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Abstract  Parametric level set method (PLSM) using interpolation method, such as radial
basis function (RBF) interpolation, exposes high computational cost and poor stability when
solving structural topology optimization (STO) problems with large-scale nodes. However, the 
quasi-interpolation method can approximate the level set function (LSF) and its generalized 
functions without solving any system of linear equations. With this good property, this paper
utilizes multiquadric (MQ) quasi-interpolation to parameterize the LSF and innovatively intro-
duces it into the STO problem. Moreover, the MQ quasi-interpolation is utilized to compute the 
element density, which makes the level set band method (LSBM) more rigorous. The proposed
methods were compared with the PLSM based on compactly supported radial basis functions
(CSRBFs). The results show that the approximation accuracy, computational efficiency and
stability of the evolution process of the proposed methods are better than those of CSRBFs 
when the shape parameter takes a suitable small value. 

 
1. Introduction   

The concept of structural topology optimization (STO) was first introduced by Michell [1] in 
1904, mainly for solving the problem of minimizing the mass of a truss under stress constraints. 
So far, many topology optimization models have been developed, such as the homogenization-
based method [2], the solid isotropic material with penalty (SIMP) method [3], the evolutionary 
structural optimization (ESO) method [4, 5], and the level set method (LSM) [6-8]. To compen-
sate for the disadvantages of the different methods, scholars have successively proposed dif-
ferent improvement methods which seek for different trade-offs between design results and 
computational efficiency [9]. At the same time, the various methods have gradually borrowed 
from each other, and the proposal of combined methods has become a trend. 

SIMP and ESO are often referred to as density-based methods, which directly discretize the 
design domain into a number of material units, each of which consists of a relative density as a 
design variable, and this discretization can be consistent with finite elements, where all material 
units are pooled together to wholly reflect the structural topology. They have been widely used 
due to the advantages of simplicity, fast convergence, and the ability to incorporate well-
established optimization methods [10-12], but there are some drawbacks [13], such as check-
erboard phenomenon and mesh dependence. 

Level set method can be viewed as a boundary-based method. It represents the interface 
implicitly as a zero level set of a higher dimensional function called level set function (LSF) to 
efficiently represent the structural interface. It was initially applied to STO by Sethian [6]. Wang 
et al. [7] established a foundational mathematical programming framework that describes a 
STO as a sequence of motions of the implicit boundaries converging to an optimum solution 
and satisfying specified constraints. Compared with density-based methods, the main advan-
tages of LSM in dealing with STO problems are always (1) obtaining exact boundary informa-
tion without fuzzy boundaries due to intermediate densities, and (2) merging holes and dealing 
with topology changes do not require complex computations [14].  
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The parametric level set method (PLSM) decouples the 
Hamilton-Jacobi partial differential equation (H-J PDE) in time 
and space by interpolating the scalar data field at the nodes. 
While inheriting the superior performance of the LSM, the 
PLSM also exhibits unique advantages [15-17]. However, the 
basic models of PLSM still have many shortcomings, such as 
their results are heavily dependent on initialization design and 
meshing, high computational cost, and unstable optimization 
process, which greatly hinder their application to real engineer-
ing problems [18]. 

To overcome the shortcomings of PLSM, many improvement 
methods have been proposed. For instance, Dunning and Kim 
[19] propose sequential linear programming LSM that can han-
dle multiple constraints and simultaneously optimize non-level-
set design variables. Hyun and Kim [20] develop a level-set 
thermal eigenvalue topology optimization method to efficiently 
optimize the overall response time of heat transfer systems. Li 
et al. [21] incorporated a maximum length scale constraint into 
the reaction-diffusion equation-based LSM to generate shapes 
with rich features. Liu et al. [22] proposed an ordinary differential 
equation (ODE) driven level-set density topology optimization 
method, which combines the LSM and the density method and 
thereby drives the optimization process to converge stably and 
efficiently to a solid space solution. In our previous paper [23], 
we proposed a step size adaptive method based on the first-
order Eulerian method. This method can use large time steps to 
accelerate the evolution process while maintaining stability. 

Interpolation methods, such as radial basis function (RBF) 
interpolation, are commonly used to parameterize LSF. They 
typically require solving systems of linear equations, which is 
computationally inefficient and memory intensive. To improve 
the efficiency of interpolation, Wang et al. [24] utilizes the ve-
locity field level-set (VFLS) method to adaptively change the 
arrangement of velocity knots (design variables), which signifi-
cantly reduced the number of design variables. Our previous 
paper [25] transformed the interpolation matrix based on com-
pactly supported radial basis functions (CSRBFs) into a trian-
gular matrix, which effectively improves the efficiency of solving 
systems of linear equations. 

