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Abstract  Tool condition monitoring is an important basis to ensure workpiece quality and
machining efficiency. It is also a key factor in improving machining efficiency, ensuring machin-
ing accuracy. Therefore, a new method for predicting tool wear based on DenseNet-ResNet-
GRU is proposed. Firstly, statistical theory and an improved wavelet threshold denoising
method are used to improve the signal quality. In addition, the asymptotic semi-soft threshold 
function is applied to reduce the noise of the cutting force signal. Secondly, DenseNet, ResNet,
and GRU (gate recurrent unit) deep learning networks are integrated to create a new tool wear
prediction model to realize the nonlinear mapping relationship between the tool wear amount 
and the cutting force characteristic. Finally, the tool wear prediction model is verified by high-
strength steel experiment. The experimental results verify the accuracy and reliability of the
method, which has a better training effect and higher prediction accuracy compared with the 
CNN-GRU model. 

 
1. Introduction   

With the continuous development of artificial intelligence, internet of things and other tech-
nologies, intelligent manufacturing has become an important development direction of modern 
manufacturing [1, 2]. With the comprehensive promotion of intelligent manufacturing informati-
zation and the deep integration of industrialization, cutting tools have become one of the influ-
encing factors for efficient manufacturing performance. The water chamber head of the AP1000 
nuclear power plant is the key component of the steam generator, which has the characteristics 
of heavy weight, large volume, complex profile and special material [3]. The material of the 
water chamber head is 508III steel. Since 508III steel is a difficult-to-cut material with high 
strength and good plasticity, and the cutting data during the milling process is large, the milling 
tools are subjected to thermo-mechanical loads with low cycles and high shocks. In addition, 
the rake face and the chip, the flank face and the workpiece generate severe extrusion and 
friction, resulting in severe wear under the action of force and heat [4]. At present, at the water 
chamber head machining site, the replacement of tools mainly depends on the on-site judg-
ment of experienced workers. The on-site processing experience of the workers is very de-
manding, and the labor cost is high. Sometimes the tool is replaced in advance when it is far 
from reaching the end of its service life. Although the quality of workpiece machining is guaran-
teed, the company’s production costs are increased [5, 6]. Kennametal, a well-known American 
tool company, found that machine tools equipped with tool condition monitoring systems can 
save up to 30 % of machining costs [7, 8]. Therefore, the application of artificial intelligence in 
the tool processing industry and the continuous monitoring of tool condition in the processing 
can effectively improve the automation level of the workshop, reduce the tool cost, and ensure 
the processing quality of the product as much as possible. 

If the cutting data is the same in the milling process, tool wear will lead directly to an increase 
in cutting force. The cutting force propagation path is short, so the cutting force signal is less 
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disturbed than other monitoring signals. Because of these ad-
vantages, the use of cutting force to monitor tool wear has 
become a hot research topic. Tool condition monitoring means 
that after receiving the output signal from the sensor, the origi-
nal signal is processed using various algorithms to determine 
the condition of the cutting tool. The signal received from the 
sensor is usually time series data, showing a nonlinear change 
law, and the amount of data is huge. However, the density of 
the value data is low, and the original signal contains ambient 
noise. The effect is not good without data preprocessing. The 
original physical signal needs to be amplified, filtered, normal-
ized, denoised, etc [9-11]. The main process of analyzing sig-
nals by tool wear prediction method are machine learning 
methods and deep learning methods. Deep learning omits the 
steps of feature extraction and selection of machine learning, 
and enters all the information of the signal into the deep learn-
ing model for learning. Deep learning models commonly in-
clude AutoEncoder (AE), convolutional neural networks (CNN), 
sparse coding (SC), and deep belief networks (DBN). Through 
multi-layer processing, simple models can be used for complex 
classification. 

