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Abstract  In order to offer guidelines for physics-informed neural network (PINN) imple-
mentation, this study presents a comprehensive review of PINN, an emerging field at the inter-
section of deep learning and computational physics. PINN offers a novel approach to solve
physics problems by leveraging the flexibility and scalability of neural networks, even with small 
or no data. First, a general description of different physics problem types and target tasks ad-
dressable with PINN was provided. A generic PINN architecture was described in detail using a
component-wise approach, with components ranging from collocation points to optimization 
methods. Then, we surveyed studies that sought to improve upon each of these components.
To offer practical insights, we highlighted studies that focused on key issues of PINN imple-
mentation and showcased three practical applications. Lastly, a summary and potential re-
search directions were provided to offer guidelines for reliable and customized PINN implemen-
tations. 

 
1. Introduction   

Based on the recent advancements in deep learning technology, artificial intelligence has led 
to success in various fields. With the increasing accessibility of big data, advances in sensor 
technology, and high-performance hardware sources such as GPUs and NPUs, deep learning 
technology is expected to continue to grow. However, in engineering design, the acquisition of 
labeled data is often costly and time-consuming, limiting the full utilization of such advanced 
techniques. Therefore, several attempts have been proposed to solve engineering problems by 
incorporating physics knowledge that has been built up over hundreds of years into artificial 
neural networks (ANNs) in addition to available sparse data if any. Those were named "phys-
ics-informed neural networks", "physics-based neural networks", "physics-guided neural net-
works", or "theory-guided neural networks" [1]. 

Among different names, most recent studies utilized the name “physics-informed neural net-
work (PINN)”, and we will also use ‘PINN’ as the representative name in this review paper. 
Several early studies had attempted to incorporate physics knowledge into ANNs (refer to Ap-
pendix for more details), upon which recent PINNs were developed. Currently considered one 
of the most significant starting points, Raissi et al. [2] presented a PINN in 2019 (later referred 
to as Vanilla PINN) that computes the solution of the governing equations by training the net-
work using the collocation points within the computational domain along with the automatic 
differentiation (AD). Afterwards, numerous studies have been proposed to handle physics prob-
lem types other than PDEs and to improve the accuracy and/or computational efficiency by 
modifying some parts of the PINN architecture, which will be reviewed in this paper.  

As numerous studies have been suggested to enhance the performance of PINN, some re-
cent review papers summarizing major studies have also been made available. Cai et al. [3] 
presented a review of the applications of PINN in fluid mechanics, as well as some case stud-
ies of flow problems to illustrate the methodologies. The case studies covered three-
dimensional incompressible, two-dimensional steady compressible and biomedical flows. Here, 
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thorough explanations of the problem setup, implementation of 
PINN, and outcomes for each case study were provided. Simi-
larly, Cai et al. [4] presented a review of PINN applications in 
heat transfer problems and applications in the thermal design 
of power electronics. Additionally, general reviews on PINN 
and some of its applications were discussed by Karniadakis et 
al. [5] and Cuomo et al. [6]. Both reviews highlighted studies 
that enhanced the performance of the Vanilla PINN and pre-
sented their key concepts along with some theoretical aspects. 
These reviews can help to understand the principles of PINN 
and its modifications and applications. Engineers from different 
fields, however, might not have a clear understanding of how to 
appropriately select and apply the many studies that are ongo-
ing simultaneously. 

This review attempts to provide a guideline for implementing 
PINN improvements and presents three practical engineering 
applications that illustrate the implementation of some of the 
PINN improvements reviewed. In Sec. 2, we describe physics 
problem types and target task types for which PINN can be 
utilized. A generic PINN architecture is presented in Sec. 3 to 
set the stage for Sec. 4's description of research that focused 
on improving each component (part) of the PINN architecture. 
Sec. 5 reviews studies on what the authors consider to be 
some of the key issues in PINN. In Sec. 6, three exemplary 
applications of PINN to practical engineering problems are 
provided for readers to better comprehend the effect of the 
studies discussed in Secs. 4 and 5. Finally, Sec. 7 concludes 
with a summary of the paper and a discussion of prospective 
study areas. 

 
2. Types of physics problem and target 

task 
This section categorizes the types of physics problems and 

target tasks for which PINN is utilized, providing background 
knowledge for the studies of PINN discussed in the following 
sections. A physics problem type is defined by governing equa-
tions as well as initial conditions and/or boundary conditions, 
which are to be explained in Secs. 2.1 and 2.2, respectively. In 
Sec. 2.3, additional physics knowledge that can be considered 
is explained, which consist of algebraic equations and knowl-
edge graph. The target task types are then described in Sec. 
2.4. 

 
2.1 Governing equations 

There exist various types of differential equations in which 
PINN can be implemented: ordinary differential equations 
(ODEs), partial differential equations (PDEs), fractional differ-
ential equations (FDEs), integro-differential equations (IDEs), 
and stochastic differential equations (SDEs).  

ODEs can be generally formulated as 
 

( )(x, , , ,..., ) 0,nF y y y y′ ′′ =   (1) 

where y  denotes the unknown solution, where derivatives of 
which are taken with respect to input x (often representing 
time).  

PDEs, most commonly used to express various physical 
phenomena, can be classified into a steady state and unsteady 
state by temporal dependence. In most cases, engineering 
problems are described by a composition of unsteady PDEs 
and can be generally formulated as 

 
( ) ( )( , , ( , ), , ,..., , ) 0,n n

t tF t y t y y y y∂ ∂ ∂ ∂ =x xx x   (2) 
 

where the unknown solution ( , )y tx  depends on more than 
one independent variables, as opposed to one in ODEs. 

FDEs, another type of differential equations that contain non-
integer differential operators, can be expressed as 

 
( ) ( , ( ), y ( ),..., y ( )),q nD y x f x y x x x′=  (3) 
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Γ − −∫   (4) 

 
where qD  denotes the fractional derivative of order q , and 
f  denotes the forcing function represented by the input x , 

output y  and its derivatives up to order of n . Eq. (4) shows 
the definition of qD , where m  denotes the smallest integer 
with m q>  and Γ  denotes the gamma function for generali-
zation of the factorial function.  

IDEs contain both derivatives and integrals of the output y, 
which can be expressed as the following: 

 

( ), ( ), ( ),..., ( ), ( , , ( )) 0,nF x y x y x y x g x t y t dt′ =∫
 

 (5) 

 
where ( )y x  denotes the unknown solution to be computed, 
g  is a known function, the integral of which provides the past 
values of y  as time progresses.  

SDEs express random parameters of the problem as sto-
chastic processes, which can be generally formulated as the 
following: 

 
[ ( ; ); ( ; )] 0, , ,xN y k Dω ω ω= ∈ ∈Ωx x x  (6) 

 
where ( ; )k ωx  denotes the random parameter, ω  denotes 
the random input in random space Ω . 

 
2.2 Initial conditions and boundary conditions 

Boundary conditions (BCs) can be expressed in forms of Di-
richlet, Neumann, Robin, periodic boundary conditions, etc. In 
most of PINN studies, initial conditions (ICs) and BCs are en-
forced in a ‘soft’ manner, i.e., as loss terms in a loss function. 
As such, by training the neural network, the loss function is to 
be minimized and corresponding IC/BCs are satisfied, along 
with the governing equations. More detailed formulation of the 
loss function is provided in Sec. 3. 
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2.3 Additional physics knowledge 

In the scope of PINN, prescribed differential equations and 
corresponding IC/BCs are mainly considered as the physics 
problem to be solved. However, in practical problems, it may 
be beneficial to incorporate additional physics knowledge that 
cannot be described with differential equations and IC/BCs.  

As one of the additional physics knowledge, algebraic equa-
tions can be incorporated into the governing equations and/or 
constraints to further enforce some known physics, which could 
potentially enhance the performance of PINN.  

In case there exist fixed relationships or correlations between 
input variables, such characteristics can be described by for-
mulating a knowledge graph. To enforce the knowledge graph 
into PINN, a special type of neural networks, graph neural net-
works (GNNs), can be utilized to process the knowledge graph 
as an input of PINN. More details on incorporating GNNs into 
PINN are described further in Sec. 4.2.9. 

It is worth noting that creating a general framework of prob-
lem formulation that can be applied to numerous engineering 
domains of interest is challenging. Engineers are therefore 
encouraged to experiment with and incorporate different types 
of physics knowledge in their fields of interest for PINN applica-
tion. 

 
2.4 Target task types 

PINN is mainly utilized to solve the following target task 
types: forward problem, inverse problem, and uncertainty 
quantification. 

The forward problem is one of the most common target task 
types considered in engineering, where the physics are ex-
pressed as a set of known differential equations and ICs and/or 
BCs: for example, in heat and mass transfer, fluid mechanics, 
solid mechanics, etc. With or without any available labeled 
experimental/simulation data, the neural network can be 
trained to comply to the given governing set of differential 
equations and ICs and/or BCs and provide the desired solution 
with appropriate formulation of PINN.  

The inverse problem is also another common target task 
type in engineering, where some parameters or properties of 
the physics system are unknown. In this case, some sparse 
labeled experimental/simulation data are required for precise 
training of the network and for inferring the desired solution as 
well as the unknown parameters or properties. One of the ap-
plications includes characterization of the material properties in 
material sciences, as the underlying problems may be of ill-
posed and inverse type. As solving the inverse problem is often 
more challenging than solving the forward problem, more so-
phisticated modifications of PINN may be required. 

