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Abstract  In this paper, the PDEs and BCs governing the large deflection of an Euler-
Bernoulli cantilever nano-beam on a nonlinear Winkler-Pasternak elastic foundation and under 
uniformly distributed lateral load have been derived using Eringen’s nonlocal elasticity theory, 
considering the nonlinear and linear relationships of curvature-deformation, and then solved 
using finite difference method. The effect of changes of different parameters, including nonlocal
parameter, load factor, linear/nonlinear and shear stiffness coefficients of the foundation on the 
deflection, bending slope angle of elastic curve and length change of the nano-beam, have 
been investigated. Results show that by increasing the nonlocal parameter, the bending slope
angle and deflection of the free end of cantilever nano-beam are decreased and the dimen-
sionless ratio of the final length of nano-beam is reduced. Also, the effect of nonlocal parameter 
on the nonlinear large deflection of the nano-beam is more significant at higher values of the 
applied lateral load. 

 
1. Introduction   

Significant improvements have been made in the application of micro and nano-scale sys-
tems in MEMS and NEMS electromechanical equipment. These devices are used as pressure 
and temperature sensors, accelerometer, micro-nozzles, gas detection sensors, biochemical 
sensors and atomic force microscopy nano-cantilevers in various fields including communica-
tions, medical, electronics, photonics, automotive, oil & gas and aerospace industries. Mi-
cro/nano-beams are the main components of small-scale structures. The recognition of the 
behavior of these structures is very important under different static or dynamic loads. Concern-
ing the small scale of micro/nano structures, the use of formulation based on different classical 
and conventional theories for thin/thick beam such as Euler-Bernoulli beam, Timoshenko beam, 
Reddy beam and Levinson’s beam models can cause errors in the beams bending analysis. 
Therefore, to achieve more appropriate and accurate results in investigating the nonlinear 
bending behavior of these micro/nano-beams under static/dynamic loads, the governing equa-
tions can be used based on novel theories such as Eringen’s nonlocal elasticity theory. Note 
that since the nano-beams are mostly considered as thin beams in real and practical devices 
as atomic force microscopes and sensors/actuators there is no need to use a higher-order 
beam theory to accurately model bending of thicker beams. Briefly, the Euler-Bernoulli beam 
theory is sufficient to model and analyze these thin type structures as the thin cantilever nano-
beams. Eringen presented the elasticity theory whereby the tension at a point is dependent not 
only on the strain at that point but to the strain at all parts of the body. In classical beam theory, 
the square of the first derivative of the beam deflection due to the bending moment is disre-
garded in the beam bending curvature relation. Therefore, the classical theory cannot be used 
when the deflection or the bending slope angle of deflected beam is so large. Also, the cantile-
ver micro/nano beams, such as the cantilever AFMs, are bent in touching the surface of the 
specimen, or under loading effect, which can lead to bending with large deflection and a large  
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bending angle at its free end. Moreover, these beams are 
mostly placed on a foundation or their contact with the sur-
rounding environment is modeled with foundations that have 
different characteristics. In the following, some of works are 
reviewed that investigate beam deflection using the classical 
and non-classical theories. 

The large deflection problem of a simply supported beam was 
investigated in Ref. [1], who observed that the load-deflection 
graph is not linear, but the deflection increases by increasing 
the lateral loading. Also, it was observed that the value of 
maximum deflection of a simply supported beam and under 
concentrated central load was slightly higher than that of classi-
cal theory. The differential equation governing the deflection 
problem of a cantilever beam of linear elastic material in which a 
vertical concentrated load was applied at the free end of the 
beam was analyzed in Ref. [2], and the numerical solution re-
sults compared with experimental results. The differential equa-
tions related to the large deflection of the beam were derived 
and then the governing equations were deduced for the small 
deflection of the cantilever beam. In Ref. [3], the modified nonlo-
cal elasticity theory was applied to analyze and examine the 
nonlocal effects on the Euler-Bernoulli beam as an actuator in 
small-scale systems. It was concluded that the cantilever actua-
tors do not exhibit nonlocal effects at micro-scale, whereas such 
effects can emerge in the nano-scale devices. In Ref. [4], the 
effect of the length scale parameter on the bending of mi-
cro/nano rods and tubes was investigated using the Euler-
Bernoulli and Timoshenko beam theories; and explicit solutions 
for static deformation of such structures were obtained. Based 
on analysis of nano-scale rods and tubes with their associated 
boundary conditions and subjected to different loadings, it was 
concluded that the effect of the small scale parameter shows 
itself more at the location of the applied concentrated force. 
Different beam theories, including Euler-Bernoulli, Reddy, Ti-
moshenko, and Levinson, were reformulated in Ref. [5] using 
the differential equations of Eringen’s nonlocal elasticity theory. 
Then, analytical solutions were presented to investigate the 
effects of nonlocal behavior on deflection, buckling load and 
natural frequencies of beams vibration. It was concluded that 
the nonlocal effect increases the slope value and reduces natu-
ral frequencies under bending lateral loads. The large deflection 
of cantilever beams was investigated by considering nonlinear 
geometry in Ref. [6]. In Ref. [7] the large deflection of a cantile-
ver beam under a concentrated load at the free end of the beam 
using the homotopy analytical method (HAM) was investigated. 
Explicit analytical relations were obtained for the slope angle at 
the free end of the beam and also the vertical and horizontal 
deflections of the cantilever beam. In Ref. [8] the large-scale 
deflection of the cantilever beam to find a suitable and optimal 
mathematical model using the semi-analytical adomian decom-
position method (ADM) was analytically studied. Then, by 
changing different parameters in the beam deflection, the verti-
cal and horizontal deflections of a cantilever beam were investi-
gated. Large deflection theory of nano-beams was studied in 
Ref. [9] to show that surface energy and large deflection may 

