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Abstract  Prognostic health management (PHM) is essential for the predictive mainte-
nance of industrial systems, aiming to predict the remaining useful life (RUL) of system to en-
sure safe, reliable, and cost-effective operation of the machinery. This work proposes an inno-
vative method for RUL prediction of bearings, by combining a health indicator (HI) proposed 
from the absolute cumulative modified multiscale permutation entropy (C-MMPE) feature with a 
deep learning long short-term memory (LSTM) model. The work also introduces a virtual health 
degree for bearings, using an exponential degradation pattern as the target function for the 
LSTM model output. Experimental validation showcases the effectiveness of proposed ap-
proach, achieving a high score value of 0.81 and demonstrating a lower mean absolute error
value of 7.38 in RUL prediction for test bearings compared to conventional features and re-
gression labeling functions. This highlights the superior RUL prediction capability of the pro-
posed methodology. 

 
1. Introduction   

Rolling bearing forms an essential part of rotating machineries, such as motors, pumps, con-
veyors, gearboxes, etc., as it determines their smooth functioning [1-3]. It constantly runs under 
hostile environments, varying loads and temperatures leading to catastrophic failures of the 
components/ systems if the faults remain undetected [4]. The prognostic health management 
(PHM) of rolling bearings is essential for the predictive maintenance of the mechanical systems 
by predicting the RUL to maintain safe and economical operation and prevent an unexpected 
shutdown in the industries [5]. The data-driven approach for PHM for any machinery includes 
three phases: feature extraction from condition monitoring (CM) data, degradation monitoring, 
and RUL prediction [6, 7]. Sensors are deployed to extract useful CM data that provides infor-
mation about the system's health. An accelerometer, used to capture the vibration signal, is the 
most effective fault monitoring technique for rolling bearings, showing dynamic changes in the 
characteristic signal on the occurrence of faults [8]. In vibration analysis, the features are an 
important factor that reflects the degradation behavior of the system.  

To monitor the health of bearing state, it is crucial to extract useful information from the vibra-
tion signals in terms of features. Generally, time-domain features such as root mean square 
(RMS) value, kurtosis, skewness, peak-to-peak value etc., are widely used as health indicators 
(HI) for bearings [9]. Spectral features such as power spectral density, spectral kurtosis, spec-
tral Skewness etc., represent the system performance characteristics in the frequency domain 
[10]. These standard features are sensitive to a particular failure mode and fail to describe the 
overall degradation process of the bearing. The vibration signals excited by local defects of 
bearings show non-stationary and non-linear behavior due to the presence of external phe-
nomena such as strikes, external noise components, friction, etc. Therefore, for identifying the 
dynamic non-linear features of bearing, HI construction has attracted the researcher's attention 
[11, 12]. Entropy approaches are frequently used to assess the non-stationary and non-linear 
dynamic characteristics of the time series data. Therefore, using entropy theory to assess the 
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overall complexity of the bearing vibration signal enables the 
evaluation of the degradation state [13]. The evolution in en-
tropy methods for information measurement is explained in the 
subsequent paragraph. 

Shannon [14] developed the concept of information entropy 
and explained the problem in the information measurement but 
did not describe the information obtained from a change of 
signal. Later, approximate entropy, sample entropy, and per-
mutation entropy concept were developed based on the infor-
mation entropy theory. Pincus developed approximate entropy 
(ApEn) to measure the complexity in short finite time series [15]. 
However, ApEn undergoes a similarity problem and shows 
poor consistency in the entropy calculation. To improve the 
ApEn method, Richman proposed a method named as sample 
entropy (SpEn) [16], which has better characteristics for shorter 
data and shows better consistency when compared to ApEn, 
but it has low computational efficiency. Later, permutation en-
tropy (PE), a novel technique, was developed by Bandt et al. to 
assess the complexity of the dynamic behaviour of non-
stationary and non-linear time series [17]. Several works have 
employed methods like PE, fuzzy entropy, and dispersion en-
tropy to evaluate the condition of rolling bearings [18-21]. Dis-
persion entropy, which relies on the spread of signal values 
within a time window, may not effectively capture localized, 
transient anomalies or variations crucial for assessing bearing 
health. Consequently, it might lack sensitivity to specific types 
of bearing faults or fail to provide early warnings for potential 
issues. The computation of fuzzy entropy can be resource-
intensive, particularly for extensive datasets or high-
dimensional data. In contrast, permutation entropy stands out 
for its superior performance, computational efficiency, sensitiv-
ity, and remarkable resistance to noise when compared to 
other entropy features [22]. To minimize further loss of informa-
tion, multiscale permutation entropy (MSPE) was developed to 
enhance the effectiveness of PE algorithm by fusing the PE 
and the multiscale technique concept [23]. Many studies have 
been found using the MSPE algorithm for bearing fault diagno-
sis by assessing the complexity of the vibration signals [24], 
[25]. The multiscale coarse-graining (CG) procedure for en-
tropy calculation significantly reduces the data point length and 
can lead to an inaccurate entropy value for short time series. 
The moving average graining (MAG) procedure in multiscale 
entropy is introduced by Wu et al. to confront the data length 
problem in the CG process to construct a new time series se-
quence [26]. The authors concluded that the MAG reflects 
better long-range correlations of a short-term time series. 
Therefore, MAG in multiscale entropy provides more accurate 
entropy values for short time series data. They implemented 
the MAG on sample entropy calculation to detect the bearing 
fault. In this work, modified multiscale permutation entropy 
(MMPE) is utilized which is formed by combining PE, the mul-
tiscale, and the MAG approach to construct a HI for the health 
assessment of rolling bearing. It has a negligible effect on new 
time series sequence length [27]. The features effectiveness is 
measured by investigating performance metrics such as 