Most scholars have used different deep learning models to 
study tool wear prediction. Liu et al. [12] proposed an ensemble 
model combining CNN with bidirectional long short-term mem-
ory (LSTM). The cutting force, vibration and sound signals are 
denoised and sampled by the wavelet threshold and used as 
input to realize tool wear monitoring. This model is ideal in terms 
of accuracy and stability. Li et al. [13] proposed a tool monitoring 
model with residual-dense network (RDN) to effectively and 
accurately monitor the tool wear value in machining process. By 
acquiring a time-domain signal of the tool vibration, the signal is 
wavelet denoised, and then segmented to obtain more homo-
geneous samples. Finally, it is fed into the model to adaptively 
extract features and perform tool wear prediction. Compared 
with other traditional neural networks, it has high prediction ac-
curacy. Xu et al. [14] proposed a multiscale convolutional gating 
loop unit to process raw sensor data and tool wear prediction. 
Wang et al. [15] established a model based on deep heteroge-
neous GRU and local feature extraction for monitor tool wear 

monitoring. Zhao et al. [16] developed a convolutional bidirec-
tional LSTM. Scholars have used various methods to exten-
sively study tool wear signal processing and tool monitoring 
models to determine reasonable deep learning models to accu-
rately predict tool wear. However, there are still some technical 
bottlenecks in practical applications [17, 18]. Due to the special 
properties of 508III steel material, the cutting process is more 
complicated. It is still an important issue that needs to be solved 
urgently. For example, the monitoring signals are pre-processed 
to reduce the influence of the external environment. And the 
reasonable deep learning method is determined to monitor the 
amount of tool wear during the milling process. 

In summary, advances in data processing and artificial intelli-
gence technology provides a good theoretical basis and algo-
rithmic conditions for realizing high-precision and high-reliability 
intelligent tool monitoring. However, conventional denoising 
techniques are not effective in eliminating the original signal 
noise. Machine learning, on the other hand, is prone to prob-
lems such as vanishing or exploding gradients, where the 
model no longer converges and accuracy is low. Therefore, it 
established a multiscale DenseNet-ResNet-GRU of deep learn-
ing for tool wear prediction model in this paper. The cutting force 
signal matrix with the multiscale convolution kernel as the input 
is used for convolution. According to the respective characteris-
tics of DenseNet and ResNet, the signal space features are 
extracted, and the time series features are extracted by using 
the GRU to test and verify the prediction accuracy of the model. 

 
2. Milling experiments and data acquisition 
2.1 Data type 

The experiment is conducted in a room temperature environ-
ment. 508 III steel, the water chamber head material of the nu-
clear island nuclear power plant, is as the experiment material. 
The tool wear test was carried out on Dalian machine tool VDL-
1000E, and the workpiece was a size of 170×105×80 m. The 
experiment uses an indexable cutterhead with the brand name 
Zhuzhou Diamond, model FMR04-100-B32-RD16-06. The cut-

 

 
 
Fig. 1. Tool wear experiment equipment of milling high-strength steel. 
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terhead is installed symmetrically with 3 inserts. The insert ma-
terial is cemented carbide coated with TiAlN. The model is 
WIDIA RDMT1605MOTXA. The dynamometer sensor is placed 
on the machine table and the fixture is mounted above the sen-
sor. The workpiece is fixed using a fixture, the sensor is con-
nected to the charge amplifier by a signal line, and finally stored 
and displayed by KISTLER software in the computer. Tool wear 
was measured using Supereyes industrial digital microscope, 
and the experimental setup is shown in Fig. 1. 