individually or jointly have notable effects. The solution of prob-
lems associated with the large deflection of the cantilever beam 
using the moment integral method was investigated in Ref. [10]. 
Also, for more complicated loading, the accuracy of the ob-
tained results using that method was compared to obtain results 
of the experimental and numerical methods. In Refs. [11, 12] 
the large deflection problem of the cantilever beam under a 
concentrated load applied at the free end and also with an incli-
nation relative to the beam axis was investigated. The nonlinear 
differential equations governing the beam deflection were 
solved by fourth order Runge-Kutta method. The effect of the 
size parameter (length scale) on the bending analysis of the 
micro-tubes using nonlocal elasticity theory for an Euler-
Bernoulli beam was studied in Ref. [13]. A new method was 
presented to obtain the exact bending moment and displace-
ment in the micro-tubes with uniformly distributed and concen-
trated loads by using the continuum nonlocal theory. In addition, 
the effect of nonlocal parameter on the static response of the 
micro-tube bending problem was investigated using the differen-
tial quadrature method (DQM). The numerical results showed 
that the nonlocal parameter have an important effect on the 
static behavior of the micro-tubes. Further researches on the 
modeling and derivation of the equations governing the large 
deflection of the beam were performed by applying the nonlocal 
elasticity theory to the Euler-Bernoulli nano-beams under a point 
load in Refs. [14-17]. The large deflection of an Euler-Bernoulli 
beam placed on a linear elastic foundation based on von-
Karman’s nonlinear strain-displacement relations was investi-
gated in Ref. [18]. Based on 2D differential equations of the 
nonlocal elasticity for plane stress, the governing equations of 
the cantilever nano-beam under different types of external 
transverse loads with simple assumptions were obtained in Ref. 
[19]. The results obtained from the analysis showed a significant 
nonlocal effect for bending deflection when the beam was ex-
posed to distributed transverse loads or a combination of dis-
tributed loads and concentrated forces. Also, the bending de-
formation of the cantilever nano-beam subjected to a concen-
trated force does not exhibit any nonlocal effect. Moreover, the 
results showed that nonlocal equivalent stiffness of a nano-
structure may be either increased or reduced depending on 
specific type of applied loads. the large deflection of the cantile-
ver nano-beam based on the nonlocal elasticity theory was 
studied in Ref. [20]. The state of the art of potential application 
of nano-beams as nano-sensors can be referred in Ref. [21]. In 
Ref. [21] free vibration analysis of a fully clamped SWCNT was 
investigated applying a molecular mechanics (MM) formulation 
and a continuum mechanics (CM) analytical approximation. The 
MM method is based on representing the SWCNT as a 3D finite 
element frame of point masses and linear springs, while the CM 
one is grounded on the Euler–Bernoulli beam theory has been 
utilized. The effect of SWCNT relative natural frequency shifts 
due to the mass addition, regarding specific modes of vibration 
and for different mass values and position combinations was 
investigated. 

In the large deflection condition for transversely loaded thin 
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beams, applying linear bending theories does not yield the 
correct results and these classical theories predict the bending 
deflections and slope angles far from the actual values. So, in 
these issues the nonlinear bending parameters in the govern-
ing equations should be considered to model thin beams really 
in the large deflection condition. Thus, the assumption of small 
bending slope angle φ (i.e., for φ ≤ 5°) of every point on the 
deflected beam (elastic curve of the deformed beam) is not 
further satisfied in the beam’s governing equations, i.e., cosφ ≠ 
1 and sinφ ≠ 0. Briefly, the value of bending slope angle φ in 
the beam’s governing equations is mostly taken as high value 
based on the geometry of deformed beam in the large deflec-
tion condition. In this condition, sinφ ≠ φ and tanφ ≠ φ (φ in 
terms of radian unit). 

From the review of the literature there is no independent re-
search performed that involves the nonlinear analysis of the 
large deflection for an Euler-Bernoulli cantilever nano-beam on 
a nonlinear Winkler-Pasternak elastic foundation and under 
uniformly distributed lateral load based on the Eringen’s nonlo-
cal elasticity theory in conjecture with nonlinear relationship of 
curvature-deformation of the beam. This can be regarded as 
the main aspect of novelty in the current research relative to 
the previous studies. Besides, through validation of the ob-
tained results with the ones available in the special case, the 
advantages of the used numerical finite difference method of 
solution and applied scheme concerning the accuracy for the 
better problem representation over similar methods are taken 
into account and discussed comprehensively. 

In this study, the nonlinear partial differential equation gov-
erning the large deflection of an Euler-Bernoulli cantilever 
nano-beam on the nonlinear Winkler-Pasternak elastic founda-
tion with assumption of uniformly distributed lateral load always 
perpendicular to the undeformed longitudinal axis of the beam 
is derived along with its associated boundary conditions based 
on Eringen’s nonlocal elasticity theory, considering nonlinear 
and linear curvature-deformation relations of the nano-beam. 
Then, the governing PDE and BCs are solved using the finite 
difference method. The effects of variation of the nonlocal pa-
rameter, load parameter, linear and non-linear stiffness and 
shear stiffness coefficients of the nonlinear Winkler-Pasternak 
foundation on the deflection (elastic curve of the deformed 
nonlocal thin nano-beam), bending slope angle and final length 
of the nano-beam are investigated. Also, the obtained results 
of numerical solution with two different assumptions including 
nonlinear and linear curvature of the nano-beam are discussed. 

 
2. Mathematical modeling 

An isotropic and homogeneous elastic Euler-Bernoulli canti-
lever nano-beam of length L, cross-section A, second moment 
inertia of area I, density ρ and elastic modulus E is shown in 
Fig. 1. The nano-beam is placed on a nonlinear Winkler-
Pasternak elastic foundation with linear stiffness of k1, nonlin-
ear stiffness of k2 and foundation shear stiffness of ks under 
uniformly distributed lateral load of q(x) = q. The x and y coor-

dinate axes are considered along the longitudinal direction of 
the neutral axis of the nano-beam and the transverse direction 
of it (perpendicular to the longitudinal direction), respectively. 
After bending deformation of the nano-beam under the lateral 
loading, the deflection at each point of coordinates (x, y) on the 
neutral axis of the nano-beam with respect to to the nano-
beam’s undeformed state is indicated with w. 

In the beam’s bending analysis the bending slope angle φ 
can be expressed as: 

 
,tan xwϕ = . (1) 

 
In which in the classical linear and small deflection theory of 

thin beams, the bending slope angle is defined by φ = ∂w/∂x. 
From the geometry of deformed beam, one gets 

 
cos / , sin /dx ds dy dsϕ ϕ= =  (2) 
 

where s is the arc length along the elastic curve of the de-
formed beam measured from any point of the deformed beam, 
in which 

 
2

,1 xds dx w= + . (3) 

 
The curvature κ (equal to the reciprocal of the radius of cur-

vature) of a planar curve is defined as the rate of slope angle of 
the curve with respect to the distance along the curve [22]. 
Therefore, the curvature κ along the curve length s of the neu-
tral axis of the deformed elastic beam in the xy plane is defined 
as [20, 23], 

 
, ,( ) (sin ) coss ssκ ϕ ϕ ϕ= = , (4) 

 
using Eqs. (1) and (2), noting that the relevant above-
mentioned explanations and after doing some mathematics, Eq. 
(4) yields to [23] 

 
2

, ,( ) / (1 )xx xs w wκ = + . (5) 
 
Eq. (5) represents the nonlinear relationship for the planar 

curvature-deformation of a thin beam in the large deflection 
condition along the elastic curve of the deformed beam. Be-
cause of the assumption of large deflection for the elastic beam 
bending analysis, the square term of a slope angle (i.e., w,x

2) 

 
Fig. 1. A thin cantilever nano-beam on a nonlinear Winkler-Pasternak 
elastic foundation and under uniformly distributed lateral load. 
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may not be regarded as negligible quantity in comparison with 
unity, whereas in the classical linear and small deflection the-
ory of thin beams it is conventionally ignored. The one-
dimensional constitutive relation for the Euler-Bernoulli beam 
based on the Eringen’s nonlocal elasticity theory, for instance 
in direction s along the deformed elastic curve of the beam, is 
expressed as follows [3, 4, 20] 

