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Abstract  Neural network models can quickly and accurately predict the aerodynamic
performance of wind turbine airfoils based on existing data, but the construction of a large
number of learning samples requires a high upfront time cost. To address this problem, a gen-
eralized regression neural network (GRNN) model of wind turbine airfoils based on a small 
sample set is established, and an optimal design method for airfoil aerodynamic performance
under multiple constraints is proposed. This method is used to improve the prediction accuracy
of the model in the optimization process and to solve the problem of insufficient learning 
caused by poor training data. Based on the established optimal design model, we applied the
particle swarm optimization (PSO) algorithm to complete the optimal design of NACA44XX
series airfoils and obtained the optimized airfoils with maximum relative thicknesses of 15 %, 
18 %, 21 %, and 24 %, respectively. The aerodynamic characteristics of the new airfoils were
analyzed in comparison with the baseline airfoils. The results show that the aerodynamic prop-
erties of the new airfoils are significantly improved, with the maximum lift coefficient and maxi-
mum lift-to-drag ratio increasing by up to 16.93 % and 10.41 %. Moreover, the optimization 
efficiency of the method is much higher than that of the traditional one. Thus, it was verified that 
the method is feasible and effective. 

 
1. Introduction   

The airfoil is the basic element that makes up the blade, and its design and optimization re-
quire solving complex high-dimensional nonlinear hydrodynamic problems. Computational fluid 
dynamics (CFD) method has become the main tool for aerodynamic design at this stage with 
its high accuracy and confidence [1, 2]. However, its computational cycle is long and usually 
consumes huge computer computing power. 

In recent years, machine learning and neural network technologies have developed signifi-
cantly, and data-driven modeling methods tend to be popular. Therefore, some scholars have 
applied them to flow field prediction and airfoil optimization design. Zhu et al. [3] developed a 
direct construction of a purely data-driven algebraic model of turbulence through radial basis 
function neural networks, which successfully realized the coupled solution between the model 
and the N-S equations, opening the way for artificial intelligence methods to solve engineering 
turbulence problems. Oztiryaki et al. [4] simplified the prediction of lift coefficients using shallow 
neural networks and utilized them for dynamic optimization design. Kutz [5] and Ling [6] con-
structed a tensor-based neural network model of Reynolds stress anisotropy to portray the 
vortex structure in secondary flows and separation phenomena in wave walls. Zahn [7] pro-
posed a nonlinear system reduced-order modeling technology based on long and short time 
memory neural network, which was used to predict the aerodynamics of transonic chattering. 
Balla [8] established a multi-output neural network by taking the pressure of airfoil fixed points 
as the output. Compared with the orthogonal decomposition method, this method can achieve 
higher precision prediction. Deng et al. [9] proposed a vortex intelligent extraction algorithm
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based on a convolutional neural network, which has a low 
false-positive rate and balances performance and accuracy 
well. Sekar et al. [10] proposed a deep neural network method 
for the rapid prediction of airfoil flow field. A mapping model 
with airfoil parameters, Reynolds number, and angle of attack 
as input and flow field distribution as output was constructed. 
This method has high computational efficiency and generaliza-
tion ability for different airfoil profiles. 

These studies show the great potential of neural networks in 
dealing with high-dimensional nonlinear hydrodynamics prob-
lems, but also confirm that the performance of their models 
depends heavily on learning samples. However, obtaining a 
large number of high-precision samples requires high time cost, 
and less training data will lead to inadequate network learning.  

Generalized regression neural network (GRNN) provides a 
feasible idea for the solution of this problem. Compared with 
other neural networks, GRNN has stronger nonlinear mapping 
ability and faster learning speed, which can achieve accurate 
prediction under a small sample set. Lyu et al. [11] used gen-
eralized regression neural network to predict the aerodynamic 
coefficients of rotor blades. With the training of a small number 
of samples, the lift coefficient, drag coefficient and torque coef-
ficient of the airfoil were accurately predicted with shape pa-
rameters and flow conditions as inputs, which greatly saved the 
time of constructing a complex sample database. Sun et al. 
[12] compared the prediction values of BP (back propagation, 
BP) neural network, RBF (radial basis function, RBF) neural 
network and GRNN neural network for airfoil aerodynamic 
parameters with the same number of samples. The analysis 
results show that the predicted values of GRNN are more ac-
curate. 