 
2.2 Cutting force signal acquisition and tool 

wear monitoring 

The parameters of this test are set to vc = 250 m/min, fz = 0.3 
mm/z, ap = 1 mm, and ae = 10 mm. After each signal acquisition 
test at the same time interval, the amount of flank wear is moni-
tored by an industrial camera to record changes over the entire 
life cycle of the tool. The topography and the amount of flank 
wear are measured after each pass. Whenever the pass length 
is 105 mm, the VB value is measured and recorded. Therefore, 
a total of 78 cutting force signals were monitored and 78 tool 
wear values were measured before tool failure, resulting in 78 
samples and labels. Fig. 2 shows the tool wear curve meas-
ured by the test. It can be observed from the figure that as the 
cutting proceeds, the waveforms of the tool wear condition and 
X-direction cutting force vary differently with different amounts 
of tool wear. The tool wear shows different elevated trends. 
And it is divided into three stages of initial, normal, and severe 
wear. The wear value of 0-0.2 mm is the initial wear stage, the 
wear value of 0.2-0.3 mm is the normal wear stage, and the 
wear value of more than 0.3 mm is the severe wear stage. 

 
3. Data preprocessing 

Due to the complexity of the working environment of the tool 
in the milling process, there is inevitably noise interference in 
the monitoring signal. It will result in a large amount of useless 
information in the signal, affecting the authenticity of the cutting 
force signal. Therefore, it is necessary to preprocess the original 

cutting force signal to eliminate invalid data and reduce noise. 

 
3.1 Abnormal data processing based on statis-

tics 

The cutting force data itself has a certain regularity. Some 
external factors cause some data to deviate from the overall 
trend, thus affecting the accuracy of the test. Outliers are de-
tected and rejected to eliminate the interference of erroneous 
data and ensure the validity of predicted data. Statistical-based 
anomaly detection is a relatively mature and widely used 
method. The sampling frequency set in this paper is 10000 Hz, 
and the data volume is huge. According to the literature, when 
the data volume is large, it is more reasonable to use the Laida 

 

 
Fig. 2. Tool wear curve. 

 

 
 (a) Unprocessed data (b) Processed data 
 
Fig. 3. Diagram of before and after outlier processing. 
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criterion for processing [19]. Taking the time domain signal of 
the X-directional force part of the 6th milling process as an 
example, the data before and after processing are shown in Fig. 
3. 

 
3.2 Denoising based on the wavelet threshold 

method 

In the milling wear monitoring test, the signal is easily dis-
turbed by noise during transmission, hard to receive the signal 
correctly on the receiving end. However, the wavelet transform 
meets the requirements of signal noise reduction. Because it 
can adjust the resolution in the time and frequency domains 
according to the characteristics of the signal itself [20, 21]. 

The signal-to-noise ratio (SNR) is a common method for 
evaluating the denoising effect, and a high SNR represents a 
good denoising effect. The unit is decibel and SNR is defined 
as Eq. (1). 

 
2 2

1 1
10 lg ( )

N N

i i i
i i

SNR s s f
= =

⎡ ⎤= × −⎢ ⎥⎣ ⎦
∑ ∑ .  (1) 

 
A small root mean square error (RMSE) represents effective 

noise reduction and is expressed as. 
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1
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Where si is the original signal. fi is the effective signal. N is 

the number of points. 
1) The number of decomposition layers and wavelet bases 

selection. 
In a large number of experiments, the number of decomposi-

tion layers is mostly between 3 and 6 layers, and in this paper, 
3 layers are decomposed according to experience. Unlike Fou-
rier analysis, there are many types of wavelets that satisfy the 
conditions, and dB wavelets, coif wavelets and sym wavelets 

are often used in engineering. 
The time domain signal in the X-direction force of the 58th 

milling process is shown in Fig. 4. The same data were proc-
essed by decomposition layer 3, soft threshold function, 
rigrsure threshold, and different kinds and orde wavelet bases. 
The noise reduction effect is shown in Table 1. The coordinate 
plots in Fig. 5 were drawn to compare and analyze the SNR 
and RMSE. 