 
2

0 ,( )s s ss se a Eσ σ ε− =  (6) 
 

where σs and εs are the normal stress and normal strain along 
the elastic curve of the deformed beam, respectively, a is the 
internal characteristic length and e0 is a scalar constant. Also, 
in the above equations the subscripts denoted by comma indi-
cate the partial derivative of the term with respect to the vari-
able comes after that; for instance (  ),s means ( ) / s∂ ∂ . Eq. 
(6) can be used if the bending of the beam is also stated in the 
system of coordinates xy. The strain ε in Eq. (6) depends on 
the theory used to analyze the nano-beam. Now, Eq. (6) can 
be rewritten as [5, 23, 24, 25] 

 
2

0 ,( )x x xx x xe a E EIσ σ ε κ− = = − , (7) 
 

in which σx is the axial stress, εx is the axial strain and κx is the 
curvature of the neutral axis of the deformed elastic beam. 
Based on the relations for the distribution of the shear force 
V(x) and bending moment M(x) at any cross section of dis-
tance x from the free end of beam where V(x) = [M(x)],x in the 
nonlinear and linear curvature conditions, respectively, one can 
obtain [3, 4]: 

 
3

1 2 ,
, , 2

,

( )
,

1
s xx

x xx

x

q x K w K w K w
V M

w

− − +
= =

+
 (8a) 

3
, , 1 2 ,( )x xx s xxV M q x K w K w K w= = − − +  (8b) 

 
Based on Eq. (5) for an Euler-Bernoulli beam in the nonlinear 

and linear curvature conditions, respectively, we get, 
 

2
, ,/ (1 )x xx xw wκ = + , (9a) 

,x xxwκ = . (9b) 
 
From Eq. (7) in the nonlinear and linear curvature conditions, 

respectively, it is obtained that [4, 19] 
 

,2
0 , 2

,

( )
1

xx
xx

x

w
M e a M EI

w
− = −

+
, (10a) 

2
0 , ,( ) xx xxM e a M EIw− = − . (10b) 

 
Doing twice differentiation of Eq. (10) with respect to x, in the 

nonlinear/linear curvature condition it is obtained that 
 

2
, 0 , , ,( ) ( )xx xx xx x xxM e a M EIκ− = − . (11) 

Using Eq. (9) into Eq. (11) in the nonlinear and linear curva-
ture conditions, respectively, one gets 

 
,2

, 0 , 2
,

3 2 3
, , , , , ,

2 2 2 3 2 2
, , ,

( ) [
1

6 8 2
]

(1 ) (1 ) (1 )

xxxx
xx xxxx

x

xxx xx x xx x xx

x x x

w
M e a M EI

w

w w w w w w
w w w

− = −
+

− + −
+ + +

,
 (12a) 

2
, 0 , , ,( ) ( )xx xx xx xxxxM e a M EIw− = − . (12b) 

 
By substituting M,xx from Eq. (8) into Eq. (12), in the nonlinear 

and linear curvature conditions, respectively, we have 
 

3
1 2 ,

2
,

3
1 2 ,2

0 ,2
,

3 2 3
, , , , , , ,

2 2 2 2 3 2 2
, , , ,

( )

1

( )
( ) [ ]

1

6 8 2
[ ]
1 (1 ) (1 ) (1 )

s xx

x

s xx
xx

x

xxxx xxx xx x xx x xx

x x x x

q x K w K w K w

w

q x K w K w K w
e a

w

w w w w w w w
EI

w w w w

− − +

+

− − +
− =

+

− − + −
+ + + +

,

 (13a) 

3
1 2 ,

2 3
0 1 2 , , ,

( )

( ) [ ( ) ] .
s xx

s xx xx xxxx

q x K w K w K w

e a q x K w K w K w EIw

− − +

− − − + = −
 (13b) 

 
Then by expanding the differentiation of Eq. (13) in the 

nonlinear and linear curvature conditions, respectively, yields to 
 

2 1/2 3
, 1 2 ,

2 2 1/2 2 2
0 , , 1 , 2 , 2 ,

2 3/2 2
, , , , , 1 , ,

2 2
2 , , , , ,

2 2 2 3 3
, 1 , 2 , ,

(1 ) ( )

( ) {(1 ) ( 3 6

) (1 ) [( 2 2

6 2 )

(

x s xx

x xx xx xx x

s xxxx x x xx x xx x

xx x s xxx xx x

xx xx xx s xx

w q K w K w K w

e a w q K w K w w K w w

K w w q w w K w w

K w w w K w w w

qw K w w K w w k w

−

−

−

+ − + + −

+ + − − −

+ + + − +

+ −

+ − + + − − , ,

3
1 , , 2 , , , , ,

2 5/2 2 2 2 2
, , , 1 , ,

2 2 3 3 2
2 , , , ,

2 1 2 2
, , , , , ,

2 3 3 2 2 2
, , , ,

)]

(1 ) (

)}

[(1 ) ( ) (1 ) (6 )

(1 ) (8 ) (1 ) (2

xxx x

xxx x xxx x s xxx xx x

x xx x xx x

xx x s xx x

x xxxx x xxx xx x

x xx x x

qw w

K w w w K w w w K w w w

w qw w K w w w

K w w w K w w

EI w w w w w w

w w w w

−

− −

− −

+ + −

+ + −

− +

− + − +

+ + − + 3
, )] 0xxw = ,

(14a) 

3 2
1 2 , 0 , 1 ,

2 2
2 , 2 , , ,

( ) [

6 3 ] 0 .
s xx xx xx

x xx s xxxx xxxx

q K w K w K w e a q K w

K ww K w w K w EIw

− + + − + −

− − + − =
 (14b) 

 
Eqs. (14a) and (14b) are the nonlinear PDEs governing the 

large deflection of an Euler-Bernoulli nano-beam in conjecture 
with the nonlinear and linear curvatures, respectively, on the 
nonlinear Winkler-Pasternak elastic foundation based on the 
Eringen’s nonlocal elasticity theory. The following dimen-
sionless quantities are defined: 

 
3

20

4 6 2
1 2

1 2

, , ( ) ,

, , .s
s

x w e a qL
L L L EI
K L K L K Lk k k
EI EI EI

η ξ β α= = = =

= = =

,
 (15) 
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The nondimensional PDEs governing the large deflection of 
the cantilever nano-beam in the nonlinear and linear curvature 
conditions, respectively, can be obtained as follows: 

 
2 1/2 3 2 1/2

, 1 2 , ,

2
, 1 , 2 , 2 , ,

2 3/2 2 2 2
, , , , 1 , , 2 , ,

2 5/2 2 2 2 2
, , , , , , 1 , ,

2

(1 ) ( ) (1 )

.( 6 3 )