monotonicity, robustness, and trendability [28]. It is observed 
that the MMPE is a dominant feature and has been selected for 
further analysis. The next step is to estimate an absolute cu-
mulative effect of features. The vibration features are affected 
by numerous factors, such as noise, friction, strike, etc., that 
are visible in the form of some local fluctuations and cause 
non-ideal behavior to represent the machinery degradation 
process. A bearing deterioration is the cumulative effect of all 
processes. As a result, it is vital to comprehend the degrading 
progression from a cumulative aspect. The continuous accu-
mulation of vibration features data from the cumulative aspect 
carries enriched prior information, decreases local fluctuations, 
and generates a more reliable trend characteristic [29]. Sahu 
and Rai proposed a degradation monitoring and RUL predic-
tion technique for rolling bearings using the C-MMPE feature. 
They found that the C-MMPE is an effective feature that is 
sensitive to an incipient fault and precisely predicts RUL using 
an exponential degradation model [30]. Considering the advan-
tage of C-MMPE, this feature is selected for the construction of 
HI for regression analysis to further reveal its effectiveness for 
intelligent RUL prediction using deep learning techniques.  

In regression analysis, it is necessary to define the output 
target function, i.e., to form a virtual life or health degree, rep-
resenting the degradation behaviour of the bearing. This virtual 
life or health degree is used as an output target function for 
regression analysis for RUL prediction. Bearing health degree 
is constantly changing in its life cycle. Thus, a precise repre-
sentation of the degradation trend is important to track the 
bearing health and predict its RUL. Therefore, it is crucial to 
create a labelling function to define the health degree or virtual 
health for bearing [31]. The traditional methods simulate the 
bearing's life cycle pattern as a linear or piecewise function [32]. 
However, these functions may not characterize the actual life 
scenario of bearing. Thus, there is scope for the selection of 
some other target function to represent the virtual life of bear-
ing. In this work, linear, piecewise, quadratic, and exponential 
functions are considered to represent virtual life. After data 
processing is done, the next step is to utilize a proper deep-
learning tool for RUL prediction, as explained in the subse-
quent paragraph.  

The remaining useful life of any machinery is defined as the 
time length of the system from a current state to a failed state 
[33]. Traditionally, failure models have been developed to esti-
mate the RUL of equipment by analyzing the product degrada-
tion mechanisms [34]. However, this approach needs a lot of 
experience and complex modeling of failure mechanisms. 
Data-driven prediction techniques utilize prior or historical data 
and have gained huge popularity due to the development of 
deep learning techniques [35]. Deep learning techniques can 
quickly and efficiently extract useful information from huge 
amounts of data because of their strong information extraction 
capabilities. Hence, researchers prefer a deep learning-based 
RUL prediction model [36, 37]. Long short-term memory 
(LSTM) is a deep learning technique that can efficiently deal 
with sequential data. Lei et al. utilize the LSTM for CM and fault 
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diagnosis of a wind turbine [38]. The LSTM model showed 
performance superiority compared to support vector machine 
(SVM), recurrent neural network (RNN), multi-layer perceptron 
(MLP), and convolution neural network (CNN). The LSTM 
model is also widely used for direct RUL predictions. Various 
studies have been carried out for RUL prediction of an aircraft 
engine using the LSTM model [39-41]. Mao et al. used the 
LSTM directly to predict the RUL of bearings by using the vi-
bration signal's extracted features as input [42]. Rathore et al. 
proposed a model for extractive prognostic feature by develop-
ing transfer learning based bi-LSTM network [43]. This work 
utilizes the LSTM deep learning techniques by considering the 
advantages of LSTM for direct prediction of RUL from ex-
tracted features. The above studies avoided the complex fea-
ture extraction and selection procedure, utilizing traditional 
features that are sensitive to failure modes. Secondly, as dis-
cussed in the LSTM model above, most papers utilize the lin-
ear index corresponding to the RUL that may not characterize 
the actual degradation behavior of bearings.  