From the SNR calculation results, the coif wavelet family has 
the largest value of coif5. Both db and sym wavelet families 
fluctuate significantly. The maximum value of the db wavelet 
family is at db8, and the max sym wavelet family is at sym6. 
From the RMSE it can be seen that the coif wavelet family 
RMSE decreases with the increase of the wavelet order. The 
result of the db wavelet family is that there is a certain fluctua-
tion after the first decline, and the smaller values are obtained 
at db4, db6 and db8, respectively. The sym wavelet family is 
generally on a downward trend. After considering different 
factors, the coif5 wavelet base with the highest SNR and the 
lowest RMSE was selected as the wavelet base for the subse-
quent noise reduction work. 

2) Selection of wavelet thresholds 
There are four common threshold guidelines for wavelet 

analysis: sqtwolog threshold, rigrsure threshold, heursure 
threshold and minimaxi threshold [22]. 

Set the wavelet base to coif5. Using the soft threshold func-

Table 1. Denoising effect of different wavelet basis. 
 

Evaluation indicators Evaluation indicators 
Wavelet type Order 

SNR RMSE 
Wavelet type Order 

SNR RMSE 

2 22.397 0.492 3 24.514 0.386 

3 24.279 0.396 4 25.301 0.352 
4 25.035 0.363 

Coif 

5 25.760 0.334 

5 24.413 0.390 2 22.397 0.492 

6 25.003 0.365 3 24.279 0.396 
7 24.364 0.392 4 23.854 0.416 

8 25.156 0.358 5 23.477 0.435 

9 24.692 0.378 6 25.183 0.357 

Db 

10 24.405 0.391 7 24.800 0.373 

1 23.234 0.447 

Sym 

8 24.373 0.392 
Doif 

2 23.556 0.431     

 

 
Fig. 4. Time domain signal of the x-directional force during the 58th milling.
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tion, the results of denoising with different thresholds are 
shown in Table 2. 

In Table 2, the SNR and RMSE of the heursure threshold 
and the sqtwolog threshold are similar. Both denoising effects 
are slightly inferior to the minimaxi threshold. The rigrsure 
threshold has the best noise reduction. Therefore, the rigrsure 
threshold is used for 508III steel cutting force signal noise re-
duction processing. 

3) Selection of threshold functions 
Common threshold functions are divided into soft threshold 

functions and hard threshold functions [23]. 
However, both the hard threshold function and the soft 

threshold function have their limitations. Therefore, a progres-
sive semi-soft threshold function f(ω) is used as follows. 
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Where, ωj,k is the wavelet coefficient, λ is the threshold, and 

,j kω is the modified wavelet coefficient.  
The rigrsure threshold is selected, and the signal is denoised 

by the coif5 wavelet basis function and different threshold func-
tions.  

As shown in Table 3, SNR obtained by using the threshold 
functions of hard threshold, soft threshold, and the semi-soft 
threshold are 30.8355 dB, 25.7596 dB and 67.0212 dB, re-
spectively. The threshold function used in this paper can reach 
twice the hard threshold and has a lower RMSE, so it has a 
better denoising effect than the other methods. 

4. Prediction models 
Deep learning can adaptively extract features to avoid the 

tedious manual extraction of features [24]. This section at-
tempts to build a tool wear prediction model based on deep 
learning. 

 
4.1 Improved convolutional neural networks 

(CNNs) 

Theoretically, the deeper the layers number of a CNN is, the 
more neurons it has, and the better the fitting effect is. How-
ever, with the increase in the number of layers, problems such 
as gradient explosion and gradient disappearance occur. This 
negatively affects backpropagation training. In response to 
these problems, CNNs have a lot of improved structures. This 
paper adopts ResNet and DenseNet in the improved structure. 
These two structures show good results in practical applica-
tions, so this paper includes them as part of the predictive func-
tional model. 

1) ResNet 
ResNet is to add a cross-layer identity map between CNNs 

to solve the gradient degradation problem. Due to the addition 
of a path to identity mapping, the model can choose the best 
path to improve the model training speed when updating pa-
rameters through backpropagation. The residual module is as 
follows. 