Uncertainty quantification (UQ) is the other target task type, 
where the uncertainties of the problem are to be quantified with 
PINN. UQ is often required when the random perturbations that 
affect the physical phenomena are to be considered, hence 
has important applications in various scientific and engineering 

fields. As described in Sec. 2.1, SDEs define the physical sys-
tem as a stochastic process with random variables, aiming to 
express the randomness of the problem in the form of differen-
tial equations. As such, by solving the SDEs with PINN, noisy 
and stochastic phenomena from random inputs can be quanti-
fied and further be analyzed. 

 
3. Physics-informed neural network archi-

tecture 
A general architecture of PINN can be depicted as in Fig. 1. 

At first, collocation points are selected. Then, a neural network 
( ; )z θN  takes the space-time coordinate vector 1 2: [ , ,.x x=z  

..., ; ] [ ; t]nx t = x  as an input and computes approximation of an 
output to the problem. Such neural network approximation of 
the output u is described as 

 
ˆ ( ) ( ),u u≈θ z z

 
 (7) 

 
where ûθ  represents a neural network approximation realized 
with a set of neural network parameters θ . The approximate 
solution is then substituted for differentiation to compute the 
derivatives included in the governing equations using auto-
matic differentiation (AD) or numerical differentiation (ND). 
Then, loss terms, representing errors between estimated val-
ues and true values, are evaluated. There can be four kinds of 
loss terms in PINN: 0L  for initial conditions, bL  for boundary 
conditions, fL  for governing equations, and dL  for labeled 
data within the computational domain. A weighted sum of the 
four loss terms in Eq. (8) can be used to represent the loss 
function to be minimized for neural network training.  

 
0 0 f f( ,b b d dL L L L Lω ω ω ω) = + + +θ   (8) 

 
where 

 
0 2

0 01
0

1 ( , 0) ,N i
i

L g t
N =

= =∑ x   (9) 

 

 
Fig. 1. Physics-informed neural network architecture. 
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= −∑ x   (12) 

 
Here, g and f denote arbitrary initial/boundary functions 

and differential equations, 0N denotes the number of collocation 
points for ICs, 0

0 0 1{ , t }Ni
i=x , bN the number of collocation points 

for BCs, 1{ , t } bNi i
b b i=x  , fN the number of collocation points in the 

computational domain, f
f f 1{ , t }Ni i

i=x . In case any additional la-
beled data are available, it can be included for training; dN de-
notes the number of labeled data in the computational do-
main, 1{ , t , } dNi i i

d d iu =x . Depending on the type of a physics prob-
lem to be solved and availability of labeled data, some weight 
values can become zero. For example, if no labeled data is 
available, dω = 0. Finally, the loss function is fed into a feed-
back mechanism to update neural network parameters θ , and 
the updated θ  is used for the neural network at the next itera-
tion. The whole process iterates until the values of neural net-
work parameters converge to the optimum values, *θ , that 
minimize the loss function. 

 
4. Component-wise studies of PINN archi-

tecture 
This section describes studies that modified each component 

of the PINN architecture depicted in Fig. 1 to enhance the per-
formance. The studies in this section can be adaptively applied 
to the fields of interest to build a ‘customized’ PINN model. An 
overview of the studies for the five components of PINN is 
provided in Table 1. 

 
4.1 Selection of collocation points 

PINN is a collocation-based technique that requires appro-
priate selection of collocation points within the computational 
domain for proper training of PINN. Instead of simple uniform 
or random sampling for the selection of collocation points, vari-
ous sampling techniques have been proposed and applied to 
improve the accuracy and/or computational speed of PINN. 

Sampling techniques can be classified into two types: non-
adaptive (domain-based) sampling and adaptive (response-
based) sampling. Non-adaptive sampling is a one-shot sam-
pling technique that uses only information from input variables 
to select all necessary collocation points. On the other hand, 
adaptive sampling is a sequential sampling technique that re-
peatedly proceeds with sampling by using information from 
both input variables and corresponding response values until a 
predefined goal is reached. As such, non-adaptive sampling 
techniques select collocation points only once before the start 
of neural network training. However, adaptive sampling tech-
niques select the collocation points sequentially by using both 

response values and input variable values until the predefined 
goal is reached.  

Das and Tesfamariam [7] compared the performance of 
PINN on five PDE examples using ten different non-adaptive 
sampling techniques: full factorial design (FFD), central com-
posite design (CCD), centroidal voronoi tessellation (CVT), 
maximin latin hypercube (MLH), Sobol, Halton, Hammersley, 
Faure, full grid design (FGD), and sparse grid design (SGD). 
Hammersley sampling, one of the quasi-random sampling 
techniques, showed the best performance, followed by SGD 
and Sobol sampling. Mean squared errors (MSEs) were com-
pared to evaluate performance based on the assumption that 
the analytical solution of each of the five PDE examples is the 
true solution. Furthermore, Mou et al. [8] introduced a mixed 
sampling technique that combined cartesian grid sampling and 
Latin hypercube sampling, where the collocation points were 
selected by adjusting the ratio of each sampling technique 
according to the problem. The ratio of each sampling technique 
was determined through a trial-and-error process.  

As the first adaptive sampling technique applied in PINN, re-
sidual-based adaptive refinement (RAR) proposed by Lu et al. 
[9] was considered, which is a greedy algorithm that samples 
additional points in the locations with large PDE residual values 
at each training iteration. Hanna et al. [10] proposed another 
adaptive sampling technique named residual-based adaptive 
distribution (RAD), which samples additional points in a distrib-
uted manner using the prescribed probability density function 
(PDF) proportional to PDE residual values, instead of using just 
the residual values as in RAR. Wu et al. [11] then proposed the 
adaptive sampling technique named residual-based adaptive 
refinement with distribution (RAR-D) that combined the ideas of 
the RAR and RAD to achieve a balance between the accuracy 

 
Table 1. A summary of component-wise studies of PINN architecture. 
 

Components Key studies 

Selection of  
collocation points

Non-adaptive sampling [7-8]  
Adaptive sampling [9-13] 

Neural networks 

Fully connected neural networks [14-21]  
Shallow/sparse neural networks [22-24] 
Convolutional neural networks [25-29]  
Generative neural networks [30-33]  
Sequence models [34-36]  
Deep operator networks [37-40]  
Bayesian networks [41] 
Transformer networks [42] 
Graph neural networks [43, 44] 
Multi-output PINN [45] 

Differentiation Coupled-automatic-numerical differentiation [46] 

Loss function 
Collocation loss function [47-56] 
Variational loss function [57-61] 
pL norm [62] 

Neural network 
training 

Particle swarm optimization [63] 
Non-dominated sorting genetic algorithm [64] 
Importance sampling [65, 66] 
Training without stacked backpropagation [67] 
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and computational cost. The performance of three adaptive 
sampling techniques, RAR, RAD, and RAR-D, were compared; 
it was revealed that RAD showed the best performance, and 
RAR-D showed comparable performance to RAD and yet im-
proved computational efficiency. Peng et al. [12] proposed a 
residual-based adaptive node generation (RANG) technique 
that attempted to combine the advantages of quasi-uniform 
sampling and residual-based adaptive sampling. They addi-
tionally utilized a memory mechanism to enhance the perform-
ance, but only the evaluation in two-dimensional problems was 
provided; hence, further research is required for its implemen-
tation in higher-dimensional problems. Subramanian et al. [13] 
suggested an adaptive self-supervision algorithm that utilized 
the gradient values instead of the loss term residuals for adap-
tive sampling. For most non-convex problems, appropriate 
constraints should be incorporated into the neural network to 
avoid falling into local minima during optimization. The key idea 
of the algorithm is to periodically adjust the ratio of uniform 
sampling and adaptive sampling using the cosine annealing 
scheme during each specific number of epochs, while utilizing 
uniform sampling for the remaining epochs, to maintain a bal-
ance between local adaptability and domain coverage.  

Depending on the physics problem to be solved, each or the 
combination of the suggested techniques can be appropriately 
applied and to select the collocation points. 

 
4.2 Neural networks 

Besides the fully connected neural networks (FCNNs) util-
ized in Vanilla PINN [2] in 2019, studies have proposed modifi-
cations to FCNNs or other types of neural network architec-
tures to handle diverse types of input data and/or enhance the 
performance of PINN. This section reviews studies on modifi-
cations to FCNNs and utilizing other types of neural network 
architectures, including shallow/sparse neural networks, convo-
lutional neural networks, generative neural networks, sequence 
models, deep operator network, bayesian neural networks, 
transformer networks, and multi-output physics informed neural 
network. 

 
4.2.1 Fully connected neural networks 

Fully connected neural networks (FCNNs) enable modeling 
of complex nonlinear relationships between inputs and outputs 
through multiple hidden layers with an appropriate selection of 
activation functions such as hyperbolic tangent (tanh), rectified 
linear unit (ReLU), sigmoid, softmax, etc. Selecting an appro-
priate activation function typically involves trial-and-error de-
pending on the problem of concern. Jagtap et al. [14] at-
tempted to resolve the issues with vanishing or exploding gra-
dients by presenting an adaptive activation function, in which 
an adaptable hyperparameter and a scaling factor are added to 
the activation function. Based on Ref. [14], Jagtap et al. [15] 
introduced the concept of a locally adaptive activation function, 
which adds a slope recovery term to the activation function per 
layer and neuron. Gnanasambandam et al. [16] proposed a 

self-scalable hyperbolic tangent (Stan) activation function to 
resolve the scalability issue. Stan improved the convergence 
speed and generalization performance by adding a self-scaling 
term to the tanh activation function to compensate for the case 
where the orders of magnitude between input and output differ. 
Abbasi and Andersen [17] proposed physical activation func-
tions (PAFs), which is a generic activation function derived 
from physical laws. PAFs are designed to incorporate known 
physical or mathematical laws directly into neural networks, 
replacing traditional activation functions such as tanh or sig-
moid. By incorporating PAFs, the interpretability of neural net-
works and performance of the out-of-distribution prediction 
(extrapolation) were enhanced, especially for networks with 
smaller sizes.  