In the optimization design process, the situation is more 
complicated. Wang et al. [13] established the inverse design 
model of airfoil lift robustness based on GRNN, and output the 
airfoil shape that meets the requirements with lift value as the 
design target. The data dimension is reduced by principal 
component analysis (PCA) to reduce the number of database 
samples. Kharal and Saleem [14] described the airfoils by 
Bezier-Parsec parameterization method, used GRNN to predict 
the shape parameters of the optimal airfoils under a given 
pressure coefficient distribution, and combined with genetic 
algorithm to successfully achieve the optimal design of two 
kinds of original airfoils. However, the above optimization de-
sign is to solve nonlinear problems with uncertain boundaries, 
and its well-posedness problem is complex and depends heav-
ily on the experience of designers [15]. 

In contrast, the direct numerical optimization method of airfoil 
shapes is more intuitive and simple. The extreme values of the 
objective functions (such as maximum lift coefficient and max-
imum lift-drag ratio) are sought by continuously modifying the 
airfoil shape to obtain and compare intermediate airfoils, and 
the optimal airfoil shape is finally obtained [16]. However, dur-
ing direct numerical optimization, a large amount of noisy data 
usually appears, which has a huge impact on the prediction 
accuracy of neural networks [17]. In particular, neural network 

prediction models based on small sample sets are not suffi-
ciently learned because of their small training sets. The neural 
network model prediction is more accurate when the input con-
forms to the pattern of the sample database data; conversely, 
when the input does not meet the pattern of the sample data-
base data, it produces a large error. In the optimization process, 
the variation of the neural network input is usually random, so a 
considerable part of noisy data will be input into the neural 
network model, which is prone to misjudgment and thus inter-
feres with the whole optimization process. 

In view of this problem and combined with the practice of air-
foil design, this paper proposes to use multi-constraint condi-
tions to limit the input variables of neural network to make them 
meet certain rules, so as to improve the prediction accuracy 
and solve the problem of insufficient learning caused by train-
ing based on small sample sets. Furthermore, it is combined 
with particle swarm optimization algorithm for direct numerical 
optimization to obtain better performance of wind turbine airfoil 
series. 

 
2. Modeling of airfoils by GRNN 
2.1 GRNN model 

Generalized regression neural network is a kind of radial ba-
sis function neural network. It is based on non-parametric ker-
nel regression and takes sample data as a posteriori condition 
to solve the connection probability density function between 
independent variables and dependent variables by observation 
samples, so as to calculate the regression value of the latter to 
the former [18]. GRNN consists of the following four layers. 

(1) Input layer: The number of neurons in the input layer is 
equal to the dimensions of the input vector, which is transmit-
ted to the mode layer without any transformation. 

(2) Pattern layer: Each neuron corresponds to the training 
sample individually, with Gaussian function as the activation 
kernel function, and the input vector is transformed in the mode 
layer as follows. 
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Where, X is the network input vector; Xi is the learning sam-

ple corresponding to the i-th neuron; σ is a smooth factor. 
(3) Summation layer: This layer contains two types of sum-

mation neurons, one of which sums all outputs of the pattern 
layer arithmetically. The connection weight of each neuron in 
the pattern layer is 1, and the transfer function is as follows. 
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In the other category, all outputs of the pattern layer are 

weighted summation. The connection weight between the neu-
ron of the i-th pattern layer and neuron of the j-th summation 
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layer is the j-th element in the output sample Yi of the i-th. 
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(4) Output layer: The output of the j-th neuron corresponds to 

the j-th element of the predicted result Y(X). 
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The basic structure of GRNN is shown in Fig. 1. 

 
2.2 Construction of airfoil sample database 

The performance of neural network depends heavily on 
learning samples. For airfoil design, sample database should 
cover a wide range of shape changes. The NACA four-digit 
airfoil series is the first low-speed airfoil series with high lift and 
low drag established in the U.S. The airfoil can be accurately 
described by three shape parameters: Tmax, Cmax, and xC [19]. 
The equations are as follows (assuming chord is 1).  
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Where, yc is the coordinate of airfoil mean line, mm; yt is half 
of the airfoil thickness, mm; x and y are the two-dimensional 
coordinates of the airfoil, mm. 