 
 (4) 

 
Where, x is the mapping input. Wi and Ws are convolutional. 

Table 2. Denoising effect of several wavelet thresholds. 
 

Threshold SNR RMSE 

Sqtwolog 17.224 0.893 

Rigrsure 25.760 0.334 

Heursure 17.782 0.837 
Minimaxi 19.242 0.708 

 

Table 3. Denoising effect of different threshold function. 
 

Threshold function SNR RMSE 

Hard threshold function 30.836 0.186 

Soft threshold function 25.760 0.334 

Progressive semi-soft threshold function 67.021 0.003 

 

 
 (a) SNR (b) RMSE 
 
Fig. 5. A contrast of the denoising effects of several wavelet basis. 
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F(x,Wi) is the residual mapping. The same location elements of 
the two maps are added together to get the output y. The struc-
ture of this residual module is shown in Fig. 6. 

The main branch consists of two convolutional layers and 
two BN layers, which are superimposed alternately. ReLU is 
the activation function, and the branch is the input of this Res-
Net module. As shown in Fig. 6(a), when the input and output 
dimensions of the main branch are inconsistent, the branch 
contains one convolutional layer and one BN layer. This aligns 
the output size of the branch with output size of the main 
branch, as shown in Fig. 6(b). After the tensors of the input 
residual block have passed through the main and branch re-
spectively, the two new tensors are added. Finally, ReLU is the 
activation function forms the output of the residual block. 

2) DenseNet  
DenseNet is a way to alleviate the problem of vanishing gra-

dients by connecting any two layers in a hopping manner, 
thereby training deeper networks. The DenseNet is given by 
Eq. (5). 

 
0 1 1([ , , , ])l l lx H x x x −= ⋅⋅⋅ . (5) 

 
Where: lx is the output feature of the DenseNet module. 

[ ]−0 1 1, ,..., lx x x  is the output layer 0 to l-1 to be connected, 

( )i
l

H represents BN, ReLU, pooling and convolution. There-

fore, the features extracted by DenseNet are concatenated in 
series with the features of the previous layer to achieve feature 
reuse to reduce redundancy. The dense block designed in this 
article contains one layer, the structure of which is shown in Fig. 
7. 

As shown in Fig. 7, the DenseNet module first establishes a 
bottleneck layer, which can act as a dimensionality reduction. It 
includes a BN layer, a ReLU activation function, and a convolu-
tional layer with a convolution kernel of 1×1. Then set the BN 
layer again, and after activation by the ReLU activation function, 
connect a convolutional layer with a convolution kernel of 3×3. 
Connect the output features with the input features in the 
channel dimension, which forms the output of a dense block. 

The connection between the two DenseNet modules is 
through the transition layer. The Transition layer reduces the 
feature map size. The transition layer consists of a convolu-
tional layer with a convolution kernel of 1×1. and an average 
pooling layer of 2×2. 

 
4.2 GRU model structure 

GRU is an improved recurrent neural network (RNN). It has a 
simple internal structure and requires less computation to up-
grade the internal state, making it easier to train. The internal 
structure of the individual GRUs is shown in Fig. 8. 

The reset gate equation is as follows: 
 

[ ]1( , )t r t tr W h xσ −= ⋅ . (6) 

 
Where: σ  is the sigmoid function. Wr is the reset gate 

weight matrix. Xt is the input of the t-th time step. ht-1 is the hid-
den information stored from the previous time step. The equa-
tion for the update gate is as follows: 

 
[ ]1( , )t z t tz W h xσ −= ⋅ . (7) 

 
(a) Type 1 

 

 
(b) Type 2 

 
Fig. 6. RseNet module structure. 

 

 
 
Fig. 7. DenseNet module structure. 