Based on the limitations and gaps in the research literature 
on RUL prediction methodologies of bearings, as discussed in 
the preceding paragraphs, this paper aims to develop a single 
dominant HI and defines the effective virtual life of bearing for 
RUL prediction using the deep learning LSTM model. The fea-
tures are extracted from the vibration signals, followed by the 
feature performance measurement to reflect the effectiveness 
of each feature. Then, each selected feature is normalized, and 
its absolute cumulative effect is computed to form HI. The ex-
ponential output target function is subsequently defined to rep-
resent the virtual life or health degree of bearings. Finally, the 
LSTM model is implemented for direct RUL prediction from the 
extracted features. The concept of direct RUL prediction using 
LSTM has mainly been taken into consideration with traditional 
time domain features with linear or piecewise functions. As a 
result, the novelty of this paper lies in considering novel HI 
based on C-MMPE and exponential output target function with 
LSTM model for RUL prediction. The obtained results from the 
proposed methodology indicate that the HI constructed from C-
MMPE is a dominant and sensitive feature that characterizes 

the degradation process precisely in the rolling bearing and 
more accurately predicts the RUL with exponential target func-
tion compared to other features and target functions. 

This paper is organized as follows: Sec. 2 briefly describes 
the detailed procedure of the proposed methodology. In Sec. 3, 
a dataset description is provided. Sec. 4 evaluates the pro-
posed method on experimental datasets. Finally, Sec. 5 con-
cludes the work.   

 
2. Proposed methodology  

The proposed method flowchart is illustrated with the help of 
Fig. 1. The bearings vibration signals are captured with the 
help of an accelerometer. The vibration analysis is performed 
to predict the RUL of the bearing. Firstly, the virtual life or 
health degree is defined for the bearing. Then exponential 
health degree is proposed and set as the output target function 
for RUL prediction. Further, the vibration data is processed, 
including feature extraction, selection, and construction of HI, 
and subsequently considers the degradation of bearing. The 
performance of each feature is measured by calculating the 
monotonicity, trendability, and robustness. After HI construct, 
the LSTM regression model is trained with training datasets to 
predict the RUL of test bearing.  

The steps involved in HI construction are explained in detail 
in the subsequent subsections: 

 
2.1 Health indicator construction 

This work considers five traditional vibration features, such 
as RMS, kurtosis, skewness, spectral skewness and spectral 
kurtosis and five entropy-based features, such as PE, MSPE, 
MMPE, dispersion and fuzzy entropy to develop the HI that 
reflects the degradation behavior of bearings. Notably, PE and 
its advanced variations have proven to be particularly effective 
in serving as health indicators for bearings compared to dis-
persion and fuzzy entropy. The algorithm for dispersion and 
fuzzy entropy are briefly outlined in Refs. [44, 45]. The devel-
opment and significance of permutation entropy-based fea-

 

 
 
Fig. 1. Proposed methodology for RUL prediction of bearing. 
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tures are elaborated in the subsequent subsections.  
 

2.1.1 Permutation entropy 
Bandt and Pompe introduced the permutation entropy con-

cept in 2002 [17]. It is widely used in several different domains 
to assess the complexity of time series data.  

For a given signal, 1 2 3, , , ., Nx x x x x= ……  of length ' N ', the 
first step is to form a matrix of overlapping column vectors by 
splitting a one-dimensional time series signal data using hy-
perparameters 'm ' & 'τ '.  

 

( ) ( ){ }2 1, , ., ,m
i i i i m i mX x x x xτ τ τ+ + − + −= … ,  

( )1,2, ., 1i i m τ= …… + − . 
 
Where ' m ' and 'τ ' represents the embedding dimension 

and time lag, respectively, these hyperparameters determine 
the amount of information each vector holds. 

Next, embedding vector ' m
iX ' is rearranged in increasing or-

der.  
 

( ) ( ) ( ){ }1 21 1 1, , .,
mi r i r i rx x xτ τ τ+ − + − + −… . 

 
There will be ' !m ' different possible ordinal permutations in 

'm ' dimensional space. The relative frequency for each per-
mutation 'π' is determined using the following formula: 

 

( ) ( )
( )

{ | 1 , }
1

m
iNumber i i N m x has type

p
N m

τ π
π

τ
≤ − −

=
− −

. (1) 

 
 
Finally, PE is defined as follows: 
 

( ) ( ) ( )( )lnPEH m p pπ π= −∑   (2) 
 

when ( ) ( )log !PEH m m= , the ( )  PEH m reaches its maximum 
value indicating that the permutation probabilities of all possible 
ordinal patterns are the same. Finally, the normalization of PE 
is performed for easier comparison and interpretation. 

 

( ) ( )
( )ln !
PE

NPE

H m
H m

m
=  (3) 

 
where, 0 ( )NPEH m≤ ≤ 1. 

When ( )NPEH m = 0 denotes extremely periodic signals, 
whereas ( )NPEH m = 1 denotes that all ordinal patterns have 
the same probability. 