The equations can be calculated to obtain the two-
dimensional discrete coordinate points of the airfoil with the 
specified shape. However, when there are fewer discrete 
points, the distribution of points is more scattered and the de-
scription is not accurate at the leading edge. Therefore, this 
experiment proposes to add an improved equation for the dis-
tribution of airfoil points. 
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With the above transformation, the discrete points at the 

middle of the airfoil, where the curvature changes gently, can 
be brought closer to the curved leading edge while the total 
number of discrete points remains unchanged. Fig. 2 shows 
the distribution of discrete points in each segment of the chord 
length direction when the total number of discrete points is 69. 

In this paper, the improved equation above was used to ob-
tain the airfoil data when the three shape parameters changed 
uniformly in a large range, which was taken as the learning 
sample. The geometric parameters of NACA four-digit airfoils 
are defined in a larger range of reasonable airfoils as shown in 
Eq. (9). 
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where Tmax is taken once for every 2 % variation. The three 
groups of parameters were arbitrarily combined and substituted 
into the improved NACA four-digit airfoil equations to obtain 
126 groups of airfoil coordinates as sample airfoils. 

 
2.3 CST parameterization of airfoils 

Neural networks are essentially mappings between inputs 
and outputs. If the airfoil discrete points are directly used as 

 
 
Fig. 1. The structure of GRNN. 
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Fig. 2. Comparison of the distribution of discrete points. 
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input variables, it will lead to problems such as high dimen-
sionality [20], high computational effort as well as overfitting. 
Therefore, airfoil parameterization is essential. Class func-
tion/shape function transformation (CST) parameterization 
uses a class function to control the type of airfoil represented, 
and the specific airfoil is uniquely determined by the coeffi-
cients of the shape function. This method has the characteris-
tics of fewer design variables, wide design space and smooth 
airfoil generation [21]. Its basic formula is: 
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Where, x is the abscissa of airfoil points, mm; y is the ordi-

nate of the airfoil points on the upper and lower airfoils, mm; N1 
and N2 are the determinative coefficients of class functions. 
When they are 0.5 and 1 respectively, they represent the airfoil 
with round leading edge and sharp trailing edge. ia  is the 
shape function coefficient; n is the order of the shape function. 

In this paper, the CST method was chosen to parameterize 
the airfoil. In order to satisfy the accuracy criteria and reduce 
the amount of coefficient variables, the upper and lower airfoils 
were fitted with a polynomial of the 5th order type function, and 
a total of 12 coefficient variables were used to parameterize the 
airfoil. The airfoils were all pointed trailing edge and ∆z was set 
to 0. In order to test the accuracy of the above parameteriza-
tion method, NACA4421 (Tmax = 21 %) and NACA4424 (Tmax = 
24 %) in NACA airfoil series and S8035 (Tmax = 17.5 %) and 
S8038 (Tmax = 13 %) in NREL-S wind airfoil series were se-
lected for fitting test, the fitting residuals are shown in Fig. 3. 
The values are less than 8×10-4, which fulfilled the wind tunnel 
test demand. Therefore, the parameterization method can 
accurately represent the airfoils. 

 
2.4 Training of neural network models 

(1) The airfoils in the sample database were parametrized to 

obtain 126 sets of 12-dimensional coefficient vectors, which 
were normalized to [0, 1] according to the dimensions and 
served as the input part of the GRNN. The XFOIL program was 
used to quickly calculate the CL/CD for an airfoil located at an 
angle of attack of 5° under specific operating conditions ( Re = 
1.6×10-6, Ma = 0.37), which was used as the output part of the 
neural network. Excluding the non-converging airfoils, a total of 
124 sets of data were generated. 

(2) The 124 sets of airfoil data in the sample library were di-
vided, of which 90 % (112 sets of data) was used as the train-
ing set, and 10 % (12 sets of data) was used as the test set. In 
order to examine the performance of the trained neural network 
model more comprehensively and reliably, the selected test set 
of airfoils should be representative and cover the whole sample 
space as much as possible. However, the difference of Tmax will 
lead to a large difference in the CL/CD of the airfoils. Therefore, 
stratified sampling was carried out for the whole sample library 
based on Tmax. Meanwhile, over-thick or over-thin airfoils (Tmax 
> 25 % or Tmax < 15 %) need to be designed separately, and 
the testing in this area can be reduced appropriately.  