 



 Journal of Mechanical Science and Technology 38 (7) 2024  DOI 10.1007/s12206-024-0632-9 
 
 

 
3591 

Where, Wz is the update gate weight matrix. The other vari-
ables are the same as the reset gate. The candidate hidden 
layer state equation is: 

 
[ ]1tanh( , )t t t th W r h x−= ⋅ ∗ . (8) 

 
Where: W is the candidate state weight matrix. tr  is the re-

set gate and 1th −  is the previous time step hidden information. 
Corresponding elements of these two matrices are multiplied to 
get 1t tr h −∗ . 

The final hidden state equation is: 
 

1(1 )t t t t th z h z h−= − ∗ + ∗ . (9) 
 
Where, ht is the output information.  

 
4.3 Multiscale DenseNet-ResNet-GRU model 

In this paper, a hybrid CNN-RNN tool wear prediction model 
is proposed. The convolutional portion of the model is Dense-
Net and ResNet. Each has two parallel channels. Therefore, 
there are four parallel channels. Single-scale convolutional 
kernels cannot extract richer features. Thus, every two parallel 
channels use convolution kernels of 3×1 and 5×1 to extract 
local information features of different scales from the input 
matrix. DenseNet enables feature reuse, and ResNet slows 
down network degradation. Therefore, the different advantages 
of these two networks can be used to extract different spatial 
features of samples. The concatenation layer is integrated and 
input to the deep GRU to extract sample sequence features. 

After the deep GRU model, a fully connected layer and a re-
gression layer are constructed to predict the amount of tool 
wear. The specific network structure is shown in Fig. 9. 

Parameter settings of multiscale DenseNet-ResNet-GRU 
model. This is shown in Table 4. 

 
4.4 Results analysis 

The cutting force data is normalized and constructed as an 
input matrix to improve the model training effect. The normali-
zation equation is as follows: 

 
min max min( ) / ( )y x x x x= − − . (10) 

 
Where, x is the data to be normalized. According to each set 

of experimental data, 78 milling records are included. Every 

Table 4. Parameter settings of multiscale DenseNet-ResNet-GRU model. 
 

Title Structure Model information Value 

Convolutional layer 1,3 Convolutional layer Convolution parameters The number of convolution kernels = 64;  
convolution kernel size = 3×1; step = 1×1; 

Convolutional layer 2, 4 Convolutional layer Convolution parameters The number of convolution kernels = 64;  
convolution kernel size = 5×1; step = 1×1; 

Max pooling layer 1-4 Max pooling layers Max pooling Convolution kernel size = 3×3; step = 2×2; 

Master branch convolutional layer a Convolution parameters The number of convolution kernels = 64;  
convolution kernel size = 3×3; step = 1×1；; 

Master branch convolutional layer b Convolution parameters The number of convolution kernels = 64;  
convolution kernel size = 3×3; step = 1×1; 

ResNet module 1, 2 

Branch branches -- -- 

Master branch convolutional layer a Convolution parameters The number of convolution kernels = 128;  
convolution kernel size = 3×3; sep = 2×2; 

Master branch convolutional layer b Convolution parameters The number of convolution kernels = 128;  
convolution kernel size = 3×3; step = 1×1; 

ResNet module 3, 4 

Branch convolutional layer c Convolution parameters The number of convolution kernels = 128;  
convolution kernel size = 1×1; step = 2×2; 

GRU layer 1-3 GRU Number of neurons 64 

Fully connected layer 1 Fully connected layer Number of neurons 64 
Fully connected layer 2 Fully connected layer Number of neurons 32 

Fully connected layer 3 Fully connected layer Number of neurons 1 

 