 
2.1.2 Multiscale permutation entropy (MSPE) 

Costa et al. proposed a multiscale analysis to extract more 
dynamic information than a single scale [23]. This method in-
troduced a scale factor to divide and generate the new se-
quence, but it significantly impacts the time series length. The 

MSPE approach uses the following two steps: 
1) First, the non-overlapping window of time series data are 

formed by splitting an original time series { , , , , ,ix i N= …1 2 3 } 
with a scale factor of length ‘ s ’, to generate a new CG time 
series ‘ s

jy ’. Fig. 2 illustrates the CG method. The equation to 
generate a CG time series sequence is given as follows:  

 

( )1 1

1 js
s
j i

i J s

y x
s = − +

= ∑ ,  1 Nj
s

≤ ≤ . (4) 

 
2) Finally, the MSPE is obtained by calculating PE for new 

sequence for specified scale factor ' s ' and embedded dimen-
sion 'm '.  

 
( ) ( ), , , , ,s

jMSPE x s m PE y mτ τ= . (5) 
 

2.1.3 Modified multiscale permutation entropy (MMPE) 
Modified multiscale permutation entropy (MMPE) is utilized in 

this work, which is formed by combining PE, the multiscale, 
and the MAG approach to construct a HI for the health as-
sessment of rolling bearing. The moving-average graining 
(MAG) method is more dependable and noise-sensitive than 
the CG method for short-term time series analysis as it doesn’t 
affect the length of the new time series sequence, making it 
more sensitive to incipient fluctuation. The proposed MMPE 
approach uses the following two steps: 

1) To reflect the dynamic behaviour of the signal, a new time 
series is formed ' s

jy ' from the original time series data 
{ , , , , , }ix i N= …1 2 3  by applying the MAG with a scale factor 
of length ' s '. Fig. 3 illustrates the MAG method. The equation 
to generate a moving average time series sequence is given 
as follows: 

 
11 j s

s
j i

i j

y x
s

+ −

=

= ∑ , 1 1j N s≤ ≤ − + . (6) 

 
2) Now, the MMPE is determined by measuring the PE for 

the new sequence with the specified embedded dimension ‘m ’ 
and scale factor ‘ s ’. 

 
( ) ( ), , , , ,s

jMMPE x s m PE y mτ τ= . (7) 
 
Once all features are obtained, the next step is to construct 

 
Fig. 2. Illustrate the CG procedure to generate a new sequence of time 
series with scale factor s = 3. 
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HI using the following equation given below: 
 

( )
1

absolute cumulative effect of
HI Normalized

features
= −

. (8) 

 
The continuous accumulation of vibration features data from 

the cumulative aspect carries enriched prior information, de-
creases local fluctuations, and generates a more reliable trend 
characteristic. The above equation is used to construct a HI 
such as it forms a decreasing trend and shows better mono-
tonic trend to the output target function.  

 
2.2 Feature evaluation 

Feature reflects the health of bearing that is used for fault di-
agnosis and prognosis. Some features are sensitive to particu-
lar failure modes and unsuitable for RUL prediction. Three 
performance indicators are used, monotonicity (Mon), 
trendability (Tre), and robustness (Rob), to screen the features 
that can efficiently represent the degradation process and are 
further used for the predictability.  

The absolute difference between each feature's number of 
positive and negative derivatives determines the monotonicity, 
and its range varies between 0 and 1. The higher monotonicity 
value represents the better fitness of the feature. The trendabil-
ity scale runs from 0 to 1, and the greater the trend index, the 
more linearly the feature sequence is correlated with time (t). 
The robustness scale also varies between 0 and 1. Robust-
ness represents the fluctuation in the features. The smaller 
robustness value indicates that, the more the feature fluctuates, 
resulting in greater uncertainty. 

The mathematical expression for monotonicity, trendability, 
and robustness [28, 46] are placed below as Eqs. (9)-(11): 

 

( )
# 0 # 0

 
1 1

d dof of
df dfMon f
k k

> <
= −

− −
 (9) 

( )
2 2 2 2

 ,
( ) ( )

i i i ii i i

i i i ii i i i

k f t f t
Tre f t

k f f k t t

−
=

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

∑ ∑ ∑
∑ ∑ ∑ ∑

 (10) 

( ) 1 exp i i

i i

f fRob f
k f

⎛ ⎞−= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ . (11) 

Where f  represents the original feature, k  is the number 
of observations in a particular feature, /d df  is the average 
difference of the fraction of derivatives for each feature, t is the 
time index and f  represents the smoothing processing of the 
original feature.  

In some instances, a specific metric may exhibit a slight ad-
vantage over others, influencing the feature selection process. 
To ensure the consistent and accurate selection of the most 
suitable degradation features suitability can be measured using 
a single evaluation metric. A linear weighted comprehensive 
indicator (CI) is proposed as a single evaluation metric to eval-
uate the feature more thoroughly. Monotonicity is assigned the 
highest weightage value due to its paramount significance in 
the feature selection process. Its prominence lies in the ability 
to create simpler and more interpretable models. In research, 
where model transparency holds utmost importance, giving 
priority to features with a well-defined monotonic relationship is 
of the highest priority. 

The CI is defined as follows [31] 
 

( ) ( ) ( )0.4* 0.3* , 0.3*CI Mon f Tre f t Rob f= + + . (12) 
 
Features with a high CI  value indicate better degradation 

behavior of bearing.  