Peng et al. [18] proposed prior dictionary based PINN (PD-
PINN) technique in which prior information of the problem is 
incorporated into the additional dictionary fusion layer, which is 
later combined with the output layer of the neural network via 
inner products. Based on the spectral methods that utilize the 
orthogonal basis of the problem, theoretically established spec-
tral convergence can be utilized, and the issue with truncation 
error is also resolved thanks to the universal approximation 
theory. The dictionary is a combination of word functions con-
taining prior information and is non-intrusive to existing neural 
networks; it can be expressed in various types according to the 
problems such as spatial-based, frequency-based, and data-
driven. 

Residual neural network (ResNet) is a deep neural network 
that provides residual connections, proposed in Ref. [19]. Res-
Net includes identity mapping of inputs, and the output of one 
layer may skip one or more layers and be added to the output 
of a subsequent layer. ResNet is typically known to resolve the 
problem of vanishing gradients and can be beneficial in training 
FCNNs with many hidden layers. Cheng and Zhang [20] pro-
posed Res-PINN, which combined PINN with Resnet to lever-
age such advantages of identity mapping. The performance of 
Res-PINN was evaluated by solving Burger's equation and 
Navier-Stokes equation, and it was shown to enhance the ac-
curacy and stability. 

As mentioned in Sec. 2.3, algebraic equations can be incor-
porated into the governing equations of PINN as additional 
physics knowledge. In addressing a system of equations that 
consist of both differential and algebraic equations, or differen-
tial-algebraic equations (DAEs), Moya and Lin [21] proposed 
DAE-PINN framework, which modified the neural network ar-
chitecture of PINN to enhance its capability. DAE-PINN modi-
fied its FCNNs structure to incorporate implicit Runge-Kutta 
methods and a penalty-based method, which targeted on re-
solving the issues of stiffness and complex dynamics. As Va-
nilla PINN with conventional FCNNs struggles in resolving 
these issues, DAE-PINN broadened the applicability of PINN in 
such scenarios that may occur in more practical problems.  

 
4.2.2 Shallow/sparse neural networks 

To improve the training efficiency, techniques utilizing shal-
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low neural networks were proposed. Dwivedi and Srinivasan 
[22] proposed the physics-informed extreme learning machine 
(PIELM) technique that incorporates the extreme learning ma-
chine (ELM) technique into PINN. By utilizing the ELM tech-
nique that only trains the weights of the output layer, the PIELM 
technique successfully reduced the training cost by decreasing 
the number of training parameters. However, the PIELM tech-
nique is only applicable to the linear PDEs. Schiassi et al. [23] 
proposed extreme theory of functional connections (X-TFC), 
which combines the theory of functional connections (TFC) 
with ELM. Resolving the shortcomings of the PIELM technique, 
X-TFC was applied to non-linear PDEs with formulating con-
strained expressions to automatically satisfy BC/ICs.  

On the other hand, Ramabathiran and Ramachandran [24] 
proposed sparse, physics-based, and partially interpretable 
neural networks (SPINNs), which utilized sparse neural net-
work (SNN) consisting of a mesh encoding layer and kernel 
layer to obtain solutions of ODEs and PDEs. Here, numerous 
meshless techniques could be carried out; as an example, the 
radial basis function (RBF) was implemented through SPINN. 
Additionally, to apply SPINN to solve time dependent PDEs, 
the Finite Difference method was incorporated into SPINN. As 
a result, the computational efficiency was improved, as the 
number of training parameters is much fewer than in FCNNs. 

 
4.2.3 Convolutional neural networks 

It is generally challenging to learn the large-scale spatio-
temporal solution field efficiently utilizing FCNNs. To resolve 
this issue, studies have been conducted using convolutional 
neural networks (CNNs) to generate the solution field with 
fewer parameters. Physics-informed geometry-adaptive convo-
lutional neural network (PhyGeoNet) by Gao et al. [25] utilized 
coordinate transformation techniques that can be applied to 
computational domains with irregular geometry. PhyGeoNet 
maps the solution fields in the irregular physical domain into a 
rectangular reference domain, applying the traditional CNNs 
along with the ‘hard’ enforcement of BCs as in Refs. [26, 27]. 
Performances of PhyGeoNet were evaluated using benchmark 
problems: a heat equation, a Navier-Stokes equation, and a 
Poisson equation, with CFD results. Compared to Vanilla PINN, 
PhyGeoNet required nearly 10 times fewer iterations to obtain 
the solution with less relative errors, but the comparison was 
available only for steady-state problems. Gong and Tang [28] 
proposed an energy-based physics-informed neural network 
(EPINN) for low-frequency electromagnetic computation. The 
magnetic energy norm error was integrated into the network as 
the loss function to allow EPINN to focus on regions of interest 
instead of computing the entire computation domain. EPINN 
accepted the Gaussian distributions from the results of apply-
ing the finite element method (FEM) as input for the encoder-
decoder network in a shape of U-Net. The network was then 
trained with an energy-based loss function to enforce the phys-
ics of the problem to obtain the desired solution and showed 
outstanding performance in interpolation tasks. Zhao et al. [29] 
proposed a physics-informed convolutional neural network for 

the temperature field prediction of a heat source layout (HSL-
TFP) without using labeled data. Here, the network learns to 
solve a family of heat conduction equations by mapping the 
intensity distribution function to the solution of PDE. For training 
of CNNs in a shape of U-Net, physics-informed loss function 
based on finite difference approximations of the governing PDE, 
and Dirichlet and Neumann boundary conditions were enforced 
in a ‘hard’ manner.  

 
4.2.4 Generative neural networks 

Some studies have attempted to incorporate generative ad-
versarial networks (GANs), which can generate various syn-
thetic data, into PINN. Yang and Perdikaris [30] incorporated 
the concept of adversarial learning into the PINN’s training 
objective with probabilistic formulation to enhance the model’s 
robustness and stability, where stochastic gradient descent 
(SGD) was utilized for optimization. Yang et al. [31] proposed 
physics-informed GANs (PI-GANs) to compute the solutions of 
stochastic differential equations (SDEs) based on limited and 
scattered measurements. PI-GANs successfully approximated 
Gaussian processes and solved elliptic SDEs involving three 
stochastic processes: the solution, the forcing, and the diffusion 
coefficient. Specifically, instead of Vanilla GANs, Wasserstein 
GANs with a gradient penalty (WGAN-GP) was applied due to 
its enhanced stability. Daw et al. [32] supplemented Ref. [30] 
and suggested physics-informed discriminator–GAN (PID-
GAN), which incorporated physical knowledge not only to the 
generator but also to the discriminator, resolving the issue of 
gradient dynamics of existing techniques. 

More accurate solutions were obtained for probabilistic PDEs 
or SDEs by utilizing GANs, but the computational cost was 
much larger than those of employing other neural networks. 
Therefore, Zhong and Meidani [33] presented physics-informed 
variational autoencoder (PI-VAE), which incorporates VAE, one 
of generative models, into PINN to improve the computational 
efficiency and accuracy. PI-VAE used maximum mean dis-
crepancy (MMD), calculating the distance between probability 
distributions as the loss function and utilized the mini-batch 
gradient descent algorithm for training both the encoder and 
decoder simultaneously. However, PI-VAE is currently limited 
to low-dimensional problems, as the amount of the mini-batch 
required grows exponentially for high-dimensional problems. 

 
4.2.5 Sequence models 

Recurrent neural networks (RNNs) have been a preferred 
network architecture to handle dynamical systems, i.e., time-
dependent problems, due to their ability to handle sequential 
data efficiently. This mechanism is known as sequence-to-
sequence learning. In addition, to handle the cases with long 
time-steps or long-term dependencies, long short-term memory 
(LSTM) and gated recurrent unit (GRU) have been employed 
to resolve the issues of vanishing or exploding gradient. Viana 
et al. [34] presented an approach to consider ordinary differen-
tial equations (ODEs) as a form of a directed graph model, and 
utilized RNN with a hybrid formulation with both pure physics-
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informed and additional data-driven schemes, depending on 
data availability. Zhang et al. [35] proposed physics-informed 
multi-LSTM (PhyLSTM) networks to generate metamodels 
using LSTM with the earthquake dynamics formulated as re-
duced-fidelity nonlinear equations of motion. To integrate 
physical knowledge into LSTM, architectures using two or three 
deep LSTM networks were proposed, namely 2PhyLSTM and 

3PhyLSTM . 2PhyLSTM  contains one LSTM network for 
input-output relationship modeling and the other LSTM network 
for physics modeling, as well as a component to enforce 
boundary conditions. 3PhyLSTM  contains an additional 
LSTM network used for hysteretic parameter modeling in case 
of more complicated rate-dependent dynamic problems. Such 
networks are advantageous in terms of 1) clear interpretability 
of physical meaning of the problem, 2) generalizability per-
formance, and 3) compensation for data scarcity issues. How-
ever, they contain limitations in terms of the computational 
speed and applicability to other dynamical systems. Ren et al. 
[36] proposed physics-informed convolutional-recurrent net-
work (PhyCRNet), which applied convolutional LSTM 
(ConvLSTM) to address the scalability and generalization is-
sues. PhyCRNet utilized ConvLSTM as a single cell structure 
as in LSTM and could be applied to the spatio-temporal PDE, 
serving as a universal model. Additionally, PhyCRNet-s was 
presented, which reduced the computational costs by skipping 
the encoder part in every specific number of iterations.   