Unlike interpolation methods, the quasi-interpolation method 
can obtain a well approximation of the original function without 
solving any system of linear equations [26]. Therefore, it has 
become one of the important methods in approximation field in 
recent years. The two schemes of quasi-interpolation that have 
been most widely studied are spline quasi-interpolation [27-29] 
and multiquadric (MQ) quasi-interpolation [30-33]. In this paper, 
we propose an MQ quasi-interpolation based level set method 
(MQLSM) to solve the STO problem, mainly based on the good 
approximation property of MQ quasi-interpolation to LSF and 
its generalized functions. 

The paper is organized as follows: Sec. 2 discusses LSM for 
the compliance minimization problem. Sec. 3 briefly describes 
MQ quasi-interpolation. In Sec. 4, two MQLSM methods using 
the Ersatz material method and MQ quasi-interpolation for finite 
element analysis (FEA) respectively are presented. The dis-

cussions are given in Sec. 5. Finally, some general conclusions 
are given in Sec. 6. 

 
2. Level set method for the compliance 

minimization problem  
For the LSM, the specific value of Lipschitz continuous high-

dimensional scalar function Φ  represents the boundary. 
Considering a reference domain dD R⊂ , d = 2 or 3, the LSF 
Φ , which includes all allowable shapes DΩ ⊂ , holds as 

 

( )
  0  ,   \

0  ,    
 0  ,  \

if
if
if D

> ∈Ω ∂Ω⎧
⎪Φ = ∈ ∂Ω⎨
⎪ < ∈ Ω⎩

x
x x

x
. (1) 

 
The H-J PDE is the most common driving equation for LSF 

[34], which is defined as 
 

( ) ( )0 0v 0,  , t .
t n

∂Φ − ∇Φ = Φ = Φ
∂

x x   (2) 

 
where vn  is the velocity component in the normal direction, 
which is defined as [35] 

 

v .n

⎛ ⎞∇Φ= ⋅ = ⋅ −⎜ ⎟⎜ ⎟∇Φ⎝ ⎠
v n v   (3) 

 
where = −∇Φ ∇Φn  is the unit vector in the normal direc-
tion. 

The H-J PDE needs to be discretized in space and pseudo-
time, and the resulting discrete system of equations is often nu-
merically solved by the finite difference upwind scheme [7, 36]. 

When the LSF is evolved explicitly, pseudo time step tΔ  
needs to comply with the Courant–Friedrichs–Lewy (CFL) con-
dition [7, 15]: 

 
( )max vnt hΔ ≤   (4) 

 
where h  denotes the minimum mesh size. 

The compliance minimization formulas of a linear elastic struc-
ture with static load under volume constraints are as follows: 
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where ( ), ,a Φu υ  and ( ),l Φυ  are defined as 

 

( ) ( ) ( )( ) ( ), , : :
D

a H dΦ = Φ Ω∫u υ e u C e u   
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( ) ( ),
D

l d H d
τΓ

Φ = ⋅ Γ + ⋅ Φ Ω∫ ∫υ τ υ b υ . 

 
In Eq. (5), ( ),J Φu  is the objective function, e  is the lin-

earized strain tensor, C  is the Hook elasticity, u  and υ  are 
the displacement and the virtual displacement. The maxV  is the 
target volume, ( )G Φ  is the constrain introduced to restrict the 
use of material. The specific displacement 0u  is given on 
Dirichlet boundary DΓ , τ  is the traction on traction boundary 

τΓ , and b  is body force, ( ), ,a Φu υ  and ( ),l Φυ  are writ-
ten in energy bilinear form and load linear respectively. The 
Heaviside function H  is defined as 

 

( )   1,   0
  0,  0
if

H
if

Φ ≥⎧
Φ = ⎨ Φ <⎩

. (6) 

 
The normal velocitys along the moving free boundary can be 

simply determined by utilizing the strain energy density and the 
Lagrange multiplier [36, 37]. 

 
( ) ( )v : : ,n λ= −e u C e u   (7) 

 
where λ  is updated by the following scheme [37]: 

 
1 ,     

   ,

k
k R

k k
R

G k n
G k n

μ
λ

λ γ
+ ⎧ ≤⎪= ⎨ + >⎪⎩

  (8) 

 
where μ  and Rn  are the optimization parameters, γ  and 
G  are updated as follows 

 

( ) ( )0 0 max , ,k
RD

R

kG H d V V V k n
n

⎡ ⎤
= Φ Ω − − − ≤⎢ ⎥

⎣ ⎦
∫   (9) 

( )1
maxmin , , ,k k

Rk nγ γ γ γ+ = + Δ >   (10) 
 

where maxγ  and γΔ  are the upper limit and increment of the 
parameter γ . 

