range of loads will significantly reduce 
the time required for building the equivalent model. Moreover, 
the current interface reduction process is somewhat cumber-
some, and there is a need for improvements to make it more 
convenient and user-friendly. Finally, the accuracy of the 
equivalent model constructed by different combinations of 
component mode synthesis and nonlinear model order reduc-
tion needs to be evaluated in future studies. 
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Nomenclature------------------------------------------------------------------ 

M : Mass matrix  
K : Stiffness matrix 
u : Nodal displacement vector 
ü : Nodal acceleration vector 
f : External force  
g : Connecting force 
V : Reduction basis 
q : Vector consisting of generalized coordinates 
Ψ : Matrix consisting of constraint modes 
Φ : Matrix consisting of vibration modes 
ΦCC : Matrix consisting of characteristic constraint modes 
ΦPOD : Matrix consisting of proper orthogonal modes 
Θ : Matrix consisting of static modal derivatives 
fint : Internal force 
L : Boolean localization matrix 
I : Identity matrix 
ns : Number of substructures 
ni : Number of interfaces 
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