 
4.2.6 Deep operator networks 

Lu et al. [37] proposed a novel neural network named the 
deep operator network (DeepONet) for improving generaliza-
tion performances, leveraging the universal operator approxi-
mation theorem provided in Ref. [38]. DeepONet contains 
branch net and trunk net, which extract latent representations 
from the input function and input coordinates, respectively. 
Wang et al. [39] proposed a physics-informed DeepONet, 
which incorporated physical constraints into DeepONet. Thus, 
physics-informed DeepONet can be considered as a data-free 
method, as opposed to DeepONet, a data-driven method. 
PDEs and BC/ICs residuals were expressed as the weighted 
sum in the loss function and optimization of the model parame-
ters was performed to train the neural network. As such, phys-
ics-informed DeepONet enhanced generalization performance 
and data efficiency without paired input-output training data 
information. In addition, Cai et al. [40] presented DeepM&Mnet 
in which a few DeepONet structures were utilized either in 
parallel or in series, for applications to solve multi-
physics/multi-scale problems.  

 
4.2.7 Bayesian neural networks 

Yang et al. [41] proposed bayesian PINN (B-PINN), which 
utilizes bayesian neural networks (BNNs) and hamiltonian 
monte carlo (HMC) or variational inference (VI) to manage 
scattered noisy data and physical knowledge altogether for 
computation of PDE solutions and uncertainty quantification. 
Aleatory uncertainty generated from the noisy data was suc-

cessfully quantified by calculating the mean and standard de-
viation of the solution, and the overfitting issue that occurs due 
to the noisy input data was resolved.  

 
4.2.8 Transformer networks 

Li et al. [42] proposed a gradient-optimized PINNs 
(GOPINNs), which automatically adjusts the coefficients of the 
penalty term during the model training to enhance the gradient 
equalization effect of each loss term. Additionally, GO-PINNs 
utilize two transformer networks with residual connections to 
update the hidden layers and augment the hidden state, which 
enhance the stability and prediction accuracy of PINN. 

 
4.2.9 Graph neural networks 

In order to accommodate graph-type input such as the 
knowledge graph mentioned in Sec. 2.3 that models a set of 
objects and their relationships, graph neural networks (GNNs) 
can be utilized. Similar to the idea of CNNs, GNNs can provide 
inference of the node from graphs data with the information 
obtained from neighboring nodes by aggregators.  

Gao et al. [43] proposed physics-informed graph neural 
Galerkin networks, utilizing graph convolution network (GCN), 
one of the types of GNNs, to solve forward and inverse PDEs 
in a unified manner. Here, instead of learning continuous func-
tions as in PINN with FCNNs, discrete learning improved 
PINN’s scalability issue and enabled hard boundary condition 
enforcement. Additionally, flexibility of GCN that can accom-
modate unstructured inputs enhanced the applicability of PINN.  

To further accommodate the graph data consisting of rela-
tional information of inputs, Liu and Pyrcz [44] proposed phys-
ics-informed graph neural network (PI-GNN) that incorporated 
the idea of GNNs into PINN, applied to enhance the production 
forecasting in hydrocarbon resource development. Here, a 
customized graph convolution layer was utilized to leverage the 
relational information, the adjacency matrix, between inputs to 
provide improved accuracy and interpretability.  

 
4.2.10 Multi-output physics-informed neural net-

work 
For handling the target task of uncertainty quantification de-

scribed in Sec. 2.4, instead of solving the SDEs described in 
Sec. 2.1, Yang and Foster [45] proposed multi-output physics-
informed neural network (MO-PINN) with solutions and uncer-
tainty distributions as outputs to manage sparse noisy data. 
The MO-PINN modified the structure of FCNN to impose prior 
knowledge of uncertainties on outputs. For each input, the 
model creates multiple discrete outputs that form a distribution 
for uncertainty quantification. 

 
4.3 Differentiation 

The differential operators computed by numerical differentia-
tion (ND) and automatic differentiation (AD) are inherently dif-
ferent in nature and each has its own advantages and disad-
vantages. While ND approximates the derivatives from a local 
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set of physics outputs based on a specific numerical scheme, 
AD can compute the exact derivatives at any point in a compu-
tational domain. Leveraging the exactness of AD, most studies 
on PINN utilized AD to compute the derivatives. Nevertheless, 
its use in computing the training loss for PINNs does not en-
sure accuracy of the model itself unless a sufficiently large set 
of collocation points is utilized. In many cases, this could poten-
tially increase the computational cost, especially for high-
dimensional problems. Chiu et al. [46] suggested a coupled-
automatic-numerical PINN (can-PINN), which utilizes not only 
AD but also ND for the computation of the derivatives. By com-
bining the robustness of ND to the number of collocation points 
and accuracy of AD, they demonstrated that the proposed can-
PINN is indeed highly efficient and consistently provides more 
accurate solutions compared to using only AD or ND, as 
shown by the results of their experiments. 

 
4.4 Loss function 

As described in Sec. 3, the loss function for PINN is ex-
pressed as the weighted sum of the loss terms in Eqs. (8)-(12). 
Although the weight coefficients were not considered in Vanilla 
PINN, later studies proposed them to consider relative scales 
for each loss term or to impose different significances for net-
work training. At first, Wight and Zhao [47] presented the con-
cept of an adaptive PINN and suggested how to determine the 
weight coefficients according to the importance of each loss 
term. For the time-dependent problem, as it is more important 
to satisfy the initial condition, weight coefficient C >> 1 was 
multiplied to the loss term for the IC, which is shown as the 
following: 

 
0( ) ( ) ( ) ( ) .= + +b fL CL L Lθ θ θ θ   (13) 

 
Later, Eq. (13) was formulated more generally, leading to the 

weight coefficients multiplied to each of the loss terms as 
shown in Eq. (8). Based on such formulation, numerous ap-
proaches were proposed to compute the weight coefficients of 
the total loss function to enhance the accuracy and/or compu-
tational efficiency of PINN. Wang et al. [48] argued that since 
the C  value of Eq. (13) significantly varies depending on the 
problem, it is more ideal to tune the value of C  as training 
progresses. As such, learning rate annealing (LRA) was ap-
plied to the weight coefficients, namely LRA-PINN, which were 
treated as learning rate coefficients, where the values were 
updated at every training epoch.  

Yu et al. [49] proposed a gradient-enhanced PINN (gPINN) 
that enforces the gradients of PDE residual to be 0 by including 
an additional loss term: 
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To avoid using the additional loss term as in Eq. (14), Xiong 
et al. [50] presented a gradient-weighted PINN (gwPINN), 
which further multiplied the gradient-related weight function that 
contains gradient information to each of the loss terms in Eq. 
(8). The weight functions are adaptively formulated based on 
the given differential equations, considering the derivatives of 
each loss term. Similar to the LRA-PINN in Ref. [48], Liu et al. 
[51] presented an adaptive weight PINN (AW-PINN), which 
adaptively updated the weight coefficients of loss function as 
network training proceeds. AW-PINN further improved the 
computational efficiency by reducing the number of hyper-
parameters using logarithmic means in the weight update 
process. Wang et al. [52] proposed a technique that dynami-
cally calculates the weight coefficients of the loss function us-
ing a neural tangent kernel (NTK), thereby balancing the con-
vergence rates of each loss term, and theoretically studied the 
training dynamics of PINN. Liu and Wang [53] presented phys-
ics-constrained neural network with minimax (PCNN-MM) to 
find the saddle point with minimax formulation, considering 
gradient aspects of the weights in both the neural network and 
loss function concurrently. McClenny and Braga-Neto [54] pro-
posed a self-adaptive PINN (SA-PINN), which conducts train-
ing in a similar manner, while calculating the weight coefficients 
for each training point to increase flexibility. As opposed to 
using multiple loss terms, Nasiri and Dargazany [55] suggested 
a reduced-PINN model that incorporates numerical integration 
to reduce the number of terms of the loss function for better 
computational efficiency for the system of ODEs. Maddu et al. 
[56] proposed an inverse dirichlet weighing technique that ap-
plies sequential training to all first-order optimizers, such as 
Adam, without any additional computational cost. Loss function 
weights were calculated based on the variances of each loss 
term’s gradient to resolve the vanishing gradient issues, and 
the multi-scale problems were solved more accurately by bal-
ancing the gradient distributions.  

The previously described loss functions are generally con-
sidered as a type of collocation loss function, as it enforces the 
residuals on each collocation point to be (nearly) zero. As an-
other type of loss functions, a variational loss function is de-
scribed using the test functions and variational formulation of 
the problem, provided by Kharazmi et al. [57]. 

 
( [ ( , ); ],  ( )) ( ( ),  ( ))u t fν νΩ Ω=F x γ x x x   (16) 
 

where ( ,  )Ω⋅ ⋅ denotes an inner product as well as integration 
over the domain Ω  and ( )ν x  denotes a properly chosen 
test function in a discrete finite dimensional space KV span=  
{ , , , , }k k Kν = …1 2 . The variational loss function can be defined 
accordingly as 
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Variational PINN (VPINN) incorporated such variational for-
mulations of the problem into the loss function. As the inte-
grand of the variational loss function is integrated by parts, the 
order of the differential operators can be lowered, which effec-
tively lowers the training cost. In addition, utilizing the varia-
tional loss function is beneficial for the purpose of domain de-
composition, as test functions can be used independently for 
each subdomain to capture local characteristics and provide 
more flexible learning approaches. Similar approach was pro-
vided by Khydayi-mehr and Zavlanos [58], where the loss func-
tion was also formulated as a variational form to solve PDEs, 
namely VarNet. VPINNs and VarNet both utilized Petrov-
Galerkin trial functions; however, while VarNet used piecewise 
polynomials, VPINNs used global polynomials as test functions. 
Based on [57], Kharazmi et al. [59] further applied hp-
refinement via domain decomposition and projection onto the 
space of high-order polynomials to VPINNS and proposed hp-
variational PINNs (hp-VPINNs). E and Yu [60] proposed deep 
Ritz method, a combination of deep learning and the Ritz 
method, which numerically solves variational problems formu-
lated from PDEs by training a deep neural network to learn an 
effective representation of the solution space. As such, utilizing 
the variational loss function offer certain advantages to PINN, 
such as order reduction of differential operators and better 
locality.  