 
3. MQ quasi-interpolation 
3.1 Univariate MQ quasi-interpolation 

Assume that a given set of interpolation nodes { } 0
x n
i i=

 of a 
finite interval [ ],a b  satisfies: 

 
0 1 na x x x b= < < < = . (11) 

 
Considering the interpolation data { } 0

, n
i i i
x f

=
, the general 

form of the quasi-interpolation [30] is: 
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where Ψ  is a kernel function. 

Wu and Schaback [31] constructed a classical quasi-

interpolation operator DL  that preserve linearity and convexity. 
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and ( ) ( )2 2
i ix x x cφ = − +  is a one-dimensional MQ basis 

functions.  
In addition, DL  can also be expressed in the following form: 
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For Eq. (14), assume that ( ) ( )2 2

r rx x x cφ = − + , including 
r n≤ ≤ −1 1 , ( )n xφ ≡ 1 and ( )1n x xφ + ≡  are reorganized as 

coupled polynomials. Then, 
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where [ ]T

0 1, , nF f f f=  is column vector of length n +1 . 
The upper triangular ribbon principal diagonal matrix Tα φ→  of 
size ( ) ( )n n+ × +1 1  is: 

 

1 2 2

2 3 3

2 1 1

1

0 1 0 1

1 1

0 0
0 0 0

0 0
0 0

1 0 0 1
0 0

n n n

n n n

n n n n

n n

T

D E D
D E D

D E D
D E D

x D x D x D x D
D D D D

α φ→

− − −

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (16) 
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where ( ) ,  i i iD x x i n−= − ≤ ≤11 1 , 1i i iE D D −= − − , i n≤ ≤2 . 

 
3.2 Multivariate MQ quasi-interpolation 

Consider the two-dimensional example, the MQ basis func-
tion for the other one-dimensional variable y  is: 

 

( ) ( )2 2
j jy y y cψ = − + . (17) 

 
Its interpolation kernel coefficients ( )j yβ  ( )j m≤ ≤0  are 

similar to those defined in Eq. (13). 
The dimensional-splitting MQ basis function (DSMQ) proposed 

by Ling [32] is used as the two-dimensional basis function: 
 

( ) ( )22 2 2
i jx x c y y c− + − +i . (18) 

 
Based on the interpolated data { }, ,i j ijx y f  , , , ;  i n j= =0 1  
, , ,m0 1 , the coefficients of the DSMQ basis function are the 

result of the multiplication of ( )i xα  and ( )j yβ , so the two-
dimensional quasi-interpolation formula is: 

 

( )( ) ( ) ( )
0 0

,
n m

D ij i j
i j

f x y f x yα β
= =

=∑∑L . (19) 

 
Ling [32] proposed a two-dimensional formula to transform 

from ( )α β⊗  to ( )φ ψ⊗ , transforming the Eq. (19) into: 
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where F  is the matrix that stores the function values. Similar 
to Tα φ→ , Tβ ψ→  is a square matrix of size ( ) ( )m m+ × +1 1 . 

By converting Tα φ→  and Tβ ψ→  into sparse matrices or as 
filters, Eq. (20) needs about N 211  floating-point calculations 
once, where N  is the total number of nodes. By using the fast 
multipole method [38] to calculate MQ base functions, the total 
calculation amount can be reduced to about N 22  [32]. 

 
4. Level set method based on MQ quasi-

interpolation 
4.1 Parameterization of level set function us-

ing MQ quasi-interpolation 

According to Eq. (20), the quasi-interpolation result of the 
LSF can be obtained by using the function value at the interpo-
lation node. 
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where Φ  is the matrix that stores the function values of the 
interpolating nodes. 

According to the property that quasi-interpolation is a good 
approximation to the derivative of the original function, the ap-
proximation to x  and y  partial derivatives can be derived 
as: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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Thus, the corresponding gradient approximation is 
 

( ) ( )
2 2

D Dx y
⎛ ⎞ ⎛ ⎞′ ′∇Φ ≈ Φ + Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
L L  (23) 

 
4.2 Finite element analysis using MQ quasi-

interpolation 

The traditional LSM generally uses the Ersatz material 
method to calculate the element density, and the density of 
each element near the zero level set is a two-point distribution 
{0, 1}, which will cause numerical instability in the evolution 
process with the formation or disappearance of holes [39]. The 
level set banding method (LSBM) [39] effectively improves the 
topology optimization ability of the LSM by introducing interme-
diate densities around the zero level set. In this method, the 
density of each element of the structure depends on its node 
value of the LSF. For the LSBM, the density of each element of 
the structure depends on the node values of its LSF. 