 
2.3 Virtual RUL construction 

The health state of the bearing constantly changes during its 
life cycle. A suitable representation of the virtual degradation 
trend or health degree is essential to represent the health state 
of the bearings for precise RUL prediction.  

Therefore, it is essential to design an output labelling function 
for regression analysis describing the bearings health degree 
or virtual life. In this work, an exponential function is proposed 
as a health degree and compared with linear, piecewise, and 
quadratic functions to show its superiority. The formulas for the 
construction of these labelling functions are mentioned in Table 
1. In Fig. 4, the graphical representations of these function 

 
Fig. 3. Illustrate the MAG procedure to generate a new sequence of time 
series with scale factor s = 3. 

 

 
Fig. 4. Different functions curve for bearing virtual RUL. 
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curves are shown.  

 
2.4 LSTM network 

The architecture of the LSTM network is shown in Fig. 5. The 
reason behind the selection of the LSTM network lies in its 
ability to solve vanishing gradient problems and long-term de-
pendency in RNN [47]. The architecture of LSTM consists of 
three gates named input, output, and forget gates, as shown in 
Fig. 5. It has both short- and long-term memory. The informa-
tion is passed through the network and retrieved at a very later 
state to identify the context of prediction [48].  

Mathematically, the LSTM network can be expressed as fol-
lows: 

Forget gate:  
 

( )1
f f

t t tf X U H Wσ −= + . (17) 
 
Input gate: 
 

( )1
i i

t t ti X U H Wσ −= + . (18) 

Output gate:  
 

( )1
o o

t t tO X U H Wσ −= + . (19) 
 
Cell state:  
 

( )1tanh g g
t t tC X U H W−= + . (20) 

 
Updated cell state:  
 

( )1* *t t t t tC f C i Cσ −= + . (21) 
 
Output:  
 

( )tanh *t t tH C O= . (22) 
 
Where the previous LSTM cell output is represented by 1tH −  

and its cell state by 1tC − . The LSTM unit input vector is de-
noted by tX . U  and W  represent the input and the recur-
rent weight matrix for the gate denoted by { }* , , , .t i f g o∈  In 
the process of network training, these parameters are learned 
and updated. The sigmoid and tangent hyperbolic activation 
functions are represented by σ  and tanh , respectively. 
Based on the previous state 1tC −  and the input gate ti , the 
LSTM cell can update the weights according. The gating 
mechanism, which is the primary characteristic of the LSTM 
cell, is responsible for measuring the capability of the input 
signals over long-interval dependency [49]. The proposed 
method maintains the following LSTM parameters consistent 
across all Health Indicators (HI) to optimize the virtual remain-
ing useful life (RUL) and enhance bearing RUL prediction: 
·Learning rate: 0.001 
·Batch size: 256 
·Number of epochs: 400 
These parameters have been carefully chosen and kept 

constant to ensure the most effective virtual RUL and HI con-
struction for improved bearing RUL prediction. 

Table 1. Function curves formula to represent the virtual RUL for bearing. 
 
Sl. No Function curve Formula  

1 Linear ( ) * i
n

f t t
t

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

1 1  (13) 

2 Piecewise ( )
,

,
*

i j

i jn
i

j n n j

t t

f t t ttt
t t t t

≤⎧
⎪
⎛ ⎞ ⎛ ⎞= >⎨ +⎜ ⎟ ⎜ ⎟⎪⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎩

1

1 (14) 

3 Quadratic ( ) * i
n

f t t
t

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
2

2

1 1  (15) 

4 Exponential 

( ) ( )expf t d t aτ= − +  

( )
( )
min

max

f t
f t

⎧ =⎪
⎨ =⎪⎩

1
0

 

Where a = convergence rate  
hyperparameter d and τ can be  

determined by solving the above  
             two equations. 

(16) 
 
 
 
 
 

Where, nt  is the whole life duration of bearing, it  is the  
current time and jt  is the initial degradation time of bearing.  

 

 
 
Fig. 5. LSTM network architecture. 

 

Table 2. Pseudocode for RUL prediction. 
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The pseudocode is presented in Table 2 illustrate the use of 
methodology for RUL prediction of bearing. 

 
2.5 Prediction performance evaluation 

The error percentage (ER%) is calculated to validate the ef-
fectiveness of the proposed method for RUL prediction of test 
bearings. ER% is defined in Eq. (23). 

The score function was introduced in PHM 2012 prognostic 
challenge to underestimate and overestimate the RUL predic-
tion, as stated in Eqs. (24) and (25). iA  is the score for the 
thi  test bearing calculated from its   %ER . When the   %ER  

is 0, the score value is 1, signifying that the predicted RUL is 
equal to the actual RUL. If the  %ER  is non-zero, then a 
penalty is added to decrease the score. When %iER > 0 indi-
cates the early failure prediction of the system and receives 
less penalty compared to late prediction. 