(1 ) ( 2 2 6

2 ) (1 ) (

s

s

s

k k k

k k k k

k k

k k

k

η ηη η

ηη ηη ηη ηη ηηηη

η η η ηη η ηη η ηη

η ηη ηηη η η ηη η ηη

ξ α ξ ξ ξ β ξ

α ξ ξξ ξ ξ ξ

β ξ α ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ β ξ αξ ξ ξξ ξ

ξ

− −

−

−

+ − + + − + +

− − − +

+ + − + +

− + + −

− 3 2 2 2 3 2 3/2 2 2
, , , , , , 1 ,

3 2 3 3
2 , , , , 1 , , 2 , ,

2 1 2 2
, , , , , , , , ,

2 3 3 2 2
, , , ,

) (1 ) (

) [(1 ) (1 ) (6 )

(1 ) (8 ) (1 )

s

s

s

k k

k k k k

k

η ηη η ηη η ηη ηη

ηη ηη ηηη η ηηη η ηηη η

ηηη ηη η η ηηηη η ηηη ηη η

η ηη η η

ξ ξ ξ ξ β ξ αξ ξξ

ξ ξ ξ αξ ξ ξξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

−

− −

− −

+ + + − +

+ − − + +

− − + − +

+ + − + 2 3
,(2 )] 0ηηξ = ,

 (16a) 

3
1 2 , , 1 ,

2 2
2 , 2 , , ,3 6 0.

s

s

k k k k

k k k
ηη ηη ηη

ηη η ηηηη ηηηη

α ξ ξ ξ βα β ξ

β ξ ξ β ξξ β ξ ξ

− + + − − −

− − + − =
 (16b) 

 
The first to the fourth boundary conditions (BCs) of the canti-

lever beam are expressed as follows: 
 

, 0
(0) 0, 0, 0, 0x x L x Lx

w w M V
= ==

= = = = . (17) 
 
Using the relation Eq. (15), the non-dimensional forms of the 

first and second BCs are written as follows: 
 

, 0
( 0) 0, 0η η

ξ η ξ
=

= = = . (18) 

 
Substituting Eq. (8) into Eq. (10) in the nonlinear and linear 

curvature conditions, respectively, yields  
 

3
1 2 , ,2

0 22
,

( )
( ) [ ]

11
s xx xx

xx

q x K w K w K w EIw
M e a

ww

− − +
= −

++
, (19a) 

2 3
0 1 2 , ,( ) [ ( ) ]s xx xxM e a q x K w K w K w EIw= − − + − .

 
(19b) 

 
The third BC in the nonlinear and linear curvature conditions, 

respectively can be expressed as: 
 

2
0

, 2 2
0

3 2
1 2 ,

( )0
[ ( ) 1 ]

. [ ( ) ] ( 1 ) ,

xxx L x L
s x x L

x L x x L

e aM w
EI e a K w

q x K w K w w

= =
=

= =

−= ⇒ =
− +

− + + +

 (20a) 

2
30

, 1 22
0

0

( ) [ ( ) ] ,
[ ( ) ]

x L

xx x Lx L
s

M

e aw q x K w K w
EI K e a

=

==

= ⇒

−= − + +
−

 
(20b) 

 
The nondimensional form of the third BC in the nonlinear and 

linear curvature conditions, respectively, is written as: 
 

, 1 2
, 1

3 2
1 2 , 1

( ).
1 1 ( )

[ (1) (1)]. 1 ( )

sk

k k

ηη η
η η

η η

βξ
β ξ

α ξ ξ ξ

=

=

=

−=
− +

− + + + ,

 (21a) 

3
, 1 21

( )[ (1) (1)]
1 s

k k
kηη η

βξ α ξ ξ
β=

−= − + +
−

. (21b) 

 
By doing once differentiation of the third BC in Eq. (20) with 

respect to the x, the fourth boundary condition in the nonlinear 
and linear curvature conditions, respectively, can be obtained 
as: 

 

,

2 2
, 0 , 1 , 2 , ,

2 3
, 1 2 ,

2
, , ,

0 0

( ) ( 3 )

. 1 ( ) ( [ ]

.[ ] ) / ( 1 ( ) )

xx L x L

xxx x x x s xxx x Lx L

x s xx x Lx L

x xx x L x x L

V M

w e a q K w K w w K w

w EI q K w K w K w

w w w

= =

==

==

= =

= ⇒ = ⇒

= − + + −

+ + − + + −

+ ,

 
(22a) 

,

2 2
0 , 1 , 2 ,

2
0 ,

0 0

( ) ( 3 )

[ ( ) ]( ) .

xx L x L

x x x x L

s xxx x L

V M

e a q K w K w w

EI K e a w

= =

=
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The nondimensional form of the fourth BC in the nonlinear 

and linear curvature conditions, respectively, can be written as: 
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 (23a) 
2 2

, , 1 , 2 ,1 1 1
( )[ ( ) 3 (1)( ) ]
1 s

k k
kηηη η η ηη η η

βξ α ξ ξ ξ
β= = =

−= − + +
−

. (23b) 

 
Note that the third and fourth BCs are functions in terms of ξ, 

ξ,η and ξ,ηη at η = 1, in which these are the unknown quantities 
of the problem to be calculated. The nonlinear governing PDE 
(i.e., Eq. (16)) along with its associated nonlinear BCs (i.e., Eqs. 
(18), (21) and (23)) are numerically solved by applying finite 
difference method (FDM) using the Maple mathematical pro-
graming software. 

 
2.1 The length change of a nonlocal cantilever 

nano-beam in the large deflection condition 

In Fig. 2, the deformed state of a cantilever beam subjected 
to a uniformly distributed lateral load is shown where the posi-
tion of deflected free end of the cantilever beam in the horizon-
tal and vertical direction is denoted with δx and δy, respectively. 
Concerning the nonlinear deflection of the beam, the effect of 
length change of the beam on the deflection cannot be ne-
glected. The generated bending moment can be expressed as: 

 
, ,( ) (sin ) coss s xM s EI EI EIϕ ϕ ϕ κ= − = − = −  (24) 
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where the generated bending moment M(s) at any cross sec-
tion of the beam along the elastic curve of the beam due to 
general applied lateral load f(x) can be obtained as follows [2]: 

 
( ) ( ).M s f x xds= ∫ . (25) 

 
The dimensionless parameter ψ is defined as: 
 

/s Lψ = . (26) 
 
To obtain the location of any point on the deformed elastic 

curve of the beam in terms of the x-y coordinates, after solving 
the differential equations governing the bending large deflec-
tion of the beam and its associated BCs ((i.e., Eqs. (16), (18), 
(21) and (23)), the following relations are defined: 

 
1

0 0

1

0 0

cos cos /

sin sin /

final

final

L

final

L

final

x ds d x L

y ds d y L

ϕ η ϕ ψ

ϕ ξ ϕ ψ

= ⇒ = =

= − ⇒ = − =

∫ ∫
∫ ∫

,
 (27) 

 
where Lfinal is the final length of the beam after its deformation. 
According to Eq. (10), it can be obtained that [10, 20] 
 