Furthermore, Bai et al. [61] proposed a modified least 
squares weighted residual (LSWR) loss function, which inte-
grates the residuals in the computational domain as 

 
2 2

1 2( ) ,f bL R d R dθ χ χ
Ω Γ

= Ω + Γ∫ ∫   (20) 

 
where ,  f bR R  denote the residuals of the PDEs and boundary 
conditions and 1 2,  χ χ  denotes the two scaling factors to bal-
ance the scales of the two residuals. By applying the LSWR 
loss function to PINN, better generalization capability was 
achieved and effectively alleviated the scalability issue with the 
two scaling factors. In addition, Wang et al. [62] conducted a 
theoretical investigation using pL  norm, ( ( , ))p∈ +∞1 , for the 
type of the loss function, instead of MSE ( 2L norm). As a result, 
it was confirmed that utilizing the pL  norm is more appropriate 
in terms of the performance for high-dimensional problems. 

 
4.5 Neural network training 

The last part of PINN is to train the neural network via the 
feedback mechanism, which is essentially the minimization 
problem of the loss function to find the optimal neural network 
parameter set *θ  as: 

 
arg min( ( ).L= )*

θ
θ θ   (21) 

 
In Vanilla PINN, *θ  that minimizes the loss function is com-

puted using the Adam optimizer, which is a type of the stochas-

tic gradient descent algorithms. Moreover, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimizer can be utilized to 
obtain more precise results by computing the Hessian matrix 
that determines the optimization direction but tends to con-
verge quickly to the local minima. Additionally, the limited-
memory Broyden-Fletcher-Goldfarb-Shanno with box con-
straints (L-BFGS-B) optimizer, which is the combination of L-
BFGS, a limited-memory version of BFGS, and BFGS-B that is 
applied to the bound constrained optimization problem. Fur-
thermore, Adam and L-BFGS-B were applied sequentially for 
fine-tuning purposes in Ref. [68]. 

Davi and Neto [63] proposed an approach that utilized parti-
cle swarm optimization (PSO), which is one of the population-
based stochastic optimization techniques, for the neural net-
work training of PINN, namely PSO-PINN. Each collocation 
point selected by a uniform or random sampling was treated as 
a single particle (candidate solution), and the final solution was 
obtained from moving the position of each particle by exchang-
ing information with neighboring particles. Moreover, the en-
semble of PINN solutions can be obtained with PSO-PINN, 
allowing for uncertainty quantification.  

Lu et al. [64] proposed NSGA-PINN, a framework that com-
bines the non-dominated sorting genetic algorithm II (NSGA-II) 
with PINN to perform multi-objective optimization-based train-
ing of neural networks. NSGA-PINN utilizes non-dominated 
sorting, crowding distance calculation, and crowded binary 
tournament selection to generate a diverse set of high-quality 
solutions that can effectively manage multiple objectives in the 
PINN training procedure. With the iterative integration of 
NSGA-II and the ADAM optimizer, NSGA-PINN resolved the 
issue of local minima, enhancing the optimization performance 
of PINN. 

Nabian et al. [65] applied the concept of importance sam-
pling for more efficient training of the network. Instead of calcu-
lating the 2L  norm of the loss gradient, the loss values of 
subsets of the collocation points (seeds) were calculated with 
piecewise constant approximation to reduce the number of 
backpropagations. Yang et al. [66] proposed dynamic mesh-
based importance sampling (DMIS) to accelerate the conver-
gence without significantly increasing the computational cost. 
To reduce the computational cost for calculating the sampling 
probability of each IS point, they proposed a novel sampling 
weight estimation method, called dynamic mesh-based weight 
estimation (DMWE), which constructed a dynamic triangular 
mesh to estimate the weight of every data point efficiently. The 
triangular mesh constructed by DMWE was updated dynami-
cally according to the loss distribution of the whole domain 
during the training process.  

He et al. [67] presented an approach to train the network 
without stacked backpropagation to resolve the scalability is-
sue of PINN. Here, the PDE solution was represented with a 
Gaussian smoothed model, while the dependency was com-
puted based on Stein's identity to significantly reduce the com-
putational cost by eliminating stacked backpropagations of AD. 
Furthermore, since only forward-pass computation was re-
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quired for the loss calculation, the computation time could be 
further reduced through parallelization.  

 
5. Studies on key topics of PINN 

In Sec. 4, studies that attempted to improve the performance 
of PINN by focusing on the component-wise PINN architecture 
depicted in Fig. 1 were described. In this section, studies on 
some key topics of PINN are described to provide a guideline 
for implementing PINN in various engineering fields of interest. 
Topics covered in this section are: 1) domain decomposition, 2) 
temporal causality, 3) meta-learning, 4) reduced-order model-
ing, 5) model ensembles, 6) extrapolation, and 7) multiple in-
stances learning. 

 
5.1 Domain decomposition 

As the number of dimensions of a problem increases, the 
amount of the collocation points required for accurate training 
grow exponentially. Such phenomenon is referred to as the 
curse of dimensionality, which is considered as one of the 
common challenges in computational science and machine 
learning. Although PINN can mitigate some aspects of the 
curse of dimensionality, owing to its mesh-free nature, achiev-
ing a reasonable level of accuracy in complex and high-
dimensional problems with reduced computational cost re-
mains a challenge.  

To address this issue, various studies have been proposed 
that decompose the computational domain into sub-domains 
and train a reduced number of neural network parameters for 
each sub-domain in parallel. Such approach, as known as 
domain decomposition, not only improves the computational 
efficiency in training PINN, but also enhances the ability of the 
trained model to represent complex behaviors of the problem, 
such as discontinuous solutions, more accurately. Jagtap et al. 
[69] presented a conservative PINN (cPINN) that connects 
each sub-domain using interface conditions. Flux continuity 
and average solution were used as interface conditions, and a 
distinct PINN architecture was applied to each sub-domain to 
increase the degrees of freedom and solve problems with dis-
continuous solutions. Meng et al. [70] proposed a parareal 
PINN (PPINN), a parallel technique with the decomposition of 
the temporal domain to improve computational efficiency, 
which performed correction of each sub-domain through PINN 
using the results from fast coarse-grained (CG) solvers. PPINN 
significantly improved PINN training speed by using the results 
of the fast coarse-grained solver as the initial condition of each 
sub-domain. Based on cPINN, Jagtap and Karniadakis [71] 
presented an extended PINN (XPINN), a general framework 
that applies a spatio-temporal domain decomposition to PINN. 
XPINN is a more flexible technique in which a separate PINN is 
applied to each sub-domain, similar to the cPINN approach. 
However, instead of using the flux continuity condition that 
increases the training complexity of the interface condition, only 
the average solution and residual values at the interface were 

compared. Stiller et al. [72] presented GatedPINN, which util-
izes conditional computing and an adaptive domain decompo-
sition. Conditional computing is a technique of activating cer-
tain units within the neural network according to the input inside 
each spatial domain, with the activation condition determined 
from the gating network. In addition, the gating network deter-
mined which neural network structure to be used for a specific 
input, enabling the simultaneous adaptive domain decomposi-
tion. Thereafter, Hu et al. [73] presented an augmented PINN 
(APINN) that complemented XPINN. APINN enhanced the 
generalization performance by fine-tuning of domain decompo-
sition and parameter sharing between sub-PINN using a train-
able gate network.  

 
5.2 Temporal causality 

Time-dependent problems, prevalent in the engineering and 
scientific domains, inherently rely on the principle of causality, 
the concept that the current and future states depend on past 
states. As such, in order to solve time-dependent problems 
accurately with PINN, it is crucial to enforce the temporal cau-
sality in the training of PINN to ensure the physical plausibility 
of the solution. Without considering the temporal causality, 
information may not propagate appropriately through time with-
in the computational domain and cause training challenges, 
leading to non-physical solutions and model inconsistencies.  

Studies have been proposed that incorporate the laws of 
causality for PINN to better respect the inherent time-
dependent nature of the problem. Wang et al. [74] proposed 
causal PINN, which induces minimization of the residual values 
of the previous time segments by adjusting the temporal weight 
steepness of each time segment, accomplished by the tempo-
ral domain decomposition and inclusion of a causality parame-
ter. Daw et al. [75] proposed the evolutionary sampling (Evo) 
and causal evolutionary sampling (causal Evo), based on the 
evolutionary algorithm proposed by Eiben et al. [76]. Evo is the 
technique in which points with high residual are extracted for 
each iteration and re-sampled within the points in uniform dis-
tribution to compensate for the propagation failure of PINN. 
Causal Evo, on the other hand, additionally considered the 
temporal causality during the sampling procedure. Compared 
to adaptive sampling techniques discussed in Sec. 4.1, both 
Evo and causal Evo enhanced the performance of PINN with 
fewer collocation points. Guo et al. [77] proposed an adaptive 
causal sampling method (ACSM) that considers temporal cau-
sality. The ACSM utilizes a distribution ratio that adaptively 
selects collocation points across spatio-temporal subdomains, 
thereby balancing both the magnitudes of the loss terms and 
the temporal causality. Utilizing ACSM increased the accuracy 
up to two orders of magnitude and improved computational 
efficiency, with the same number of collocation points when 
compared to causal PINN. ACSM was applied to Cahn Hilliard 
and KdV equations, which contain high-order derivatives and 
strong nonlinearity, and was shown to improve the accuracy 
and computational efficiency with fewer collocation points, 
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demonstrating its applicability to high-dimensional problems. 
Similar to the sampling techniques considering the causality in 
Refs. [75, 77], Mattey and Ghosh [78] proposed backward 
compatible PINN (bc-PINN) that re-trains the same network to 
compute the solution that satisfies the solutions of the previous 
time segments through transfer learning. Here, the previous 
predictions were considered as data terms to train the corre-
sponding future predictions.  