 
( )e eHρ = Φ   (24) 

 
where eρ  is the density of the e -th element and eΦ  is the 
value of the LSF in the middle of the element using interpola-
tion, ( )H Φ is the approximation scheme of Heaviside function 
as Ref. [7]: 

 

( )
3

2

1,                                                

3 1 ,    
4 3 2

,                                            -

H ζ

ζ

Φ > Δ⎧
⎪

⎛ ⎞Φ +⎪Φ = Φ − + − Δ ≤ Φ ≤ Δ⎨ ⎜ ⎟Δ Δ⎝ ⎠⎪
⎪ Φ < Δ⎩

  (25) 

 
where ζ  is the smaller positive number, Δ  is the corre-
sponding transition range between the LSF and the material 
distribution, and Δ2  is the width of the level set band. 

Obviously, the Ref. [39] is not rigorous in calculating elemen-
tal densities using the approximate substitution of the value of 
the midpoint of the element.  

In fact, the element density can be calculated exactly by the 
following formula [22]: 
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( )
e

e
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H dV
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∫
. (26) 

 
In this paper, we use MQ quasi-interpolation to rigorously 

calculate the integral of ( )H Φ  over an element, which makes 
the calculation of element density more reasonable. For rec-
tangular mesh, the e -th density of element 1 1[ , ] [ , ]p p q qx x y y+ +×  
is 
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where ( ) ( )( )T
T H Tα φ β ψλ → →

⎡ ⎤= Φ⎢ ⎥⎣ ⎦
. The analytical solutions of 

( )1p

p

x

rx
x dxφ+

∫  and ( )1q

q

y

sy
y dyψ+

∫  are easily derived.  

After determining the element density eρ , the Young's 
modulus eE  can be calculated as [22, 37] 

 
( ) ( ) ( )min 0 min

pen
e e eE E E Eρ ρ= + −  (28) 

 
where minE  is the small positive value that avoids the singular-
ity of the global stiffness matrix, 0E  is the Young's module of 
the full material element and pen  is the penalty, which is 
taken as 1 in this paper. The physical FEA model of the struc-
ture is established after calculating the element stiffness and 
assembly overall stiffness matrices. 

Obviously, the proposed method is more reasonable and ac-
curate than the Ref. [39] where the values of element centers 
are taken as densities. The FEA of calculating element density 
using Eq. (27) is named as multiquadric quasi-interpolation 
finite element analysis (MQFEA).  

 
4.3 Optimization scheme 

An approximation function ( )δ Φ  was introduced to limit the 
unbounded growth of Φ  in evolutionary scheme [7, 37]. 

 

( )
2

2

0,                             

3 1 ,  
4
0,                             -

δ

⎧ Φ > Δ
⎪

⎛ ⎞Φ⎪Φ = − −Δ ≤ Φ ≤ Δ⎨ ⎜ ⎟Δ Δ⎝ ⎠⎪
⎪ Φ < Δ⎩

  (29) 

 
where Δ  is the defined upper limit of Φ . 

In order to keep Φ  at the boundary as a signed distance 
function, which is ∇Φ = 1, an approximate reinitialization 
scheme was proposed in Ref. [37]. 

Φ = Φ Μ   (30) 
 

where ( )1 2, , lmeanΜ = ∇Φ ∇Φ … ∇Φ , l∇Φ  is the gradi-
ent value of the l -th point around the zero level set, which can 
be obtained by Eq. (23). 

Unlike the Ref. [37], which calculates the gradient values of 
all nodes, this paper determines the coordinates of the nodes 
needed around the zero level set based on the FEA, and then 
calculates the gradient values based on Eq. (23), which can 
save unnecessary computational cost. 

The first-order Euler forward method is used to evolve the 
level set equation, and the updated formula is as follows: 

 
( ) ( ) ( )1 , , ,k k kx y x y tB x y+Φ = Φ + Δ  (31) 

 
where k  is the number of iterations, tΔ is the time step and 

( ) ( ) ( )( ), v , ,k k k
nB x y x y x yδ= Φ . 

This method is named as the multiquadric quasi-interpolation 
based level set method (MQLSM), and its algorithm implemen-
tation is as Algorithm 1. 

 
5. Numerical experiments and discussion 

The symbols are illustrated as follows: MQLSM-Ersatz (or 
MQLSM) denotes the MQLSM using the Ersatz material 
method, MQLSM-MQFEA denotes the MQLSM using MQFEA, 
CSRBFs denotes the PLSM based on compactly supported 
radial basis functions (CSRBFs) in Ref. [38]. 