According to the above criteria, 2 samples were randomly 
selected from each of the airfoils with Tmax of 16 %, 18 %, 20 %, 
22 % and 24 %, and 1 sample was randomly selected from 
each of the airfoils with Tmax of 14 % and 16 %, making a total 
of 12 airfoils to form the test set, and the remaining airfoils were 
used as the training set. In this way, the sampling ratio within 
each stratum in the main test area is basically consistent with 
the overall sampling ratio, and the data bias caused by com-
pletely random sampling is avoided. 

Finally, the best smoothing factor is determined by cross val-
idation, and the generalized regression network model is es-
tablished. The goodness of fit (R2), mean square error (MSE) 
and mean absolute percentage error (MAPE) were used to 
evaluate the neural network model. The evaluation formula is 
as follows. 
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The training and testing results of the neural network are 

shown in Fig. 4 and Table 1. The performance of the training 
set is satisfactory in all aspects while the MSE of the test set is 
relatively large due to the wide output domain and the few out-
liers. However, the R2 of the test set is close to 1, the predicted 
value is in line with the global fitting trend, the MAPE is small, 
and the mean fitting degree of local individuals is high. There-
fore, the neural network model has a superior predictive ability 

 
 
Fig. 3. Fitting residuals of the four airfoils. 

 



 Journal of Mechanical Science and Technology 37 (1) 2023  DOI 10.1007/s12206-022-1223-2 
 
 

 
221 

as well as a strong generalization ability. 

 
3. Airfoil optimization with multi-constraints 
3.1 Limitations of direct optimization 

In the optimization process, the curve composed of design 
variables may not conform to the airfoil characteristics and 
become a set of noise data. Neural networks trained on small 
sample sets cannot accurately predict such data, which will 
interfere with the whole optimization process. The constructed 
GRNN model combined with intelligent algorithm was used for 
multiple optimization designs, and the results are shown in Fig. 
5. The optimized result is disturbed by noise data and has 
more fluctuations in the lower airfoil profile, which does not 
conform to the airfoil pattern and has poor actual aerodynamic 
performance. 

In addition, further quantitative analysis of the optimization 
process was carried out. After CST parameterization of airfoils 

in the sample library, the coefficient range and dispersion de-
gree of the upper and lower airfoils are shown in Fig. 6. The 
dispersion degree of the coefficients is evaluated by the vari-
ance, which is calculated as shown in Eq. (16). 

 

2 2

1

1 ( )
n

i ave
i

s x x
n =

= −∑  (16) 

 
where, s2 is the variance, n is the number of samples, xi is the 
CST coefficients, and xave is the mean of the CST coefficients. 

The analysis shows that the upper and lower airfoils corre-
spond to 6 coefficient variables each, and the overall range of 
variation of the coefficient variables at the corresponding posi-
tions does not differ significantly. But in the lower airfoil, the 
range of variation between adjacent coefficients is more differ-
ent, and there are positive and negative transformations in the 
values of the 2nd, 4th, 5th and 6th coefficient variable, which 
means that the profile of the lower airfoil is more complex. 
Meanwhile, the variance of each coefficient variable in the 
upper and lower airfoil was compared. In contrast to the upper 
airfoil, the variance of the lower airfoil is smaller, which means 
that the change in the coefficient variables of the lower airfoil is 
more slight. Under the training of small sample, the neural net-
work model is not sufficiently learned, and the aerodynamic 
performance changes caused by the slight adjustment of coef-

Table 1. Performance evaluation of neural network prediction. 
 

 Spread Sample 
size R2 MSE MAPE/%

Training samples 0.26 112 0.9992 0.9415 0.16 

Test samples 0.26 12 0.9926 9.8771 0.19 
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Fig. 4. Training and testing results of neural network. 
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Fig. 6. Range and dispersion of coefficients. 
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ficient variables in the optimization process cannot be accu-
rately predicted. 

 
3.2 Presentation of multiple constraints 

To avoid the limitations in direct optimization and without in-
creasing the number of training samples, the following multiple 
constraints are proposed directly from the above optimization 
results for the design variables to shift the model input vectors 
towards certain laws, avoid the appearance of noisy data and 
deformed airfoils, and improve the prediction accuracy of the 
neural network. 