Penwarden et al. [79] summarized previous causality en-
forcement techniques applied in PINN, and proposed a causal-
ity-enforcing framework that contained two techniques: 
stacked-decomposition and window-sweeping. The stacked-
decomposition technique incorporated the time-marching and 
XPINN methods; for the decomposed temporal domain of n 
segments or subdomains, sequential training of dS  number 
of segments were proceeded. With dS = 1, each segment or 
subdomain was trained sequentially (time-marching), and with 

,dS n=  all segments were parallelly trained, which was 
equivalent to XPINN. Next, the window-sweeping technique 
involved moving a soft-causality window through time and ap-
plying a weight mask on each collocation point in various ways, 
inspired by Ref. [74].  

 
5.3 Meta-learning 

Meta-learning is a cross-disciplinary field of research that en-
compasses multi-task learning and transfer learning. By incor-
porating meta-learning – the principles of “learning to learn” – 
into the training of PINN, prior challenges such as static loss 
function weights, slow adaptation to new problems, and limited 
generalization capabilities can be addressed without extensive 
retraining. This approach can significantly broaden the applica-
bility of PINN in modeling complex, time-dependent, or high-
dimensional physical problems. 

Psaros et al. [80] presented a technique for constructing a 
loss function expression with a bi-level minimization problem 
using meta-learning. In the inner optimization, the training of 
the PINN follows the same procedure, whereas the weights of 
the loss function are calculated in the outer optimization and 
then updated in the inner optimization to minimize the total loss. 
Goswami et al. [81] utilized the concept of transfer learning to 
enhance the computational efficiency. Here, the network 
weights and biases were calculated with Xavier initialization in 
the first iteration, and the parameters, except those of the out-
put layer, were fixed with the values from the previous iteration 
so that only the parameters of the output layer were further 
updated. Bahmani and Sun [82] treated the training of PINN as 
a multi-objective/multi-task problem, and utilized transfer learn-
ing. Each loss term was considered as an objective, and a 
gradient surgery technique was proposed that compensated 
for the conflicts in gradients of multiple objectives. Afterwards, 
the transfer learning technique was applied by utilizing the 
computationally cheap solvers in advance (pre-training step) 
and adding the resultant values to the total loss function as an 
auxiliary label. Desai et al. [83] proposed one-shot transfer 

learning technique as a general framework for applying transfer 
learning to PINN. This technique initially learns the rich latent 
space of a specific family of differential equations through 
batch training of PINN, then solves the same family of differen-
tial equations with a one-shot inference via transfer learning, 
thus significantly reducing the computational time when the 
coefficients of BC/ICs and forcing functions change. Xu et al. 
[84] proposed transfer learning based boundary-condition-
learnable PINN that was applied to solve more practical in-
verse problems in structural analysis. As a multi-task learning 
method for loss weights, Bayesian modeling was applied for 
computing relative confidences between tasks, together with 
the maximum likelihood estimation (MLE). Unknown loads 
were added as BCs in the loss function, and transfer learning 
was applied for quicker computation. Penwarden et al. [85] 
presented a detailed study on the incorporation of the meta-
learning technique into PINN. From the PINN’s perspective, 
meta-learning can be considered as a model-agnostic meta-
learning (MAML), which finds the optimal parameters of the 
neural network and loss functions while training proceeds. For 
linear mapping of the task parameter set and weight vector 
containing all weights and biases, prediction models such as 
Gaussian process (GP) model and radial basis function (RBF) 
were utilized, followed by the network training, resulting in a bi-
level optimization problem.  

 
5.4 Reduced-order modeling 

Reduced-order modeling (ROM) is a renowned technique 
that simplifies the analysis of complex systems by focusing on 
their dominant features or dynamics, thus reducing the overall 
complexity. Such an approach can be beneficial when incorpo-
rated into PINN, in order to tackle high-dimensional problems 
with complex dynamics with reduced computational costs. As 
such, studies have been proposed to incorporate the idea of 
ROM into PINN, so that the training process of PINN can be 
efficiently executed with aids of the reduced basis or dominant 
modes derived from ROM.  

Chen et al. [86] conducted a study that integrated the con-
cept of reduced-order modeling (ROM) into PINN and pro-
posed a new strategy called physics-reinforced neural network 
(PRNN). PRNN utilized both PINN trained with the reduced-
order equation and the projection data from the existing high-
fidelity snapshots onto the reduced space to improve the pre-
diction accuracy. Numerical results showed that the PRNN 
could predict reliable reduced-order solutions with higher accu-
racy when compared to the PINN or a purely data-driven neu-
ral network.  

 
5.5 Model ensembles 

Model ensembles refer to the strategy of utilizing multiple 
networks or models to achieve more robust predictions. In the 
context of PINN, studies have been conducted where multiple 
PINN models are utilized; each model in the ensemble is 
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trained with different initializations or hyperparameters, en-
hancing the overall robustness of the prediction.  

Haitsikevich and Ilin [87] proposed a study to improve on the 
network training through model ensembles. Here, PDE residu-
als are calculated with an ensemble of PINNs that were initial-
ized with different weights while utilizing the same loss function. 
A collocation point where all ensembles match (ensemble 
agreement) with an error smaller than a prescribed threshold 
value is added as “pseudo-label”. Starting with initial points, 
PINN ensembles gradually explore the computational domain 
to find a collocation point that meets the conditions of the en-
semble arrangement and uses the added “pseudo-label” for 
loss function calculation. This process is repeated for all collo-
cation points to conduct loss function minimization, and al-
though the computational cost was shown to be larger than 
that of using a single PINN, a more robust and accurate solu-
tion was derived. 

 
5.6 Extrapolation 

Improving PINN’s capabilities for extrapolation (i.e., predict-
ing points outside the computational domain) presents a sig-
nificant challenge. In general, PINN is trained within the speci-
fied computational domain, which in some cases can limit its 
applicability in scenarios that extend beyond these bounds. To 
broaden the applicability of PINN, especially in scenarios 
where data collection is challenging, it is crucial to enhance its 
extrapolation capability. 

Kim et al. [88] introduced the dynamic pulling method (DPM) 
to improve PINN’s extrapolation performance by applying a 
novel loss function and neural network training techniques. 
Linka et al. [89] discussed the pros and cons of a neural net-
work family (ANN, PINN, SA-PINN) and bayesian inference 
(BI) family (BI, BNN, BPINN), respectively, in terms of the ex-
trapolation performance. As per their study, SA-PINN exhibited 
the best extrapolation performance, but its training procedure 
was not robust and stable due to the complicated loss function. 
On the other hand, BPINN provided credible intervals for the 
solution with adequate extrapolation performance but required 
precise scaling and large amount of training data.  

 
5.7 Multiple instances learning 

One of the significant issues with implementing PINN is its 
limited ability to train a model for a single instance of BC/ICs or 
governing equations. While transfer learning can be applied 
after the training of one instance to reduce computational costs 
of training another instance, the unsupervised handling of mul-
tiple instances can potentially enhance the applicability of PINN 
in various practical problems. 

Based on deep galerkin method (DGM) by Sirignano and 
Spiliopoulos [90] that utilized the mesh-free galerkin methods 
to train neural networks, Chudomelka et al. [91] proposed a 
legendre-galerkin deep neural network (LGNet) that utilized the 
Legendre polynomial as the basis function of the Galerkin 

method. The solution was reconstructed from the weighted 
sum of the basis function multiplied by coefficients α calcu-
lated via neural networks. Here, the neural network was con-
structed with the combination of CNN and FCNN. Based on 
LGNet, Choi et al. [92] presented the unsupervised legendre-
galerkin neural network (ULGNet), where multiple instances of 
PDE can be trained in an unsupervised manner using forcing 
functions as the input. Here, the basis function φ  in an ap-
propriate Hilbert space H  spanned by 2

0{ }Nk kφ −
= , where N  is 

a finite integer, is defined as a combination of Legendre poly-
nomials as 

 
1 2( ) ( ) ( ) ( ),k k k k k kL a L b Lφ + += + +x x x x   (22) 

 
where kL  denotes Legendre polynomials of degree k , and 

,  k ka b  can be chosen to represent various boundary condi-
tions. Finally, the solution ( )u x  is approximated as 

 
2

0

ˆˆ( ) ( ) ( ).
N

k k
k

u u α φ
−

=

≈ =∑x x x   (23) 

 
Here, the predicted solution ˆ( )u x  is obtained by multiplying 

the coefficients 2
0ˆ{ }Nk kα −

=  and basis functions 2
0{ }Nk kφ −

= , where 
2

0ˆ{ }Nk kα −
=  denotes the outputs of the neural network from the 

input forcing functions. Subsequently, the training of ULGNet is 
conducted by minimizing the weak (variational) loss function to 
enforce the governing equations, similar to that of PINN. 

For the optimization algorithm, L-BFGS was utilized and the 
parameters in ULGNet are updated accordingly. As such, us-
ing ULGNet, different instances of forcing functions and/or 
IC/BCs can be solved in an unsupervised manner for the gov-
erning equations of the same type, allowing for learning multi-
ple instances that was infeasible with PINN. 