,0 0 0x ss s s
M EI EIκ ϕ

= = =
= − = − . (28) 

 
The shear force V caused by the applied lateral load f is ex-

pressed as: 
 

, .s hV M f a= =  (29) 
 

where ah is the horizontal length of the beam after deformation. 
According to Eqs. (28) and (29), it can be obtained that 
 

, 0ss s
h

EI
a

f
ϕ

=
−

= . (30) 

 
In the nondimensional form one can find 

, ,0 0

t t

a
ψψ ηηηψ η

ϕ ξ

α α
= =

−
= =  (31) 

 
where αt is the nondimensional applied lateral load on the 
beam and a  is the dimensionless horizontal length of the 
beam in which its value is equal to the value of η at the free 
end of the beam. Therefore, 

 

0 cos
finala

final
daL

ϕ
= ∫ , (32) 

 
in which finala  can be calculated from Eq. (31) and finalL (= 
Lfinal/L) is the nondimensional ratio of the final length of the 
beam after deformation with respect to the initial length of the 
beam. 

 
2.2 Method of solution of governing PDEs 

The non-dimensional governing linear/nonlinear PDE of the 
nonlocal cantilever nano-beam and its associated BCs are 
numerically solved using written codes in the mathematical 
programing environment of the Maple software by employing 
the finite difference method (FDM). The following step by step 
sequence of the numerical solution algorithm has been em-
ployed: 

Step 1 - Solving numerically the nonlinear PDE of the thin 
cantilever nano-beam (Eq. (16)) to obtain the values of ξ, dξ/dη 
and d2ξ/dη2 at η = 1. 

Step 2 - Putting the obtained values of ξ, dξ/dη and d2ξ/dη2 at 
η = 1 at step 1 into the third and fourth BCs relations (Eqs. (21) 
and (23)) solving numerically the nonlinear PDE of the thin 
cantilever nano-beam on the nonlinear Winkler-Pasternak elas-
tic foundation. 

Step 3 - Obtaining the new values of ξ, dξ/dη and d2ξ/dη2 at η 
= 1 (solving numerically the new obtained governing PDE at 
the step 2) to improve and modify the values of the third and 
fourth BCs at the step 2, accordingly. 

Step 4 - Comparing the modified obtained values for the third 
and fourth BCs at step 3 with the desired accuracy (acceptable 
relative error criteria). If the difference between the obtained 
values for the third and fourth BCs at steps 2 and 3 meets the 
desired accuracy condition, then the solution is satisfactory and 
will be finished. Otherwise, the algorithm at the step 1 will be 
again repeated to obtain the desired numerical accuracy (for 
example, if the relative error between the steps 2 and 3 is less 
than the value of desired accuracy 0.001, the outcome can be 
considered satisfactory). 

 
3. Results and discussion 

In this section, at first the validity of obtained results is exam-
ined through comparison with those of the available reference. 
Then, the numerical obtained results are presented for the 
deflection and bending slope angle for the nonlocal cantilever 

 
 
Fig. 2. The effect of length change of a thin nonlocal cantilever nano-beam 
considering the bending large deflection under uniformly distributed lateral 
load (in which is always perpendicular to the initial longitudinal direction of 
the beam) and on a nonlinear Winkler-Pasternak elastic foundation. 
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nano-beam, considering linear/nonlinear curvature under a 
uniformly distributed lateral load and on a nonlinear Winkler-
Pasternak foundation with linear/nonlinear elastic stiffnesses 
and shear stiffness coefficients. Moreover, the effect of changes 
of different parameters on the beam bending behavior are stud-
ied comprehensively. 

 
3.1 Validation of results 

To verify the validity of the obtained results, a specific case of 
a classical thin beam (i.e., β = 0) is considered with no founda-
tion (k1 = k2 = ks = 0). In this case the differential equation gov-
erning the beam bending deflection is 

 
,( ) [ ( )] 0ηηηηα η ξ η+ = , (33) 

 
and the BCs for the beam are 

 

, , ,0 0 1 1
( ) [ ( )] [ ] [ ( )] 0η ηη ηηηη η η η

ξ η ξ η ξ ξ η
= = = =

= = = = . (34) 

 
In Table 1, the obtained results in the present study are 

compared with the results reported in the Ref. [4] for a classical 
thin beam without foundation. As can be seen, there is a good 
agreement between the results of the present study and results 
in the Ref. [4] in the case that the loading coefficient is small 
(i.e., α = 1). However, by increasing the loading coefficient (i.e., 
α = 3), the behavior of the system tends toward nonlinear trend 
and the difference between the results of two studies is notice-
able. In this case, as expected the nonlinear deformation the-
ory is required. Since the nature of the problem is nonlinear if 
small deflection theory of the beam is used, the obtained re-
sults will be greater than the actual values using nonlinear 
large deflection theory. 

 
3.2 Analysis results for the large deflection of 

the nonlocal cantilever nano-beam 

In Table 2, the obtained results of the numerical solution for 
a cantilever nano-beam with no foundation using the nonlinear 
deformation theory for different values of the load coefficient α 
(α = 1, 2, 3) and different values of the nonlocal parameter β 
are presented. Based on Table 2, it can be observed that for 

the cantilever nano-beam with the same value of the loading 
coefficient α, the deflection of free end of the nano-beam (ξend) 
and the dimensionless ratio of final length of the nano-beam 

finalL  (= Lfinal/L) decrease with increasing the nonlocal coeffi-
cient of β. On the other hand, as the value of the nonlocal pa-
rameter β increases, the value of ηend increases. It means that 
the position where the maximum deflection (ξend) occurs tends 
to move toward the free end of the nano-beam. The reason 
can be explained by considering the nonlinear curvature (which 
means an extensional condition of the neutral axis of the beam 
is prevailing). The stiffness of the structure increases and, on 
the other hand, an increase in the nonlocal parameter of β also 
increases the bending stiffness of the beam under lateral load-
ing. The result of the interaction of these two phenomena in the 
structure is more evident by increasing the lateral loading value 
α and increasing the value of nonlocal parameter β. Note that 
in the nonlinear classical theories for thin beams, nonlinear 
effects of extension (stretching) emerge by considering the 
nonlinear strain-displacement relation (such as von-Karman 
strain relations for small finite deformations). From Table 2, it is 
also observed that at the same value of nonlocal parameter β, 
the free end deflection (ξend) of the nano-beam and its associ-
ated dimensionless final length finalL  increases with increas-
ing the loading coefficient α. 