(1) Profile constraints on concavity and convexity 
The fluctuation of airfoil profile is the change of curve bend-

ing direction, which is reflected as the variation of curve con-
vexity in function. Therefore, the second-order derivative of the 
airfoil expression can be used to limit the number of profile 
concavity transformations. For a single flank surface, the num-
ber of changes should not exceed 1. This paper deals with an 
airfoil with rounded leading edge and sharp trailing edge, 
where N1 takes the value of 0.5, N2 takes the value of 1, and 
∆z is set to 0. Eqs. (10)-(12) are used to find the first-order and 
second-order derivatives of x, the combination simplifies as 
follows. 
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Where, x is the abscissa of airfoil points, mm; y'(x) and y''(x) 

are the first-order and second-order derivative values of the 
airfoil curve at each point, respectively; ia  is the shape func-
tion coefficient, namely the optimization design variable; n is 
the order of the shape function. 

The value of the second-order derivative function is calcu-
lated for each x to determine its positivity and negativity. The 
amount of calculation depends on the number of two-
dimensional discrete points of the airfoils, so reducing the total 
number of discrete points by improving the equation in the 
previous section can effectively decrease the amount of calcu-
lation. When the second-order derivative of the airfoil satisfies 
the following inequality, it can be considered that the concave-
ness and convexness of the airfoil profile changes once. 

 
1''( ) ''( ) 0   1,2,..., 1i iy x y x i n+⋅ < = −  (19) 

 
Where n is the total number of discrete points in the unilat-

eral airfoil. 
(2) Airfoil area constraints 
Airfoil strength is directly related to area. Ref. [22] proves that 

when the main shape parameters remain unchanged, the 
change in airfoil area is mainly accomplished by the variation of 
the trailing edge profile of the lower airfoil surface, and the 
pressure distribution of the airfoil also varies accordingly. When 
the airfoil area becomes smaller, the trailing edge curve of the 
lower airfoil surface is concave inward. At a lower Reynolds 
number and a smaller flow rate, the pressure differential resis-
tance of the airfoil increases due to the larger curved trailing 
edge, resulting in an increase in the force and a decrease in 
the strength. At the same time, the small airfoil surface area is 
not conducive to the setting and installation of the internal sup-
port structure of the airfoil, which also reduces the strength, 
and it is difficult to cooperate with other airfoils. Hence, a con-
straint on the airfoil area is needed. The area of the airfoil after 
optimization should not be less than that before optimization. 
The calculation formula is as follows. 
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(3) Shape-parameter constraints 
According to the Refs. [23, 24], and combined with the airfoil 

optimization requirements in this paper, the shape parameter 
constraints are imposed. The Tmax of the airfoil should be kept 
constant in front and behind the optimization. Considering the 
structural strength of the airfoil, the xC of the optimized airfoil 
should be varied within a reasonable range. Therefore, the 
following shape parameter constraints are imposed. 

 
max max( ) ( )Optimized BasicT T=  (21) 

0.2 0.5Cx≤ ≤  (22) 
 
At the meantime, the optimized airfoils should have superior 

aerodynamic performance over a wide range of angles of at-
tack, and the stall angle should be shifted back as much as 
possible. It is related to the xT and the size of the Rle. For the 
CST parameterization method, the Rle is calculated as follows. 

 
2

0 / 2leR a=  (23) 
 
Therefore, the following additional constraints are required. 
 
0.24 0.32Tx≤ ≤  (24) 

0 Optimized 0 Basic( ) ( )a a≥ . (25) 

 
3.3 Particle swarm optimization algorithms 

This paper uses particle swarm optimization (PSO), an evo-
lutionary computational technique based on collaboration and 
information sharing among individuals in a population to find 
the optimal solution, in combination with a neural network 
model for wind turbine airfoil design optimization. PSO has a 
simple structure, is easy to implement and requires few pa-
rameters to be adjusted.  
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PSO focuses on two properties of particles: position and ve-
locity. The position is a candidate solution of the corresponding 
optimization problem, and the velocity corresponds to the stride 
size of the particle when searching in the design space. For a 
particle population with a certain size, each particle will ran-
domly obtain an initial position and initial velocity, which will be 
updated iteratively according to Eq. (26). 

 
1 1 best 2 2 best( ) ( )i i i i i i

i i i

v w v c r p x c r g x
x x v

= × + × × − + × × −⎧
⎨ = +⎩

 (26) 

 
where v is the particle velocity; x is the particle position; w is 
the inertia weight; c1 and c2 are learning factors; pbest is the 
position of individual optimal particle, that is, the particle corre-
sponding to the historical optimal solution of a single particle; 
gbest is the position of global optimal particle, that is, the particle 
corresponding to the optimal solution of the whole population; 
r1 and r2 are random numbers between 0 and 1. 