 
 % *100Actual Predicted

Actual

RUL RULER
RUL

−=    (23) 

( )

( )

%exp ln 0.5 * % 0
5

%exp ln 0.5 * % 0 .
20

i
i

i

i
i

ER if ER
A

ER if ER

⎧ ⎡ ⎤⎛ ⎞− ≤⎪ ⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎣ ⎦= ⎨
⎡ ⎤⎛ ⎞⎪ + >⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩

 (24) 

 
The overall RUL prediction score is determined by averaging 

the score value results of all test bearings given by: 
The score value is utilized as an evaluation index to evaluate 

the underestimation and overestimation of the predicted RUL, 
as shown in Fig. 6. Further, to evaluate the accuracy of the 
proposed method, the mean and absolute average of ER% are 
utilized. 

 
11

1

1  
11 i

i

Score A
=

= ∑   (25) 

1

1% %
N

i
i

ER ER
N =

= ∑  (26) 

1

1| % %
N

i
i

ER ER
N =

= ∑ . (27) 

 
3. Dataset description 

This paper performs the experimental validation on the 
PRONOSTIA platform-bearing dataset provided by the 
FEMTO-ST Institute in PHM 2012 [50]. The illustration of this 
bearing test platform is presented in Fig. 7. The accelerometer 
sensors are mounted on the bearing outer ring to capture the 
vibration signals in both horizontal and vertical directions. 

The raw vibration signals are captured at every 10 seconds 
interval, and each recording lasts for 0.1 seconds with a sam-
pling frequency of 25.6 kHz. The experiment is conducted at a 
constant rotational speed and payload conditions such as 1800, 
1650, and 1500 rpm at 4000 N, 4200 N, and 5000 N, respec-
tively. The bearing is considered to work normally in the ex-
periment if the vibration signal amplitude is less than 20 g. The 
dataset consists of 6 training and 11 test datasets under three 
different working conditions, as shown in Table 3. 

 
4. Results and discussion 

The selection of the MMPE feature for RUL prediction is jus-
tified by calculating the comprehensive indicator (CI) value as 
explained in Eq. (12). The CI is calculated for test and training 
bearings for all six selected features, such as MMPE, PE, 
MSPE, RMS, skewness, and kurtosis as shown in Tables 4 
and 5, respectively. The CI evaluation value for MMPE and 

 
Fig. 6. Score function curve for RUL prediction. 

 

Table 3. Experimental operating conditions for PRONOSTIA bearing test rig.
 

Datasets Operating conditions 

 1800 rpm,  
4000 N 

1650 rpm,  
4200 N 

1500 rpm,  
5000 N 

Bearing 1_1 Bearing 2_1 Bearing 3_1 
Training set 

Bearing 1_2 Bearing 2_2 Bearing 3_2 

Bearing 1_3 Bearing 2_3 Bearing 3_3 

Bearing 1_4 Bearing 2_4  
Bearing 1_5 Bearing 2_5  

Bearing 1_6 Bearing 2_6  

Test set 

Bearing 1_7 Bearing 2_7  

 

 
Fig. 7. The experimental PRONOSTIA platform for accelerated bearing 
degradation tests [50]. 
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PE are highest, followed by MSPE and RMS, which indicates 
a good degradation trend to reflect the bearing degradation 
process. Based on the CI evaluation, MMPE is found to be an 
effective feature for bearing degradation representation and is 
further used for HI construction and RUL prediction. The next 
step is to construct HI from the MMPE feature using Eq. (8) to 
indicate the overall degradation representation of the entire 
bearing. The original and cumulative effect of the MMPE fea-
ture for bearing 1_1 is shown in Fig. 8. It is clearly observable 
that the fluctuation in is more in the original feature and it does 
not reflect any trend, whereas constructed HI by considering 
absolute cumulative effect MMPE feature follows a decreasing 
monotonic trend and is further used for regression analysis. 

 
4.1 Results and comparison of RUL prediction 

The effectiveness of the proposed methodology is measured 
by comparing it with the other available methods in the litera-
ture.  

The comparison of the score and mean absolute  %ER  is 
done, with the selected research work on bearing RUL predic-
tion, ranging from 2018-2022, the details of which are being 

explained subsequently. The following RUL prediction works 
on bearings have been considered to substantiate the superior-
ity of the proposed methodology: Hinchi and Tkiouat proposed 
a method by extracting the local features directly from the sen-
sor in the convolution layer form using a neural network and 
then giving it as input to the LSTM model for RUL prediction of 
bearings [51]. Chen et al. proposed a deep learning-based 
data-driven approach with an attention mechanism for RUL 
prediction [52]. Zhang et al. proposed a hybrid deep learning 
network that can take both one-dimensional data and time-

Table 4. Comprehensive Indicator for test bearings. 
 