 
6. PINN applications in engineering: an 

overview 
Most of the studies regarding PINN involve solving typical 

examples such as Poisson equations, Allen-Cahn equations, 
advection-diffusion equations, Navier-Stokes equations, 
Schrödinger equations, and etc. While solving these equations 
is indeed a crucial task for demonstrating the performance 
enhancement of the proposed method for PINN compared to 
the existing methods, it may often be insufficient for implement-
ing PINN in practical problems. In addition, as there exists no 
universal and fully optimized PINN framework at present, stud-
ies that attempted to apply PINN in engineering problems may 
not have implemented some of the novel techniques. This 
section provides three (practical applications) examples of 
PINN applied to solve some practical engineering problems 
and shows how some of the techniques discussed in Secs. 4 
and 5 could be implemented to improve the performance of 
PINN. Secs. 6.1, 6.2, and 6.3 deal with the studies of PINN 
applications in fluid mechanics, heat transfer, and bearing fa-
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tigue prognosis, respectively. 

 
6.1 Fluid mechanics application 

As an example of PINN applications in Fluid Mechanics, the 
modeling of multi-phase flow and transport phenomena by 
Hanna et al. [10] is to be discussed, which is applied in practice 
in oil reservoirs, water resources management, and composite 
processing. In multi-phase flow, high-fidelity data are neces-
sary to apply grid-based classical methods for adequate accu-
racy due to the moving flow-front, large discontinuity, and 
shock. Hence, a more flexible and meshless framework has 
been proposed by implementing PINN.  

First of all, multiple governing equations and BC/ICs were 
defined with respect to the two-phase flow and transport phe-
nomena. The governing equations consist of Darcy’s law, 
mass conservation (incompressible flow), and advection equa-
tion (Eqs. (24)-(26)), with the fraction function c  defined to 
separate the two fluid phases: c = 0 for one fluid phase and 
c = 1 for the other. Accordingly, the viscosity μ  was defined 
as Eq. (27) using c .  

 
1 ,p
μ

= − ⋅∇v K   (24) 

0,∇ ⋅ =v   (25) 
0,tc c+ ⋅∇ =v   (26) 

2 1(1 ) ,c cμ μ μ= + −   (27) 
 

where v  denotes the volume average Darcy’s velocity, K  
the permeability tensor, and p∇  the pressure gradient. Next, 
BCs for , ,p cv  and ICs for c  are as follows: 

 
0( , 0) ( ),c t c= =x x   (28) 

( , ) ,inlet inp t p=x   (29) 
( , ) ,outlet outp t p=x   (30) 

0   (Impermeable wall),⋅ =v n   (31) 
( , ) 1.inletc t =x   (32) 

 
Accordingly, the loss function was composed of six loss 

terms (3 for the governing equations and 3 for the BC/ICs): 
 

1 2 31 2 3           ,
v v c c p p

f f f

Loss loss loss loss
loss loss loss

λ λ λ
λ λ λ

= + + +

+ +
  (33) 

 
where MSE formulation was used with each weight coefficient 
set simply as 1. 

Secondly, collocation points were selected within the compu-
tational domain using three different sampling techniques: uni-
form sampling, RAR, and RAD as described in Sec. 4.1. A total 
of 2500 collocation points (50 × 50 grid) were computed with 
uniform sampling, while for RAR and RAD 1600 uniformly 
sampled collocation points (40 × 40 grid) trained with Adam 
optimizer as well as additional point enrichment every 50 

BFGS iterations up to 2500 collocation points were computed. 
Furthermore, 1000 randomly sampled collocation points were 
used as a test set to compare the generalization performance. 

Thirdly, FCNN was utilized as the neural network structure, 
the overall composition of which is shown in Fig. 2. For each 
output, three separate FCNNs were used, where each FCNN 
is comprised of five hidden layers with 20 neurons in each 
layer. Hyperbolic tangent (tanh) activation function was used 
in all hidden layers, while sigmoid activation function was used 
for the output layer of the pressure and fraction function, and 
linear activation function was used for the output layer of the 
velocity. 

Lastly, the Adam optimizer was used for the network training. 
As a result, with the analytical solution as the reference, RAD 
provided the best training and validation accuracy in terms of 
the flow front location.  

This study dealt with the PINN application for modeling the 
two-phase flow and transport phenomena, and successfully 
improved the solution accuracy with the proposed adaptive 
sampling technique (RAD) of the collocation points. With the 
main focus on applying adaptive sampling scheme and using 
multiple FCNNs, a ‘customized’ PINN based on the architec-
ture presented in Fig. 1 was provided; such procedure can be 
benchmarked for other application fields of interest. Further-
more, studies provided in Secs. 4 and 5 regarding other ways 
to improve the performance of PINN could be potentially im-
plemented and tested. 

 
6.2 Heat transfer application 

This section describes the study by Amini Niaki et al. [93], 
which modeled the thermochemical curing process of the com-
posite-tool system within the autoclave using PINN. Consider-
ing the heat conduction from the exothermic composite cure 
process and to the autoclave, along with the temperature de-
pendence of the curing process itself, is a rather complicated 
problem; utilizing Vanilla PINN is not feasible due to the discon-
tinuity of the composite-tool interface. To resolve this issue the 
Vanilla PINN was modified using an adaptive loss weight tech-
nique, along with the transfer learning technique to further en-
hance the computational efficiency. 

The exothermic heat transfer of solids (i.e., heat transfer with 
internal heat generation) can be represented with the following 
PDE: 

 
Fig. 2. Schematic diagram of the PINN for two-phase flow modeling [10]. 
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( ) ( ) ( )

                     ( ) ,

p xx yy

zz

T TC T k k
t x x y y

Tk Q
z z

ρ∂ ∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂ ∂

∂ ∂ +
∂ ∂

�
  (34) 

 
where , , ,pT C k ρ  denote temperature, specific heat capacity, 
conductivity, and density of the solid, respectively, and Q�  
denotes the internal heat generation rate. Here, Q�  is affected 
by the resin degree of cure α , represented as: 

 

.=� r r r

dQ H
dt
αν ρ   (35) 

 
Assuming the solid of the curing process was homogenous 

and physical properties were not affected by temperature, Eqs. 
(34) and (35) can be simplified as Eqs. (36) and (37). These 
equations were used as the governing equations of PINN.  

 
2

2 , where  , .r r r

p p

T T d k Ha b a b
t x dt C C

α ν ρ
ρ ρ

∂ ∂= + = =
∂ ∂

  (36) 

( , ).d g T
dt
α α=   (37) 

 
Therefore, the problem can be formulated as a coupled sys-

tem of differential equations for T and α  in the spatio-
temporal domain, and the interface condition of the composite-
tool is described as in Eqs. (38) and (39) and Fig. 3. The tem-
poral change of the autoclave air temperature was given by Fig. 
4.  

 
   for   0          

,
   for   

t t

c t t c

a x L
a

a L x L L
< <⎧

= ⎨ < < +⎩
  (38) 

0    for   0          
,

   for   
t

c t t c

x L
b

b L x L L
< <⎧

= ⎨ < < +⎩
  (39) 

 
In addition, the prescribed BC, convective BC, and IC were 

defined as follows: 
 

0| ( ),x aT T t= =   (40) 
| ( ),

t cx L L aT T a= + =   (41) 

0 0( | ( )) | ,t x a t x

Th T T t k
x= =

∂− =
∂

  (42) 

( ( ) | ) | ,
t c t cc a x L L c x L L

Th T t T k
x= + = +

∂− =
∂

  (43) 

0 0| ( ),tT T x= =   (44) 

0 0| ( ).t xα α= =   (45) 
 
Based on the problem formulation above, the performance of 

PINN was evaluated on four cases of different types of BCs 
and composite thicknesses. A uniform sampling technique was 
used to select the collocation points, with 500 points in 
0 t cx L L< < + , 1000 points in 0 et t< < , 10000 points for IC, 
and 5000 points at each of the boundaries.  

Next, considering that T  and α  are affected as training 
proceeds, two separate PINNs were constructed as shown in 
Fig. 5. After the training of the PINN for α , the other PINN for 
T  was trained sequentially with the loss function minimization. 
In addition, two FCNNs ( , )T T

− +N N  were constructed inside 
the PINN structure for T , to treat the presence of discontinuity 
in the composite-tool interface. The authors utilized the FCNN 
for α  composed of 7 hidden layers with 30 nodes per layer, 

 
 
Fig. 3. Schematic diagram of composite-tool system in an autoclave [93]. 

 

 
 
Fig. 4. Autoclave air temperature vs. processing time [93]. 

 

 
Fig. 5. Schematic diagram of a PINN architecture with sequential training 
first on α , then on T [93]. 
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and for T , 7 hidden layers with 20 nodes per layer. In addition, 
the loss function consists of the PDE residual terms and BC/IC 
terms for T  and α  as 

 
0 0

,L L L
α α α αω= +N   (46) 

0 0 1 1 2 2
= + + +

bc b bcT c bcT T T T T T TL L L L Lω ω ωN .  (47) 

 
Here, the adaptive loss weight algorithm in Ref. [48] de-

scribed in Sec. 4.4 was used to normalize the gradients and 
resolve the issue with unbalanced gradients. For the activation 
function, the hyperbolic tangent (tanh) function was used for all 
hidden layers, and the softplus function and sigmoid function 
were used for the output layer of the neural network for T  
and α , respectively.  

To train the network, the Adam optimizer with mini-batch op-
timization with a batch size of 512 was utilized, along with the 
learning rate scheduler that began with the learning rate of 10-3 
and reduced it by half in the absence of improvement in the 
solution. Additionally, once the training was completed for one 
of the case studies, the network parameters were used for the 
initialization of the other case study; i.e., transfer learning was 
applied to enhance the convergence speed.  