In Table 3, the obtained results of the numerical solution for a 
cantilever nano-beam with no foundation are presented using 
the linear curvature assumption for the load coefficients α = 1, 
2, 3 and different values of the nonlocal parameter β. Accord-
ing to Table 3, for the cantilever nano-beam with the same 
value of the loading coefficient α, by increasing the nonlocal 
coefficient of β, the deflection at the free end of the beam (ξend) 
decreases. Also, it is observed that by increasing the value of 
nonlocal parameter, the value of ηend remains constant as that 
of the initial length of the nano-beam. It means that the position 
of the free end of the deflected nano-beam (ηend) where the 
maximum deflection occurs (ξend) has not changed. It can be 
explained that when the relationship of linear curvature in the 
bending equation of the beam is considered, the nonlinear 
bending stretching of the nano-beam neutral axis is not prevail-

Table 1. Comparison of the results obtained from the large deflection of the 
beam by considering the nonlinear curvature in the present study and Ref.
[4] for α = 1 and 3, β = 0, k1 = k2 = ks = 0. 
 

Characteristics  
of the nano-beam 

and loading 
Quantity 

Results of  
the present 

study 

Results based 
on Ref. [4] 

method 

Relative 
difference in 

percent 

η 0.9913 1.0 [4] 0 
α = 1, β = 0 

ξ -0.1243 -0.1250 [4] 1 
η 0.9346 1.0 7 

α = 3, β = 0 
ξ -0.3602 -0.625 42 

 

Table 2. Numerical results for large deflection of the nano-beam without 
foundation considering nonlinear curvature in the present study for α = 1, 2, 
3 and different values of β. 
 

α β ηend ξend finalL  
0 0.9913 -0.1243 1.0091 

0.05 0.9948 -0.0998 1.0057 1 

0.1 0.9976 -0.0752 1.0032 

0 0.9677 -0.2451 1.0350 
0.05 0.9798 -0.1991 1.0226 2 

0.1 0.9904 -0.1516 1.0128 

0 0.9346 -0.3602 1.0742 
0.05 0.9573 -0.2970 1.0497 3 

0.1 0.9844 -0.2335 1.0301 
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ing and thus there is linear deformation in the structure with in 
extensional condition. Also, by increasing the nonlocal parame-
ter β, the bending stiffness of the structure under lateral loading 
increases. It is observed that for the same values of nonlocal 
parameter β, the deflection of the free end (ξend) of the nano-
beam and its associated dimensionless final length ( finalL ) 
increase by increasing the loading coefficient α. 

In Table 4, the obtained results of numerical solution for a 
cantilever nano-beam are presented using the linear curvature 
assumption for the load coefficients of α = 1, 3 and different 
values of the nonlocal parameter β with k2 = ks = 0 and different 
linear stiffness coefficient of the foundation k1. According to 
Table 4, for any specified values of loading coefficient α and 
nonlocal parameter β, the free end deflection of the deformed 
cantilever nano-beam (ξend) and its associated dimensionless 
final length ( finalL ) are reduced with increasing the linear elastic 
stiffness of the foundation k1. It is also observed that for any 
specified values of loading coefficient α and nonlocal parame-
ter β, the value of ηend (i.e., the position at the free end of the 
deflected nano-beam in which the maximum deflection (ξend) 
occurs) is reduced with increasing the linear stiffness coeffi-

cient of the foundation. The reason is that the augmentation of 
the structure stiffness occurs in the presence of linear stiffness 
of the foundation. 

In Table 5, the results of the numerical solution for a cantile-
ver nano-beam are presented using the linear curvature as-
sumption for k1 = ks = 0 and different values of α, β, and k2. 
According to Table 5, for the cantilever nano-beam at the same 
values of the loading coefficient α and nonlocal parameter β, 
the deflection of the free end of nano-beam (ξend) and its asso-
ciated dimensionless final length ( finalL ) is reduced by increas-
ing the nonlinear elastic stiffness of the foundation k2. Also, it is 
observed that by increasing the nonlinear elastic stiffness of 
foundation k2, the value of ηend is reduced. The reason is that 
the augmentation of the structure stiffness occurs in the pres-
ence of nonlinear elastic stiffness of the foundation. 

In Figs. 3(a) and (b), the variation of the bending angle φ of 
elastic curve of the classical cantilever Euler-Bernoulli beam 
(i.e., β = 0) without foundation (k1 = k2 = ks = 0) is indicated ver-
sus the dimensionless longitudinal distance η by considering 
the nonlinear and linear curvatures in deformation of the beam 
for α = 1 and α = 3, respectively. It is observed that by consid-

Table 3. Numerical results for deflected nano-beam without foundation 
considering linear curvature in the present study for α = 1, 2, 3 and different 
values of β. 
 

α β ηend ξend finalL  
0 1.0000 -0.1250 1.0092 

0.05 1.0000 -0.1000 1.0057 1 

0.1 1.0000 -0.0750 1.0031 

0 1.0000 -0.2500 1.0363 

0.05 1.0000 -0.2000 1.0227 2 

0.1 1.0000 -0.1500 1.0125 

0 1.0000 -0.3750 1.0795 

0.05 1.0000 -0.3000 1.0504 3 

0.1 1.0000 -0.2250 1.0279 

 
Table 4. Numerical results for deflected cantilever nano-beam considering 
linear curvature in the present study for k2 = ks = 0 and different values of 
and α, β and k1. 
 

α β k1 ηend ξend finalL  
0 1.0000 -0.1250 1.0092 

10 0.7218 -0.0684 1.0027 0 

20 0.6133 -0.0468 1.0013 
0 1.0000 -0.1000 1.0057 

10 0.7909 -0.0714 1.0030 

1 

0.05 

20 0.6792 -0.0584 1.0020 
0 1.0000 -0.3750 1.0795 

10 0.7218 -0.2052 1.0243 0 

20 0.6133 -0.1403 1.0113 
0 1.0000 -0.3000 1.0504 

10 0.7915 -0.2196 1.0277 

3 

0.05 

20 0.6769 -0.1859 1.0203 

Table 5. Numerical results for deflected cantilever nano-beam considering 
the linear curvature in the present study for k1 = ks = 0 and different values 
of α, β and k2. 
 

α β k2 ηend ξend finalL  
0 1.0000 -0.1250 1.0092 
10 0.9964 -0.1241 1.0091 0 

20 0.9929 -0.1232 1.0089 

0 1.0000 -0.1000 1.0057 
10 0.9997 -0.0998 1.0057 

1 

0.05 

20 0.9994 -0.0996 1.0057 

0 1.0000 -0.3750 1.0795 
10 0.9719 -0.3533 1.0708 0 

20 0.9511 -0.3372 1.0647 

0 1.0000 -0.3000 1.0504 
10 0.9924 -0.2969 1.0494 

3 

0.05 

20 0.9859 -0.2944 1.0486 

 

 
 (a) (b) 
 
Fig. 3. Variation of the bending angle φ of the classical cantilever Euler-
Bernoulli beam versus the dimensionless longitudinal distance η without 
foundation (k1 = k2 = ks = 0): (a) α = 1; (b) α = 3, ------ linear curvature 
(dashed line), ____ nonlinear curvature (solid line). 
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ering the nonlinear curvature condition, the predicted slope 
(bending slope angle φ) value is less than the one obtained by 
considering the linear curvature condition. It is also observed 
that by increasing the loading coefficient α, difference between 
the obtained results by linear and nonlinear analysis for the 
bending angle increases. Moreover, the bending slope angle φ 
increases by increasing the loading coefficient α, no matter 
what type of linear or nonlinear curvature assumption is em-
ployed. 