In this section, the material properties are chosen as that 
Young’s modulus 0E = 1 for solid material, minE = 109

 for void 
material, Poisson’s ratio v = 0.3. The parameters μ , γ , γΔ , 

maxγ , Rn  and Δ  are assigned the values of 20, 0.05, 0.05, 5, 
30 and 10, respectively. The termination criterion is that the 
relative errors of the objective function values ( ),J Φu  in Eq. 
(5) are less than 10-3 in consecutive 10 iterations and the rela-
tive errors between the consecutive volume fraction are less 
than 10-3. 

When using explicit Euler forward method evolution, the time 
step and velocity have a very important impact on the numeri-
cal stability and evolution efficiency of the PLSM, and they still 
need to satisfy the CFL condition [15]. However, since many 

Algorithm 1. The algorithm implementation of MQLSM with Ersatz or
MQFEA. 
 
Algorithm: MQLSM 

1: Initialize the LSF and the values of parameters. 
2: Repeat 
3:  Using the Ersatz material method (Ersatz) or MQ quasi-interpolation 

(MQ) to calculate the element densities. 
4:  Calculate normal velocity vn  using Eq. (7). 
5:  Update the LSF Φ  using Eq. (31). 
6:  The coordinates of the nodes around the zero level set are calculated, 

and the LSF Φ  is re-initialized by the Eq. (30). 
7: Until the termination condition is met. 
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Refs. [17, 38] use larger time steps for acceleration, for com-
parison purposes, the step with stable convergence process is 
selected according to 0.5, 0.25, 0.1, 0.05, 0.025 and 0.01 for 
each case in descending order. 

When the scale of the mesh is large, the CSRBFs need to 
consume a large amount of memory, which cannot be run on a 
personal computer, so the CSRBFs in Secs. 5.3 and 5.4 are 
run on a workstation with the following parameters: Phytium 
2000 (2.20 GHz) CPU, 512G of RAM, Linux operating system, 
Matlab development environment. Other codes are run on a 
personal computer with the following parameters: Intel i5 (2.20 
GHz) CPU, 12G RAM, Windows 10 (64-bit) operating system, 
Matlab development environment. 

 
5.1 Influence of parameter c on approximation 

accuracy 

The test LSFs are defined as 
 

( ) ( )

( )
( )

11
cos cos

2 2

1 1 , 1, 1
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x y
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Φ = − = =

Φ = − = =

 

 
where xn ( yn ) and xh ( yh ) denote the length of the region 
and the number of holes along the x ( y ) direction, respec-
tively. 

The images of functions Φ1 , Φ2  and their corresponding 
structures are shown in Fig. 1. The function 1Φ  is smooth 
and its partial derivatives are continuous in the reference do-
main, while the partial derivatives of Φ2  are discontinuous at 
Φ =2 1. 

Set xn = 60, yn = 30. To compare the approximation accu-
racy of MQLSM and CSRBFs, and 61×31 nodes are uniformly 
selected as interpolating nodes according to the interval h = 1, 
and 601×301 nodes are uniformly selected as test nodes ac-
cording to the interval th = 0.1. The shape parameter c  of the 
MQ basis functions is taken as 0.01 and 1, respectively. 

The mean of the absolute values of the differences between 
the results and the test function values is used as a measure of 

error. 
 

( )m
ˆ( , ) ( , )e mean x y x y= Φ − Φ   (32) 

 
where ( , )x yΦ  denotes the test function and ˆ ( , )x yΦ  de-
notes the approximation function. The partial derivatives xΦ , 

yΦ  and the modulus of the gradient ∇Φ  are also measured 
using this error measure, and the results are shown in Table 1. 

In Table 1, when the shape parameter c = 0.01, the ap-
proximation accuracy of the MQLSM for the original function 
( Φ1  and Φ2 ) and its generalized functions is higher than that 
of the CSRBFs. In particular, the approximation accuracy of 
MQLSM is about one order of magnitude higher than that of 
the CSRBFs for the smooth function 1Φ . When the shape 
parameter c = 1, the approximation accuracy of the MQLSM 
for the smooth function 1Φ  is still higher than that of the 
CSRBFs. But the approximation accuracy of MQLSM for non-
smooth functions Φ2  is lower than that of CSRBFs. 

This indicates that better approximation accuracy is generally 
obtained when the parameter c  takes a reasonably small 
value. It is worth noting that the parameter c  as a shape pa-
rameter of the RBF, gives a higher order smooth approximation 
function when it takes larger values [33]. Meanwhile, maintain-
ing the smoothness of the LSF is also beneficial for the 
MQLSM to maintain a high approximation accuracy.  

Can a fixed parameter c  maintain a high approximation ac-
curacy for the LSF and its generalized functions as the LSF is 
varied in topology optimisation? This is verified in Sec. 5.2. 