This study provides a demonstration of modifying the neural 
network structure to apply PINN appropriately to practical prob-
lems, utilizing both the adaptive loss weight algorithm and 
transfer learning to build a ‘customized’ PINN model. 

 
6.3 Bearing fatigue prognosis 

Since the main bearing inside the wind turbine is significantly 
affected by the condition of the grease used as a lubricant, 
developing a predictive model of the bearing fatigue is a highly 
complex task requiring accurate high-fidelity data. In addition, 
formulation of the governing equations for the grease is chal-
lenging due to the large variations and uncertainties (even 
within the same type) of the grease, which is influenced by the 
surrounding environment and the turbine’s operating conditions.  

To address these issues, Yucesan and Viana [34] proposed 
a hybrid PINN, incorporating a reduced-order physics sub-
model in conjunction with neural networks (as described in Sec. 
4.2.5) to model the bearing fatigue and grease degradation, 
respectively.  

The bearing fatigue was calculated using the standardized 
bearing life formula in ODE form as follows: 

 
10
3

1 2

1 ( ) ,
( )

BRGda P t
dt c c t C

⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (48) 

 
where P(t) represents the equivalent dynamic bearing load, C 
the design load rating, 1c  a reliability level factor, and 2c  an 
adjustment factor based on grease properties. 

Here, 2c  accounts for the state of grease by degradation 
over time, which is represented as a function of viscosity and 
contamination ratio as: 

2 ( ) ( ( ), ( )),t cc t f t tν η=   (49) 
 

where 
 

deg( ) ( )( ) ,t GRS prs prst a tν ν ν ν= − +   (50) 

deg( ) ( )( ) .c GRS c cprs cprst a tη η η η= − +   (51) 
 
Next, the grease damage was calculated based on the 

grease service life from a median of the uncertainty distribution, 
as a function of bearing temperature as: 

 
50, ( ) ( (t)).GRS BRGL t f T=   (52) 

 
Then, from Palmgren-Miner’s rule, an incremental damage is 

calculated by adopting a quadratic relation between the life and 
damage for grease: 

 
2

50,
50,

1( ) .
( )

⎛ ⎞
Δ = ⎜ ⎟⎜ ⎟

⎝ ⎠
GRS

GRS

a t
L t

  (53) 

 
With the incremental damage, the cumulative grease dam-

age can be expressed as follows: 
 

50, 50,
0

( ) ( ).
T

GRS GRS
t

a T a t
=

= Δ∑   (54) 

 
For arbitrary k quantile of the distribution, Eqs. (52)-(54) can 

be expressed using the quantile ratio kC  that shifts the quan-
tile curve as follows: 

 
, 50,( ) ( ).k GRS k GRSa T C a T=   (55) 

 
To predict the bearing fatigue and grease degradation, as 

shown in Fig. 6, LSTM network was used for modeling time-
series data, with wind speed and bearing temperature taken as 
inputs. As training data, time-series supervisory control and 
data acquisition (SCADA) data were used for the grease dam-

 

 
Fig. 6. Hybrid PINN using LSTM [34]. 
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age calculation, where grease samples from 100 wind turbines 
were measured for six months. The continuous time domain 
was discretized based on 10-minute averages of wind speed 
and bearing temperature values. The FCNN used within the 
LSTM consists of five layers with 40, 20, 10, 5, and 1 number 
of neurons for each of the layers. The activation function used 
for the hidden layers was the exponential linear unit (elu), while 
that used for the input and output layers was the sigmoid func-
tion.  

Notably, the loss function type used was mean absolute error 
(MAE) instead of the commonly used MSE. Training was con-
ducted with a learning rate of 0.0005 for a total of 200 epochs. 
For the performance evaluation of the model, the results of four 
types of models that were trained with 10, 20, 50 and 100 tur-
bines, respectively, were validated on another 100 turbines. 
The hybrid PINN model effectively estimated grease and bear-
ing damage, even with noisy data. It precisely aligned predic-
tions with actual outcomes and optimized the maintenance 
schedule for individual turbines, enhancing their expected life-
span to approximately 20 years. 

Unlike the two examples described in Secs. 6.1 and 6.2, the 
physics-data hybrid-PINN architecture was proposed by com-
bining LSTM and FCNN structures. It was shown that the 
greater the amount of experimental data used, the more accu-
rate the prediction performance was obtained. However, only 
the wind turbine data at one specific location was used for the 
training, and extreme conditions or complex loading situations 
were not considered, leading to insufficient diversity of the ex-
perimental environment. Nevertheless, the current example 
serves as a good example of the application of PINN in for the 
practical problem where some noisy data are present. 

 
7. Summary and discussion 

This paper categorized the types of physics problem types 
and target tasks for which PINN can be utilized and reviewed 
numerous studies since the publication of the Vanilla PINN in 
2019 that aimed to enhance the performance of PINN. To re-
view the studies in an organized way, we first reviewed studies 
focusing on modifying each component of a generic PINN ar-
chitecture: 1) selection of collocation points, 2) neural networks, 
3) differentiation, 4) loss function and 5) neural network training. 
Thereafter, studies on some key topics in PINN were reviewed, 
regarding implementation of 1) domain decomposition, 2) tem-
poral causality, 3) meta-learning, 4) reduced-order modeling, 5) 
model ensembles, 6) extrapolation and 7) multiple instances 
learning. Moreover, three exemplary applications of PINN on 
practical engineering problems were provided to demonstrate 
the effect and describe the ways of implementing some of the 
studies covered in Secs. 4 and 5. 

As previously mentioned, many studies of PINN have been 
proposed, presenting new techniques to improve the accuracy 
or computational speed, combining existing numerical methods, 
and integrating some of the recent machine learning tech-
niques or optimization techniques. However, due to diversities 

in conditions such as application fields, types of differential 
equations, neural network structures, and optimization tech-
niques, direct comparisons between the latest studies of PINN 
are not feasible. Additionally, it still poses as an obstacle for 
most engineers who lack the respective domain knowledge to 
fully understand and select from the vast number of techniques. 
Cuomo et al. [6] provided an in-depth review of PINN and cov-
ered many of the theoretical aspects of PINN in detail, the cur-
rent review paper attempts to provide a guideline for imple-
menting PINN improvements in various engineering fields. 

Building on the insights of the review, several key areas for 
future research are identified, which may be beneficial to im-
plement the previously discussed studies of PINN better. Some 
of the potential research areas in the authors’ opinion are as 
follows: 

1) Meta-learning may be considered from a more macro-
scopic perspective, including various techniques of the fu-
ture. Taking the idea from Ref. [85] where loss weight co-
efficients and neural network parameters were computed 
altogether with bi-level optimization, among the studies 
discussed in Secs. 4 and 5, optimal techniques for the 
customized PINN may as well be selected in an unsuper-
vised manner. As such, a general formulation of PINN for 
better accessibility and its more optimal implementation 
could be established, which can potentially enhance the 
overall performance. Furthermore, a comparative study 
may be possible to evaluate various techniques that en-
hanced the performance of PINN. 

2) As in the example of Sec. 6.3, hybrid-PINN techniques 
that utilize both data and physics could be considered in 
case some data are available, and the performance may 
be better than that of using PINN without data. However, 
rather than applying to a specific problem, additional re-
search is required for the general formulation of such hy-
brid approach, which may also be included in the afore-
mentioned meta-learning technique to be further evalu-
ated. 

3) Learning multiple instances of forcing functions and 
BC/ICs discussed in Sec. 5.7 is a promising research di-
rection that could resolve one of the issues of PINN that it 
is only possible to learn a single instance at once. The 
ULGNet could be particularly useful in this context and 
could be extended to a wider array of problem types, thus 
enhancing the applicability and robustness of PINN. 
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Appendix 

Fig. A.1 summarizes the basis studies from which Vanilla 
PINN was established. In 1989, Hornik et al. [38] mathemati-
cally demonstrated the universal approximation capability of 
standard multilayer feedforward networks. In 1990, Lee and 
Kang [94] applied the neural minimization algorithm to the finite 

difference equations to derive a simple solution to differential 
equations. Psichogios and Ungar [95] proposed the ‘first prin-
ciples model’ utilized together with artificial neural networks as 
a physical knowledge integration method and computed the 
relationship between input variables and process parameters. 
In 1994, Dissanayake and Phan-Thien [96] used artificial neu-
ral networks to solve partial differential equations. In 1998, 
Lagaris et al. [97] proposed an approach to solve both ordinary 
and partial differential equations using artificial neural networks 
and trial solutions. Later in 2005, Ramuhalli et al. [98] proposed 
finite-element neural network (FENN), which embedded the 
Finite-element model into ANN. In 2006, Malek and Beidokhti 
[99] utilized the Nelder-Mead method, which is one of the opti-
mization techniques, together with ANN to compute an ap-
proximate solution of high-order (up to 4) ordinary differential 
equations. In 2009, Beidokhti and Malek [100] solved initial-
boundary value problems using ANN, minimization techniques, 
and collocation methods and proposed a hybrid method that 
utilizes a trial solution with corresponding adjustable parame-
ters. In 2011, Kumar and Yadav [101] classified and compared 
multilayer perceptron (MLP) and radial basis function (RBF) in 
terms of approximating solutions of differential equations. Then, 

 
 
Fig. A.1. A timeline showing different approaches for prior knowledge inte-
gration into the artificial neural networks. 
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automatic differentiation (AD) was presented in 2014 [102], as 
well as TensorFlow in 2016 [103]. Based upon these studies, 
Raissi et al. [104, 105] proposed physics-informed neural net-
work (PINN; Vanilla PINN) in two-part articles in 2017, followed 
by a combined version in 2019 [2]. 
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