In Figs. 4(a) and (b), the variation of the large deflection ξ of 
the classical cantilever Euler-Bernoulli beam versus the dimen-
sionless longitudinal distance η for β = 0 and k1 = k2 = ks = 0 is 
shown by considering the nonlinear and linear curvatures in 
deformation of the beam for α = 1 and α = 3, respectively. It 
can be seen that by considering the nonlinear curvature, the 
predicted deflection values are less than the values obtained 
by considering linear curvature. It is also observed that the 
vertical deflection of the beam increases by increasing the 
loading coefficient α, regardless of type of linear or nonlinear 
curvature assumption is used. 

In Figs. 5(a) and (b), the variation of bending slope angle φ 
of the Euler-Bernoulli cantilever nano-beam versus the dimen-
sionless longitudinal distance η with α = 3 and k1 = k2 = ks = 0 is 
depicted, considering nonlinear and linear curvature for β = 

0.05 and β = 0.1, respectively. It is observed that by consider-
ing the nonlinear curvature, the predicted value for bending 
slope angle φ for β = 0.05 is almost less than the value ob-
tained by considering linear curvature, and a reverse trend 
prevails for β = 0.1. From the comparison of the Figs. 5(a) and 
(b), it is also observed that the bending angle φ decreases by 
increasing the nonlocal parameter β at any specified value of η, 
regardless of the type of linear or nonlinear curvature is used 
for deformation in the numerical solution of the deflection 
analysis of the nano-beam.  

In Figs. 6(a) and (b), the variation of the deflection ξ and 
bending angle φ of the Euler-Bernoulli cantilever nano-beam 
versus the dimensionless longitudinal distance η is shown, 
respectively, for α = 1 and k1 = k2 = ks = 0 and different values of 
nonlocal parameter β considering the nonlinear curvature. 
From Fig. 6(a), it is observed that by increasing the value of 
nonlocal parameter β, the absolute value of deflection ξ of the 
nano-beam decreases. Also, the reduction trend of the beam 
deflection is increasing in the high values of nonlocal parame-
ter. From Fig. 6(b), it is observed that the absolute value of the 
bending angle φ along the length of the nano-beam η is incre-
mental for β = 0 and 0.01. For the subsequent values of β (β = 
0.02, 0.05, 0.1, 0.15), the absolute value of bending angle φ 
has an increasing trend up to longitudinal distances of η = 0.8, 
η = 0.65, η = 0.55 and η = 0.45, respectively, and then the 
absolute value of bending angle decreases afterwards. 

In Figs. 7(a) and (b), the variation of the deflection ξ and 
bending angle φ of the Euler-Bernoulli cantilever nano-beam 
versus the dimensionless longitudinal distance η is illustrated, 
respectively, for α = 3 and k1 = k2 = ks = 0 and different values of 
the nonlocal parameter β (β = 0, 0.01, 0.05, 0.1, 0.15), consid-
ering the nonlinear curvature in the large deflection analysis of 
the nano-beam. From Fig. 7(a), it is observed that by increas-
ing the nonlocal parameter β, the absolute value of the vertical 
deflection ξ of the nano-beam decreases. From Fig. 7(b), for β 
= 0, 0.01 the absolute value of the bending angle φ increases 
with increasing the dimensionless longitudinal distance η. But, 

 

 
 (a) (b) 
 
Fig. 4. Variation of the vertical deflection ξ of the classical cantilever Euler-
Bernoulli versus the dimensionless longitudinal distance η using linear and 
nonlinear curvature for β = 0 and k1 = k2 = ks = 0: (a) α = 1; (b) α = 3, ------
linear curvature (dashed line), ____ nonlinear curvature (solid line). 

 

 
 (a) (b) 
 
Fig. 5. Variation of the bending angle φ of the cantilever nano-beam versus 
the dimensionless longitudinal distance η based on nonlocal elasticity 
theory with α = 3 and k1 = k2 = ks = 0: (a) β = 0.05; (b) β = 0.1, ------ linear 
curvature (dashed line), ____ nonlinear curvature (solid line). 

 

 
 (a) (b) 
 
Fig. 6. (a) Variation of the vertical deflection ξ of the cantilever nano-beam 
vs. the dimensionless longitudinal distance η; (b) variation of the bending 
angle φ vs. the longitudinal distance η, based on the nonlocal elasticity 
theory considering the nonlinear curvature for α = 1 and k1 = k2 = ks = 0 and 
different values of the nonlocal parameter β = 0, 0.01, 0.02, 0.05, 0.1 and 
0.15. 
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for β = 0.05, 0.1, 0.15, the absolute value of bending angle φ 
has an increasing trend up to longitudinal distances of η = 0.65, 
η = 0.55 and η = 0.45, respectively, and then the bending slope 
angle φ decreases afterwards. 

In Fig. 8, the variation of deflection ξ of the cantilever Euler-
Bernoulli nano-beam is plotted versus the dimensionless longi-
tudinal distance η based on the nonlocal elasticity theory for α 
= 1, β = 0.05, k2 = ks = 0 and different values of the linear stiff-
ness coefficient k1 (k1 = 0, 2, 5, 10, 20) of the foundation con-
sidering linear curvature in the large deflection analysis of the 
nano-beam. It can be seen that the absolute value of deflection 
ξ decreases by increasing the value of linear stiffness coeffi-
cient of the foundation. 

In Figs. 9(a) and (b), the variation of deflection ξ of the Euler-
Bernoulli cantilever nano-beam versus the dimensionless longi-
tudinal distance η is illustrated for α = 3, k2 = ks = 0 and different 
values of linear stiffness coefficient of the foundation k1 = 0, 2, 5, 
10, 20 based on the classical theory (β = 0) and nonlocal elas-
ticity theory (β = 0.05), respectively, considering the linear cur-
vature in the large deflection analysis of the nano-beam. It can 
be seen that the absolute value of deflection ξ decreases by 
increasing the linear stiffness coefficient of the foundation. Also, 

from this figure it can be observed that by increasing the nonlo-
cal parameter β, in the same values of linear stiffness coeffi-
cient of the foundation, lower values of deflection are obtained. 
Moreover, from comparison of Figs. 8 and 9(b), for the same 
values of linear stiffness coefficient of the foundation k1, the 
deflection increases by increasing the loading coefficient α. 

In Figs. 10(a) and (b), the variation of deflection ξ of the 
Euler-Bernoulli cantilever nano-beam is shown versus the di-
mensionless longitudinal distance η based on the classical 
theory (β = 0) and nonlocal elasticity theory (β = 0.05), respec-
tively, with α = 3, k1 = ks = 0 and different values of the nonlin-
ear stiffness coefficient of the foundation k2 = 0, 5, 10, 20, 50, 
100, considering linear curvature in the large deflection analy-
sis of the nano-beam. From this figure it can be seen that the 
absolute value of deflection ξ decreases by increasing the 
nonlinear stiffness coefficient of the foundation. Moreover, by 
comparing Figs. 10(a) and (b) it is observed that by increasing 
the nonlocal parameter β, for the same values of nonlinear 
stiffness coefficient of the foundation, lower absolute values of 
deflection ξ are obtained. 