 
5.2 Performance of MQLSM-Ersatz 

The design domain is shown in Fig. 2, and the dimension ra-
tio of the short cantilever beam is 2×1. Its left boundary is fixed, 
and the middle point of the right boundary is subjected to a 
force F = -1 in the vertical direction. The expected volume 
fraction is set to 50 %. The function Φ2  is used as the initial 
value of the LSF, and the corresponding initial design is shown 
in Fig. 1. 

In order to compare the performance of CSRBFs and 

 
Table 1. Comparison of approximation accuracies of different methods 
under mesh .×60 30  
 

 MQLSM 

 
CSRBFs 

.0 01=c  1=c  

1Φ  . 24 02 10−×  . 32 40 10−×  . 23 02 10−×  

1Φ x  . 27 27 10−×  . 31 42 10−×  . 31 25 10−×  
1Φ y  . 27 87 10−×  . 35 80 10−×  . 37 47 10−×  

1Φ  

1∇Φ  . 27 69 10−×  . 34 36 10−×  . 36 44 10−×  
2Φ  . 22 09 10−×  . 21 83 10−×  . 11 30 10−×  
2Φ x  . 24 69 10−×  . 23 24 10−×  . 27 51 10−×  

2Φ y  . 25 32 10−×  . 24 86 10−×  . 11 06 10−×  
2Φ

2∇Φ  . 25 24 10−×  . 24 34 10−×  . 11 24 10−×  

 

 

 
Fig. 1. Different LSFs (left column) and their corresponding structures (right 
column) under mesh .×60 30  



 Journal of Mechanical Science and Technology 38 (7) 2024  DOI 10.1007/s12206-024-0625-8 
 
 

 
3527 

MQLSM, comparative experiments are conducted on them 
under mesh divisions of 60×30 ( xn = 60,  yn = 30), 100×50 
( xn = 100, yn = 50) and 160×80 ( xn = 160,  yn = 80), respec-
tively. The FEA of the MQLSM uses the Ersatz material 
method to calculate the element density with the parameter 
c = 0.01. The time step of both methods is 0.5 in this section. 

When the mesh is divided into 60×30 and the same node is 
selected to calculate the gradient in each iteration, the com-
parison of the calculation results of ( 1 2, ,meanΜ = ∇Φ ∇Φ  

)l… ∇Φ  by MQLSM, CSRBFs [37] and upwind scheme [7, 
36] is shown in Fig. 3. As easily found, the results of the three 
methods are very similar, which indicates that MQLSM can 
maintain a high approximation accuracy for the LSF and its 
generalized functions when the parameter c  is chosen as a 

fixed value. 
Fig. 4 shows the results of the optimal design of MQLSM and 

CSRBFs, Fig. 5 illustrates their convergence curves, and Table 
2 compares their performances.  

In Fig. 4, the optimal structures of the two methods under dif-
ferent meshes have small differences, and both of them have 
mesh dependence. In Fig. 5, the variation patterns of the con-
vergence curves of them are similar. Moreover, the fluctuation 
amplitude of MQLSM is smaller compared with the CSRBFs. 
Obviously, in Table 2, their number of iterations and objective 
function values are very close to each other. Those indicate 
that MQLSM has a similar convergence process with the 
CSRBFs. Since they have different approximation accuracies, 
their convergence processes cannot be identical. In Table 2, 
the approximation accuracy of MQLSM is higher for different 
meshes, which may be the reason why its convergence curve 
fluctuates less than CSRBFs. 

In addition, their approximation accuracies both increase 
with the number of meshes, but the growth of MQLSM is more 

 
 
Fig. 2. Design domain of cantilever beam. 

 

 
 
Fig. 3. Comparison of calculation results of Μ  by MQLSM, CSRBFs and 
upwind scheme. 

 

 
 
Fig. 4. Optimal design of CSRBFs (left column) and MQLSM (right column).

 

Table 2. Comparison of the computational performance of the two meth-
ods, the me  is approximation error of initial design, the O  represents 
objective function value, the T represents the single iteration time and 
the N  represents the number of iterations. 
 

  me  O  T/s N  

CSRBFs . 22 09 10−×  59.81 0.29 80 
60×30 

MQLSM . 21 83 10−×  59.81 0.06 80 

CSRBFs . 21 96 10−×  60.21 1.63 83 
100×50 

MQLSM . 36 94 10−×  60.22 0.19 83 

CSRBFs . 21 94 10−×  60.41 18.57 63 
160×80 

MQLSM . 32 67 10−×  60.41 0.65 69 

 

60×30 
 

100×50 
 

160×80 
 
Fig. 5. Convergence curves of CSRBFs (left column) and MQLSM (right 
column). 
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significant. Moreover, the conditional number of the interpola-
tion matrix of the CSRBFs increases with the influence domain 
which may lead to numerical instability. On the contrary, the 
MQLSM is more stable for numerical computation because it 
does not have to solve a system of linear equations. 