 
Fig. 8. GRU module structure. 
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two milling records are selected as the testing set, and the rest 
serves as a training set. If 78 samples are numbered from 1-78, 
this paper selects 3, 6, 9, ... 72, 75, 78 as the testing set, as 
shown in Fig. 2. The model hyperparameter is set to learning 
rate η = 0.001, minibatch = 32, number of iterations = 100, and 
gradient threshold = 1. Finally, the Adam optimization algorithm 
is used for optimization. To verify the good performance of 
DenseNet-ResNet-GRU model, the CNN-GRU model is com-
pared with it. The initialization parameters are the same as the 
multiscale DenseNet-ResNet-GRU model. The model training 
phase performs validation on a fixed period, useful for deter-
mining whether the model is overfitting. Therefore, the training 
loss and the corresponding validation results of RMSE need to 
be compared. During the training process, the network is vali-
dated every 20 iterations of both models, and the training re-
sults are shown in Fig. 10. After the iteration of the two models, 
the verification sets RMSE and Loss are shown in Table 5 
below. 

As shown in Fig. 10 and Table 5, when the number of itera-
tions is 100, the model convergence trend is basically stable. 
At the beginning and the end of the iteration, both RMSE and 
Loss during the training process of the multiscale DenseNet-
ResNet-GRU model are small. To observe the effect more 
obviously, the two models are analyzed in the same graph 
during training in Fig. 11. 

As shown in Fig. 11, the multiscale DenseNet-ResNet-GRU 
model has a better convergence effect than the CNN-GRU 
model.  

To examine the effectiveness of the proposed method further, 
the same dataset is fed into four other models: BPNN, ResNet, 
DenseNet and GRU. Fig. 12 shows the error prediction results 
of the actual and predicted values of the tool wear for the six 
models, and the calculation results of the four indicators are 
shown in Table 6. 

As shown in Fig. 12 and Table 6, compared with the other 
five models, it is obvious that the output of the multi-scale 
DenseNet-ResNet-GRU model has the smallest fluctuation 
from the true value and better fitting effect. Machine learning, 
such as BPNN, may have excellent performance in some 
specific cases, but the newly added samples will affect the 
successfully learned network, and the generalization ability of 
the model is limited by parameter selection. Therefore, the 
error is larger. The MAE and RMSE of GRU are 5.5734 and 

 
Table 5. Validation effect of the validation set for both models. 
 

Model RMSE Loss 

CNN-GRU 0.0096 4.64×10-5 

Multiscale DenseNet-ResNet-GRU 0.0067 2.25×10-5 

 

 
Table 6. Comparison of tool wear prediction results. 
 

Results 
Model 

MAE RMSE MAPE R2 
Multiscale DenseNet-

ResNet-GRU 2.1635 2.3752 0.0265 0.9994 

CNN-GRU 2.8646 3.2150 0.0328 0.9989 
ResNet 3.8925 4.3522 0.0346 0.9785 

DenseNet 4.1542 5.5216 0.0452 0.9617 

BPNN 5.3856 5.8613 0.0562 0.9565 
GRU 5.5734 6.2430 0.0698 0.9554 

 

 
 
Fig. 9. Multiscale DenseNet-ResNet-GRU model network structure. 
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6.2430, respectively. GRU does not work well without feature 
extraction. Because it is difficult to capture time-domain 
information from a large amount of data without considering 
multi-sensor fusion of spatial information. There is not much 
difference between DenseNet and ResNet in terms of MAE, 
RMSE, MAPE and R2 in tool wear prediction. CNN-GRU can 
mine individual or fused signal features to reflect changes in 
tool wear. The mined features can be fed into the GRU to 
capture more timing features, thereby effectively reducing the 
error of tool wear. As a result, the performance of the CNN-
GRU model has been improved. The fusion of DenseNet and 

ResNet further solves the gradient degradation problem of 
CNN and alleviates the gradient disappearance. Therefore, the 
MAE, RMSE and MAPE of the multi-scale DenseNet-ResNet-
GRU model are smaller than those of the other five models, 
and the R2 is slightly larger than that of CNN-GRU. The results 
show that the method predicts a good fit. Therefore, it can be 
further verified that the multi-scale DenseNet-ResNet-GRU 
model is more superior in tool wear prediction. 