In Fig. 11, the variation of the vertical deflection ξ of the canti-
lever Euler-Bernoulli nano-beam is shown versus the dimen-
sionless longitudinal distance η based on the nonlocal elasticity 

 
 (a) (b) 
 
Fig. 7. (a) Variation of the vertical deflection of the nano-beam versus the 
dimensionless longitudinal distance; (b) variation of the bending angle 
versus the longitudinal distance based on the nonlocal elasticity theory 
considering the nonlinear curvature for α = 3 and k1 = k2 = ks = 0 and differ-
ent values of the nonlocal parameter β = 0, 0.01, 0.05, 0.1 and 0.15. 

 

 
 
Fig. 8. Variation of the vertical deflection ξ of the nao-beam versus the 
dimensionless longitudinal distance η based on the nonlocal elasticity 
theory considering the linear curvature for α = 1, β = 0.05, k2 = ks = 0 and 
different values of the linear stiffness coefficient of the foundation k1 = 0, 2, 
5, 10 and 20. 

 

 
 (a) (b) 
 
Fig. 9. Variation of the vertical deflection ξ of the cantilever nano-beam
versus the dimensionless longitudinal distance η based on classical and 
nonlocal elasticity theories considering the linear curvature for α = 3, k2 = ks

= 0 and different values of the linear stiffness coefficient of the foundation k1

= 0, 2, 5, 10, 20: (a) β = 0; (b) β = 0.05. 

 

 
 (a) (b) 
 
Fig. 10. Variation of the vertical deflection ξ of the cantilever nano-beam 
versus dimensionless longitudinal distance η based on the classical and 
nonlocal elasticity theory considering the linear curvature for α = 3, k1 = ks =
0 and different values of the nonlinear stiffness coefficient of the foundation
k2 = 0, 5, 10, 20, 50, 100: (a) β = 0; (b) β = 0.05. 
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theory for α = 1, β = 0.05, k1 = k2 = 0 and different values of the 
shear stiffness coefficient of the foundation ks = 0, 2, 5, 10 by 
considering the nonlinear curvature in the large deflection 
analysis of the nano-beam. From this figure it can be seen that 
the absolute value of deflection decreases by increasing the 
shear stiffness coefficient of the foundation. 

In Fig. 12, the variation of the deflection ξ of the Euler-
Bernoulli cantilever nano-beam versus the dimensionless longi-
tudinal distance η is shown based on the nonlocal elasticity 
theory for α = 1, k1 = 100, k2 = 50, ks = 20 and different values of 
the nonlocal parameter β = 0, 0.01, 0.02, 0.03, 0.04, 0.05 by 
considering the nonlinear curvature in the large deflection 
analysis of the nano- beam. It can be seen that the absolute 
value of deflection decreases by increasing the nonlocal pa-
rameter. 

In Fig. 13, the variation of the deflection ξ of the cantilever 
Euler-Bernoulli nano-beam versus the dimensionless longitudi-
nal distance η is shown based on the nonlocal elasticity theory 
for α = 1, k1 = 100, k2 = 50, ks = 20 and different values of the 
nonlocal parameter β = 0, 0.01, 0.02 by considering the linear 

curvature. It can be seen that the absolute value of deflection 
decreases by increasing the nonlocal parameter. 

 
4. Conclusions 

The differential equation and boundary conditions governing 
the large bending deflection of a cantilever nano-beam under a 
uniformly distributed external load (always perpendicular to the 
longitudinal axis of undeformed beam) and on the nonlinear 
Winkler-Pasternak elastic foundation were derived using Erin-
gen’s nonlocal elasticity and considering the linear and nonlin-
ear curvatures relations. The governing differential equations 
were numerically solved by the finite difference algorithm. The 
accuracy of the results was confirmed by comparing with the 
results reported in the literature. The effects of the nonlocal 
parameter, the loading coefficient and linear/nonlinear and 
shear stiffnesses of the foundation were investigated on the 
deflection, bending slope angle and the final length change of 
the nano-beam. A summary of the obtained results is as fol-
lows: 

1) In a constant value of the loading coefficient, the bending 
angle of the free end of the cantilever nano-beam, the vertical 
deflection and the final length of the nano-beam decrease with 
increasing the nonlocal parameter. 

2) The vertical deflection values and the bending slope angle 
of the nano-beam increase by increasing the loading parameter. 

3) The effect of nonlocal parameter on the bending behavior 
(nonlinear large deflection) of the nano-beam is more signifi-
cant at higher values of the applied uniformly distributed lateral 
load. 

4) In a constant value of the loading parameter and nonlocal 
parameter, by increasing the linear and nonlinear elastic stiff-
ness, and the shear stiffness coefficients of the foundation, the 
deflection and final length of the nano-beam are reduced. But 
the reduction rate of the deflection considering the nonlinear 
stiffness of the foundation is lower than the ones obtained con-
sidering the linear elastic and shear stiffness coefficients of the 
foundation. 

 
 
Fig. 11. Variation of the vertical deflection ξ of the cantilever nano-beam 
versus the dimensionless longitudinal distance η based on the nonlocal 
elasticity theory considering the nonlinear curvature for α = 1, β = 0.05, k1 =
k2 = 0 and different values of the shear stiffness coefficient of the foundation 
ks = 0, 2, 5 and 10. 

 

 
 
Fig. 12. Variation of the vertical deflection ξ of the cantilever nano-beam
versus the dimensionless longitudinal distance η based on the nonlocal 
elasticity theory considering the nonlinear curvature at α = 1, k1 = 100, k2 =
50, ks = 20 and different values of the nonlocal parameter β = 0, 0.01, 0.02, 
0.03, 0.04 and 0.05. 

 

 
 
Fig. 13. Variation of the vertical deflection ξ of the cantilever nano-beam in 
terms of the dimensionless longitudinal distance η based on the nonlocal 
elasticity theory considering the linear curvature for α = 1, k1 = 100, k2 = 50, 
ks = 20 and different values of nonlocal parameter β = 0, 0.01 and 0.02. 
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Nomenclature------------------------------------------------------------------ 

k1 : Linear stiffness coefficient of the foundation 
k2 : Nonlinear stiffness coefficient of the foundation 
ks : Shear stiffness coefficient of the foundation 
β : Nonlocal parameter of cantilever nano-beam 
α : Dimensionless load parameter 
φ : Bending slope angle of cantilever nano-beam 
η : Dimensionless longitudinal distance of cantilever nano-

beam 
ξ : Dimensionless nonlinear deflection of cantilever nano-

beam 
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