Test bearings 
Features 

1_3 1_4 1_5 1_6 1_7 2_3 2_4 2_5 2_6 2_7 3_3 Mean

MMPE 0.5358 0.5036 0.4996 0.4802 0.5421 0.4339 0.3841 0.3976 0.4473 0.4421 0.5745 0.4764

PE 0.3909 0.3167 0.5337 0.5597 0.5283 0.4755 0.5986 0.467 0.5893 0.4803 0.2984 0.4762
MSPE 0.3271 0.4035 0.3639 0.366 0.3176 0.3114 0.3946 0.3395 0.3015 0.3924 0.3756 0.3539

Dispersion entropy 0.4077 0.4107 0.351 0.3186 0.3003 0.3114 0.3394 0.3369 0.4469 0.3114 0.3345 0.3517

Fuzzy entropy 0.4255 0.3879 0.3239 0.339 0.2912 0.3108 0.3564 0.3192 0.3679 0.3517 0.3786 0.3502
Rms 0.3492 0.3178 0.3228 0.2988 0.3809 0.2232 0.3061 0.4421 0.2656 0.2864 0.4281 0.3292

Spectral skewness 0.3076 0.3169 0.3148 0.3612 0.3247 0.3066 0.2706 0.3582 0.2828 0.3133 0.4382 0.3268

Spectral kurtosis 0.4005 0.3313 0.4489 0.3136 0.3025 0.2914 0.2537 0.2521 0.2491 0.398 0.3258 0.3243
Kurtosis 0.3257 0.374 0.3518 0.2766 0.3941 0.1628 0.2679 0.2833 0.3963 0.229 0.2946 0.3051

Skewness 0.2415 0.1326 0.1766 0.1453 0.2875 0.1176 0.1535 0.1367 0.319 0.2049 0.2396 0.1959

 
Table 5. Comprehensive Indicator for training bearing. 
 

Training bearings 
Features 

1_1 1_2 2_1 2_2 3_1 3_2 Mean 
MMPE 0.4582 0.5873 0.4951 0.5319 0.4115 0.4176 0.4836 

PE 0.4584 0.4925 0.3549 0.3219 0.5757 0.5123 0.4526 

MSPE 0.3701 0.3312 0.3761 0.4723 0.3197 0.3745 0.3740 
Dispersion entropy 0.4702 0.4609 0.2786 0.3760 0.3261 0.3142 0.3710 

Fuzzy en 0.3983 0.4789 0.3756 0.3225 0.3178 0.3180 0.3685 

Rms 0.3919 0.3720 0.4007 0.5151 0.2872 0.3020 0.3781 
Spectral skewness 0.4556 0.3257 0.3387 0.4457 0.2711 0.3033 0.3567 

Spectral kurtosis 0.3386 0.2727 0.3110 0.3856 0.2435 0.2553 0.3011 

Kurtosis 0.3734 0.0843 0.3260 0.3833 0.2422 0.3326 0.2903 
Skewness 0.2248 0.1265 0.2261 0.2594 0.1712 0.1939 0.2003 

 

 
Fig. 8. The left side represents the original MMPE feature, whereas the 
right represents the HI constructed from the original MMPE for bearing 1_1.
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frequency images as input for effective RUL prediction [53]. 
Wang et al. proposed a hybrid prognostic method by utilizing 
the sparse representation of degradation data and exponential 
degradation model for RUL estimation [54]. Xu et al. proposed 
a state degradation model and convolution autoencoder net-
work to predict the RUL of bearings [55]. The comparative 
study of the results of the proposed and other methods are 
shown in Table 6. From the table, it is observed that the pro-
posed method has the highest score of 0.81 and the lowest 
mean absolute  %ER  of 7.38. The highest score value indi-
cates the strongest predictive capability and the better fitting of 
the model. The lowest mean absolute error percentage indi-
cates the highest prediction accuracy between actual and pre-
dicted RUL. This illustrates that the proposed method can effi-
ciently capture the C-MMPE based HI in time-series data, ef-
fectively predict the RUL with maximum accuracy compared to 
other methods and shows higher adherence to the require-
ments of practicability. In this way, work efficacy and the model 
ability are strengthened. 

This work also compares the proposed method with other 
traditional features and labelling functions. Fig. 9 represents 
the plot between the desired and predicted RUL for all four 
labelling functions for bearing 1_3 using HI constructed from C-

MMPE. The actual RUL is the time length between the current 
time and end of life (EOL), whereas the predicted RUL is the 
time length between the predicted time and EOL. It is clearly 
observed from Fig. 9, that the desired and predicted RUL for 
an exponential function is close to each other as compared to 
linear, piecewise, and quadratic functions. This indicates that 
the exponential labelling function provides better fitting and 
precisely predicts the RUL.  

The score value and absolute ER% of each selected feature 
and labelling function are shown in Figs. 10 and 11, respec-
tively. It's observed that the score value is maximum for the 
exponential labelling function for all selected features, showing 
its superiority among other labelling functions. Among features, 
the score value is maximum, i.e., 0.81 for HI constructed from 
C-MMPE followed by C-PE, C-MSPE, C-RMS, C-Skewness, 
and C-Kurtosis. Similarly, Fig. 11 shows that the absolute 
mean ER% is minimum, i.e., 7.38, for the exponential labelling 
function, and HI constructed from C-MMPE indicates the high 
accuracy between actual and predicted RUL. The results ob-
tained from score value and absolute ER% suggest that the 
selected exponential labelling function and HI from C-MMPE 
are strong enough to predict the RUL precisely and accurately 
for rolling bearings. 