In Table 2, the single iteration time of CSRBFs is about 2.5, 
8.6 and 28.6 times that of MQLSM, respectively. This indicates 
that MQLSM has a very high computational efficiency. 

 
5.3 Evolutionary stability of MQLSM-MQFEA 

As shown in Fig. 6, consider the MBB beam subjected to a 
vertical force F = -1 at the middle point of the upper boundary. 
The design domain is discretized into a mesh of 400 × 100 = 
40000 and the expected volume fraction is set to 50 %. The 
time step of each method in this section is taken as 0.5. 

Fig. 7 shows the structural topology evolution of different 
methods, Fig. 8 shows the comparison of their convergence 
curves, and Table 3 demonstrates their computational effi-
ciency. The values of Δ  here are taken using both fixed and 
decreasing schemes, where 0Δ  denotes the initial value, dΔ  
denotes the decrease in each iteration, and min Δ  denotes 
the minimum value. 

First of all, the topology optimization process (Fig. 7) and 
convergence curves (Fig. 8) of MQLSM-Ersatz are very similar 
to them of CSRBFs. This reaffirms the conclusion in Sec. 5.2 
that MQLSM-Ersatz has a similar convergence process as 
CSRBFs. Due to the different approximation accuracies of the 
two parameterization methods, it is impossible to keep their 
structural topologies exactly the same with the dynamic 
changes of the evolution process [24]. 

In Fig. 7, CSRBFs and MQLSM-Ersatz are boundary-based 

methods that are more likely to produce finer components in 
the initial stage, and achieve the disappearance of finer com-
ponents in the later stage using hole merging. On the contrary, 
MQLSM-MQFEA is similar to the density-based method in that 
the component sizes appear according to a pattern from 
coarse to fine, and this topological evolution seems to be more 
stable. 

In Fig. 8, the convergence curve of MQLSM-MQFEA does 
not dramatically fluctuate in the initial stage, which indicates 
that this method is more stable and reduces the topology muta-
tion. 

 
5.4 Computational efficiency of MQLSM-MQFEA 

Finally, a Michell structure with vertical force F = -1 at the 
bottom center is considered. Its design domain and initial de-
sign are shown in Fig. 9. The design domain is divided into a 
300 × 150 = 45000 mesh with an expected volume fraction of 
45 %. The time step of each method is taken as 0.01 in this 
section. 

Fig. 10 shows the final design results of the different meth-
ods, Fig. 11 shows the comparison of their convergence 
curves, and Table 4 demonstrates their optimization perform-
ance.  

In Fig. 10, the final designs of the various methods are simi-
lar. In Fig. 11, the various methods have very similar evolution-
ary processes at the initial stage. 

In Tables 3 and 4, the single iteration time of MQLSM is 
much lower than that of CSRBFs. This indicates that MQLSM 
has very high computational efficiency. Unlike CSRBFs, which 

 

 
Fig. 6. MBB beam design domain (left) and initial design (right). 

 

CSRBFs 
 

MQLSM-Ersatz 
 

MQLSM-MQFEA: min .0 0 5Δ = Δ = Δ =  
 

MQLSM-MQFEA: , . , min .0 2 0 01 0 5Δ = Δ = − Δ =d  
 
Fig. 7. Comparison of topology optimization process for 25 (left), 45 itera-
tions (middle) and final design (right) of different methods. 

 

 (a) (b) 
 

 (c) (d) 
 
Fig. 8. Comparison of convergence curves of (a) CSRBFs; (b) MQLSM-
Ersatz; (c) MQLSM-MQFEA: min .0 0 5Δ = Δ = Δ = ; (d) MQLSM-MQFEA: 

, . , min .0 2 0 01 0 5Δ = Δ = − Δ =d . 

 

 
Fig. 9. Design domain (left) and initial design (right) of Michell structure. 
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need to be run on workstations with large memory footprint, the 
MQLSM can be run on ordinary personal computers, which 
greatly reduces the requirement of device memory. 

Wei [39] argued that the LSBM can be regarded as a zero 
level set (or boundary-based evolution) model, when Δ  is 
very small. When the value of Δ  is large, the topology evolu-
tion is mainly driven by the density change, and it can be re-
garded as a density-based model. According to narrow-band 
theory [40], the method maps the LSF on the narrow-band 
around the zero level set (or boundary) to the element density. 
It is fully equivalent to the LSM only if width of the narrow-band 
( Δ ) is very small. 

In Tables 3 and 4, the single iteration time of MQFEA is 
slightly higher than that of the Ersatz material method, partly 
due to the fact that the computational cost of MQFEA is slightly 
higher than that of the linear interpolation method, and the fact 
that MQFEA is computed on a narrow band near the boundary 
instead of at the boundary points, which extends the computa-
tional range of intermediate densities. 