It can be observed that vi in Eq. (26) consists of three parts. 
The first is the inertial part, which represents the tendency of 
the particle to maintain its previous velocity. The second is the 
cognition part, which reflects the memory of the particle to its 
own historical experience, and represents the tendency of the 
particle to approach to its own historical best position. The third 
is the social part, which reflects the group historical experience 
of cooperation and knowledge sharing among particles, and 
represents the tendency of particles to approach the historical 
best position of the group [25, 26]. The fitness value can be 
calculated according to the particle position to evaluate the 
merits of the solution. The fitness of the particle after updating 
the position is compared with the individual optimal particle and 
the global optimal particle. Then the above two kinds of parti-
cles are optimally updated until the maximum number of itera-
tions or convergence is reached. Finally, the optimal solution 
satisfying the conditions is obtained. 

 
3.4 Airfoil optimization process 

In order to demonstrate the feasibility of the above theory, a 
GRNN model was established based on a small sample set. 
And multiple constraints were used to limit the input variables 
of neural network in conjunction with the actual situation of 
airfoil design. NACA44XX airfoil series with Tmax of 15 %, 18 %, 
21 % and 24 % were further optimized by using single-
objective PSO algorithm. It took the 12-dimensional CST 
parameterization coefficients as design variables under specific 
working conditions ( Re = 1.6×10-6, Ma = 0.37), aiming at the 
maximum CL/CD at 5° angle of attack, to obtain a wind turbine 
airfoil series with better performance. The specific optimization 
process is as follows. 

(1) Set the basic parameters. According to the number of de-
sign variables, the particle dimension was determined as 12. 
When the population size was set to 80, a large population can 
avoid the algorithm from falling into local optimum, and improve 
the particle search accuracy and optimization efficiency. The 

maximum number of iterations was 100. Adaptive learning 
factors and inertia weights were used, and their calculation 
formula is as follows [27, 28]. 

 
( ) ( )

( ) ( )
( ) ( )

ini end max max end

1 min max min max

2 max max min max

/

/

/

w w w I i I w

c c c c i I

c c c c i I

⎧ = − × − +
⎪

= + − ×⎨
⎪ = − − ×⎩

 (27) 

 
Where, i is the number of current iterations, Imax is the maxi-

mum number of iterations, cmin and cmax are the extreme values 
of learning factors, wini and wend are the initial and end values of 
inertia weight. With reference to Ref. [27], wini and wend were set 
at 0.9 and 0.4, respectively. In the early stage of optimization, 
w is large and particles search the whole space at a faster 
speed. In the later stage, w is small to improve the local search 
ability. According to Ref. [28], cmin and cmax are 0.9 and 2.4, 
respectively. In the early stage, c1 is smaller and c2 is larger to 
maintain population diversity and avoid local optimality. In the 
later stage, the two are reversed to improve the convergence 
speed of optimization. 

(2) Determine the range of design variables. The optimized 
airfoil thicknesses are 15 %, 18 %, 21 %, and 24 %, respec-
tively. Using the CST parameterization coefficients of the air-
foils with Tmax equal to or close to these four thicknesses in the 
sample library as the boundary values, the four design variable 
ranges were initially obtained by taking the concatenation sets. 

(3) Initialize populations. The particles were initialized ran-
domly in the range of design variables with thickness as a con-
straint. To improve the computational efficiency, the CST pa-
rameterization coefficients of NACA4415, NACA4418, NACA 
4421, and NACA4424 were passed into the optimization model 
as a set of initial particles, respectively. And, the initial fitness 
value corresponding to each particle was calculated. 
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Fig. 7. Flow chart of airfoil optimization. 
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(4) Update and iterate. With the maximum CL/CD as the ob-
jective function, the fitness value was calculated by the neural 
network model. The profile constraints on concavity and con-
vexity, airfoil area constraints, and shape-parameter con-
straints were incorporated into the fitness function in the form 
of penalty function. The velocity and position of the particles 
were continuously updated and the optimization was iterated 
until the best fitness was achieved. The flow chart of airfoil 
optimization is shown in Fig. 7. 

 
4. Results and discussions 

The iterative convergence results of particle swarm optimiza-
tion algorithm are shown in Fig. 8. The fitness values of the 
four airfoils with different thickness converged to 136.8, 109.9, 
83.9 and 53.6 after 64, 61, 53 and 80 iterations, respectively. 