In addition, compared with the other five models, the multi-
scale DenseNet-ResNet-GRU model has a better prediction 
effect in the whole process of tool wear, but the error is slightly 

 
(a) CNN-GRU model 

 

 
(b) Multiscale DenseNet-ResNet-GRU model 

 
Fig. 10. Convergence curves of RMSE and loss function. 

 

 
 (a) RMSE (b) Loss 
 
Fig. 11. Comparison of the impact of training. 
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larger in the later stage of tool severe wear. This is due to the 
severe wear stage of the tool, the amount of tool wear 
increases sharply, and the mechanical-thermal load between 
the tool and the workpiece produces violent vibration, which 
affects the prediction of the tool wear amount by using the 
cutting force signal to a certain extent. Therefore, how to 
reduce the error of the wear amount in the severe wear stage 
of the tool and predict the tool wear more accurately will be the 
direction of future research.  

 
5. Conclusions  

Based on the experiment of milling 508III steel material, this 
paper selected the cutting force signal to study milling tool wear 
prediction technology. To explore the mapping relationship 
between tool cutting force signal and tool wear, a multiscale 
DenseNet-ResNet-GRU wear prediction model is proposed, 
which achieves good results in predicting the wear of milling 
cutters. The conclusions are as follows. 

1) The Laida criterion and wavelet threshold denoising is 
used to deal with outliers and noise in the cutting force signal. It 

was determined that wavelet denoising was carried out by the 
coif5 wavelet basis function, rigrsure threshold, and progres-
sive semi-soft threshold function, which achieved good results. 
It is conducive to improving tool wear prediction accuracy.  

2) A multiscale DenseNet-ResNet-GRU tool wear prediction 
model was established. The 3×1 and 5×1 convolution kernels 
were used to convolve the input cutting force matrix at different 
scales. The sample space features were extracted based on 
the different advantages of DenseNet and ResNet. Sample 
sequence features are extracted by integration through the 
concatenation layer and input into the deep GRU. After the 
deep GRU model, a fully connected layer and a regression 
layer are constructed to predict the amount of tool wear. 

3) The multiscale DenseNet-ResNet-GRU tool wear predic-
tion model was used to predict the amount of tool wear. Com-
pared with the CNN-GRU, BPNN, ResNet, DenseNet and 
GRU model, it is concluded that the RMSE, MAE, and MAPE 
values are the smallest. It is further verified that the Multiscale 
DenseNet-ResNet-GRU model is superior in tool wear predic-
tion. 

The tool wear prediction method in the milling process based 

 
 (a) Tool wear prediction in Multiscale DenseNet-ResNet-GRU (b) Tool wear prediction in CNN-GRU 
 

 
 (c) Tool wear prediction in ResNet (d) Tool wear prediction in DenseNet 
 

 
 (e) Tool wear prediction in BPNN (f) Tool wear prediction in GRU 
 
Fig. 12. Result of tool wear prediction. 
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on multiscale DenseNet-ResNet-GRU has good effect on tool 
wear prediction, which can provide more accurate and effective 
information for the prediction of tool wear in the actual machin-
ing process and can also replace the tool in time. It provides 
reference and technical support for improving the accuracy of 
tool wear prediction, and is expected to be effectively applied 
and promoted in actual machining. Dynamometer sensor is 
placed on the machine table and the fixture is mounted above 
the sensor in this paper. If it is considered to be applied to the 
actual production, especially in the 5-axis machining center, the 
cable of the dynamometer can be damaged when the work-
piece is moved and rotated. It will cause adverse consequences 
and safety problems. Therefore, it is necessary to use the wire-
less rotating cutting force dynamometers (RCD) to be directly 
mounted on the spindle of the machine tool through the spindle 
adapter according to the actual situation. It is suitable for five-
axis machining, large-size, complex parts processing, and high-
dynamic precision cutting applications. 
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