It should be noted that in Figs. 8 and 11 the number of itera-
tions of the methods using MQFEA in the early iteration is 
slightly higher than the Ersatz material method. Since the topo-
logical evolution is more drastic early in the iteration, slow itera-
tion is beneficial to keep the evolution process stable. But, in 
Tables 3 and 4, the total number of iterations of MQFEA is not 
significantly higher than that of Ersatz. If Δ  be taken to an 
appropriate value, such as 0 minΔ = Δ = Δ = 0.5 in Table 4, 
MQFEA can consume fewer iterations.  

Indeed, choosing different step sizes at different evolutionary 
stages, such as gradually increasing the step size from early to 
late stages, can reduce the number of iterations while main-
taining evolutionary stability. Interested readers can consult the 
Ref. [25]. 

In summary, MQLSM-MQFEA greatly improves computa-
tional efficiency without significantly increasing the number of 
iterations. 

 
5.5 3D cantilever beam 

The optimization process of a 3D cantilever beam problem is 
illustrated in Fig. 12. The left side of the beam is fixed and a 
vertical force F = -1 is applied at the midpoint of the bottom 
line of the right side. The structure is discretised by 60 × 30 × 
10 elements, and the expected volume fraction is set to 
35 %.The time step of each method is taken as 0.1 in this sec-
tion. The parameters μ , maxγ  and Rn  are assigned the val-
ues of 80, 50 and 2.5, respectively. Fig. 13 illustrates conver-
gence curves of MQLSM-MQFEA using both fixed and de-
creasing schemes, and Table 5 compares their performances. 

Obviously, the MQLSM-MQFEA method is effective for 3D 

Table 3. Comparison of computational performance of different methods. 
 

 O  T/s N  

CSRBFs 38.19 189.87 77 

MQLSM-Ersatz 38.45 2.54 82 

MQLSM-MQFEA: min .0 0 5Δ = Δ = Δ =  38.08 3.65 119 
MQLSM-MQFEA: 

,0 2Δ = . , min .0 01 0 5Δ = − Δ =d  38.03 3.74 92 

 
Table 4. Comparison of computational performance of different methods. 
 

 O  T/s N  

CSRBFs 11.91 249.34 663 
MQLSM-Ersatz 11.94 2.27 534 

MQLSM-MQFEA: 
min .0 0 5Δ = Δ = Δ =  12.07 3.11 359 

MQLSM-MQFEA: 
,0 2Δ = . , min .0 01 0 1Δ = − Δ =d  11.99 3.19 667 

 

 (a) (b) 
 

 (c) (d) 
 
Fig. 10. Comparison of the final design of (a) CSRBFs; (b) MQLSM-Ersatz;
(c) MQLSM-MQFEA: min .0 0 5Δ = Δ = Δ = ; (d) MQLSM-MQFEA: ,0 2Δ =

. , min . .dΔ = − Δ =0 01 0 1  

 

Table 5. Comparison of computational performance of MQLSM-MQFEA for 
3D cantilever beam. 
 

 O  T/s N  

min .0 0 5Δ = Δ = Δ =  13.25 7.42 133 

,0 2Δ = . ,  min .0 01 0 1Δ = − Δ =d  13.27 7.50 142 

 

 (a) (b) 
 

 (c) (d) 
 
Fig. 11. Comparison of convergence curves of (a) CSRBFs; (b) MQLSM-
Ersatz; (c) MQLSM-MQFEA: min .0 0 5Δ = Δ = Δ = ; (d) MQLSM-MQFEA: 

, . , min .0 2 0 01 0 1Δ = Δ = − Δ =d . 
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cases. In addition, no matter Δ  is updated with a fixed or 
descending scheme, a reasonable topology structure can be 
obtained within an acceptable time and iterations, which indi-
cates that MQLSM-MQFEA method can still maintain a high 
computational efficiency for 3D cases. 

 
6. Conclusions 

Based on the good approximation property of multivariate 
MQ quasi-interpolation to the original function and its general-
ized function, this paper proposes two approaches, MQLSM-
Ersatz and MQLSM-MQFEA, the main conclusions are as 
follows: 

1) The approximation accuracy of MQ quasi-interpolation 
method is higher than that of CSRBFs when the shape pa-
rameter takes a suitable small value. 

2) The proposed methods occupy little memory and has high 
computational efficiency, which is suitable for large-scale mesh 
structural topology optimization problems.  

3) Compared with CSRBFs, the MQLSM-MQFEA has higher 
evolutionary stability. 

This paper does not test other spline functions such as B-
splines, which will be the focus of the next research of the au-
thors. 
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