Table 6. Rul prediction comparison with other methods. 
 

Error% 
Test bearings 

No. 
Current  
time (s) 

Actual  
RUL (s) 

Predicted RUL 
by proposed 

method  
Proposed 
method 

Hinchi & 
Tkiouat [51]

Chen  
et al. [52] 

Zhang et al. 
[53] 

Wong et al. 
[54] 

Xu  
et al. [55] 

1_3 18,010 5730 5710 0.35 -0.35 1.05 2.27 5.06 -2.62 
1_4 11,380 3390 3432 -1.24 5.60 20.35 5.6 23.30 17.40 

1_5 23,010 1610 1720 -6.83 100.00 11.18 12.42 4.35 5.59 

1_6 23,010 1460 1887 -29.23 28.08 34.93 10.96 0.68 3.42 
1_7 15,010 7570 7467 1.36 -19.55 29.19 -22.46 -42.54 1.06 

2_3 12,010 7530 7169 4.80 -20.19 57.24 0.99 17.40 26.96 

2_4 6110 1390 1197 13.85 8.63 -1.44 5.76 12.23 -2.88 
2_5 20,010 3090 2735 11.50 23.30 -0.65 25.89 -0.32 7.77 

2_6 5710 1290 1232 4.51 58.91 -42.64 -10.85 -2.33 13.95 

2_7 1710 580 571 1.62 5.17 8.62 1.72 8.62 -8.62 
3_3 3510 820 868 -5.87 40.24 -1.22 -3.66 -3.66 3.66 

ER%  -0.47 24.54 10.60 2.60 2.07 5.97 

ER%  7.38 28.18 18.96 9.33 10.95 8.54 
Score 0.81 0.43 0.57 0.64 0.67 0.69 

 

  
 
Fig. 9. Desired and predicted RUL for bearing 1_3 with four different target functions using HI constructed from C-MMPE. 
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5. Conclusion 

This paper presents a novel work for effective RUL prediction 
of the rolling bearing from a HI constructed from a single domi-
nant feature C-MMPE and LSTM model. The performance of 
MMPE feature is evaluated from comprehensive indicator val-
ue and found to be higher than other features for both test and 
training datasets, indicating that the selected feature effectively 
represents the degradation behaviour of bearing. After the 
selection, HI is constructed by considering the cumulative ef-
fect of MMPE in decreasing patterns. The exponential output 
target function is subsequently defined to represent the virtual 
life or health degree of bearings. Finally, LSTM model is im-
plemented for direct RUL prediction from the extracted features. 

The RUL prediction performance is measured by calculating 
the MAE and score value. The proposed method shows a low 
MAE value of 7.38 and a high score value of 0.81 as compared 
to other available methods in the literature, indicating the supe-
riority of the model for RUL prediction. The same has been 
explained and displayed in a tabular format. The proposed 
method also shows its effectiveness with respect to other fea-
tures such as RMS, skewness, kurtosis, PE, and MSPE and 
labelling functions such as linear, piecewise, and quadratic. 
However, in the future, there is a scope for reducing computa-
tional time due to the extensive feature extraction process. 
Hence, this work can be extended by developing novice intelli-
gent feature extraction techniques for HI construction with the 
deep learning method.  

 
 
Fig. 10. Score value of HI constructed from all selected features and labelling functions. 

 

 
 
Fig. 11. Mean absolute error percentage of HI constructed from all selected features and labelling functions. 
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Data availability 
The data and material supporting this study's findings are 

openly available and provided by the FEMTO-ST Institute in 
PHM 2012 data repository.  

 
Nomenclature------------------------------------------------------------------ 

ix  : Original time series  
( )p π  : Relative frequency for each permutation 'π' 

M : Embedding dimension 
τ  : Time lag 

PEH  : Permutation entropy 
NPEH  : Normalized permutation entropy 
s
jy  : New time series sequence 

f  : Original feature 
T : Time index 
f  : Smoothing processing of the original feature  
CI : Comprehensive indicator 
tn : Whole life duration of bearing  

it  : Current time 
tj : Initial degradation time of bearing 
tf  : Forget gate 
ti  : Input gate 
to  : Output gate 
tC  : Cell state 
tC  : Update cell state 
tH  : Output 

%ER  : Error percentage 
%ER  : Mean error percentage 
%ER  : Mean absolute error percentage 

iA  : Score for the thi  test bearing  
 
Abbreviation 

CG : Coarse graining  
C-Prefix : Cumulative effect of features 
HI : Health indicator 
MAG : Moving average graining 
MMPE : Modified multiscale permutation entropy  
MSPE : Multi-scale permutation entropy 
LSTM : Long short-term memory 
PE : Permutation entropy 
PHM : Prognostic health management 
RMS : Root mean square 
RUL : Remaining useful life 
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