By substituting the global optimal particle as coefficient vec-
tor back into the CST parameterization equation, the two-
dimensional discrete point coordinates of the optimized airfoils 
can be obtained. The shape parameters of the optimized air-
foils with four thicknesses are shown in Table 2. Compared to 
the basic airfoils of the NACA44XX series, the Cmax of the four 
optimized airfoils is increased. The xC of the optimized airfoil 
with 15 % thickness moves backward, while the xT remains 
unchanged. For optimized airfoils with Tmax of 18 % and 21 % 
respectively, the positions of Cmax and Tmax move forward. The 
xC of the optimized airfoil with 24 % thickness is slightly shifted 
back and the xT remains the same. Fig. 9 shows the compari-
son of the airfoils prior to optimization and after optimization. 

To verify the effectiveness of multiple constraints, an airfoil 
with 15 % thickness was taken as an example and optimized 
under different constraints, as shown in Fig. 10. Airfoil-1, airfoil-
2, and airfoil-3 are the optimization results of only shape-
parameter constraint, shape-parameter constraint with area 

constraint, and shape-parameter constraint with profile con-
straint, respectively. Optimized-15 % is the optimization result 
under multiple constraints. The coordinate data of four airfoils 
were imported into XFOIL. Under the condition of Re = 

 

0 0.2 0.4 0.6 0.8 1
x / c

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

y 
/ c

NACA 4415
Optimized-15%

 
(a) 

 

0 0.2 0.4 0.6 0.8 1
x / c

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

y 
/ c

NACA 4418
Optimized-18%

 
(b) 

 

0 0.2 0.4 0.6 0.8 1
x / c

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

y 
/ c

NACA 4421
Optimized-21%

 
(c) 

 

0 0.2 0.4 0.6 0.8 1
x / c

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

y 
/ c

NACA 4424
Optimized-24%

 
(d) 

 
Fig. 9. Shape comparison between basic and optimized airfoil. 

 
Table 2. Shape parameters of optimized airfoil with different thickness. 
 

Optimized airfoils Cmax/% xC/% Tmax/% xT/% 

Optimized-15 % 4.31 43.5 15.09 30.4 

Optimized-18 % 4.57 37.3 18.09 28.6 
Optimized-21 % 4.99 33.4 21.10 28.7 

Optimized-24 % 5.02 40.5 24.10 30.1 
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Fig. 8. Iterative process of particle swarm. 
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1600000 and Ma = 0.37, their CL/CD at 5° angle of attack was 
calculated and compared with the predicted value of neural 
network. The prediction error was shown in Table 3. The error 
between the predicted value and the calculated value of the 
neural network is the smallest, only 0.59 %. The optimization 
effect is better, so multi-constraint conditions can be consid-
ered to be effective. 

Meanwhile, the CL/CD of four optimized airfoils at 5° angle of 
attack was calculated and compared with the predicted value 
of neural network under the same working conditions, as 
shown in Table 4. The prediction errors of the four optimized 
airfoils are all less than 1 %, which indicates that the optimiza-
tion results have high reliability. 

The aerodynamic performance of basic airfoils and optimized 
airfoils were compared by XFOIL. When Re = 1600000 and Ma 
= 0.37, the aerodynamic characteristics of four airfoils with 
different thicknesses are analyzed at the angle of attack from 
0° to 20°, and the following results are obtained. 

Fig. 11 shows the comparison of aerodynamic characteris-
tics before and after optimization of the airfoil with 15 % thick-

ness. NACA4415 has a maximum CL of 1.4412, appearing at 
an angle of attack of 13.9°. The maximum CL for optimized 
airfoil is 1.4600, which occurs at 14.5° angle of attack. Com-
pared with the original airfoil, the maximum CL of the optimized 
airfoil is increased by 1.30 %, and the stall angle of attack is 
shifted back. In the range of 0-10° angle of attack, the CL of the 
optimized airfoil is greatly improved compared with the original 
airfoil, with the maximum increase of 21.07 %. The maximum 
value of CL/CD for the NACA4415 is 126.06, with an optimum 
angle of attack of 4.7°. The optimized airfoil has a maximum 
CL/CD of 138.54, which also occurs at 4.7°. Compared with the 
original airfoil, the maximum CL/CD of the optimized airfoil is 
increased by 9.90 %. Therefore, the new airfoil has better aero-
dynamic performance. 

The comparison of aerodynamic characteristics between ba-
sic airfoil and optimized airfoil with 18 % thickness is shown in 
Fig. 12. The NACA4418 has a maximum CL of 1.4254, appear-
ing at an angle of attack of 13°. Compared with NACA4418, 
the CL of the optimized airfoil is greatly improved. Its maximum 
CL is 1.6273, the lift range is 14.16 %, and the best angle of 
attack is 12.9°. The optimized airfoil consistently outperforms 
the basic airfoil in the 0-15° angle of attack. In terms of CL/CD, 
the maximum value of NACA4418 is 107.59, which occurs at 
5.7°. The maximum value of the optimized airfoil is 111.32, 
appearing at 5.6°, which is 3.47 % higher than the original air-
foil. Within 6° angle of attack, the CL/CD of the new airfoil is 

Table 3. Comparison of prediction errors under different constraints. 
 

Airfoil Angle of 
attack/° 

Calculated 
CL/CD 

Predicted 
CL/CD 

Prediction 
error/% 

Optimized-15 % 5 137.6 136.8 0.59 

Airfoil-1 5 128.7 145.9 13.36 
Airfoil-2 5 121.0 142.3 17.60 

Airfoil-3 5 124.2 137.1 10.38 

 
Table 4. Comparison of prediction errors for optimized airfoils with different 
thicknesses. 
 

Airfoil Angle of 
attack/° 

Predicted 
CL/CD 

Calculated 
CL/CD 

Prediction 
error/% 

Optimized-15 % 5 136.7978 137.6117 0.5914 

Optimized-18 % 5 109.9128 110.3496 0.3958 
Optimized-21 % 5 83.9753 83.5045 0.5638 

Optimized-24 % 5 53.6070 54.0551 0.8290 
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Fig. 10. Comparison of optimized airfoil shapes under different constraints.
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Fig. 11. Comparison of aerodynamic characteristics between basic airfoil 
and optimized airfoil with 15 % thickness. 
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similar to that of the original airfoil, but at 6-14° angle of attack, 
the CL/CD of the optimized airfoil is much higher than that of the 
original airfoil. 

For the airfoil with Tmax of 21 %, the CL is increased from 
1.3985 to 1.6352 after optimization, with an improvement of 
16.93 %. Stall angle of attack moved back from 14.2° to 14.5°. 
The CL of the optimized airfoil is always better than that of the 
basic airfoil in the whole calculated angle of attack. The maxi-
mum CL/CD of the optimized airfoil is increased from 85.21 to 
93.79, which is 10.07 % higher than that of the original airfoil. 
The optimal angle of attack is 7.1°. Moreover, when the angle 
of attack exceeds 4°, the CL/CD of the optimized airfoil in-

creases more significantly, as shown in Fig. 13. 
The NACA4424 is typically placed near the middle of the 

blade to improve structural strength by increasing thickness, 
but this also sacrifices part of the aerodynamic performance. 
The maximum CL of NACA4424 is 1.3070 and the maximum 
CL/CD is 63.88, which is relatively poor compared to a thin air-
foil. Through optimization, the new airfoil has a maximum CL of 
1.4799 at 14.2° angle of attack, a maximum CL/CD of 70.53, 
and an optimum angle of attack of 5.8°, which are superior by 
13.23 % and 10.41 %, respectively. The CL of the optimized 
airfoil is always better than that of NACA4424, as shown in Fig. 
14. In general, the new airfoil obtained after optimization has a 
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Fig. 12. Comparison of aerodynamic characteristics between basic airfoil and optimized airfoil with 18 % thickness. 
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Fig. 13. Comparison of aerodynamic characteristics between basic airfoil and optimized airfoil with 21 % thickness. 
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large enhancement in aerodynamic performance, especially in 
the range of 0-8° angle of attack. 

Finally, the calculation times for optimizing four airfoils with 
different thickness using the above method were recorded, 
which are 62.4443 s, 62.2643 s, 62.3087 s and 64.0657 s, 
respectively. The optimization time was no more than 70 sec-
onds, which was greatly shortened compared with using XFOIL 
program or CFD methods. Therefore, the method can achieve 
rapid optimization of wind turbine airfoil design while ensuring 
prediction accuracy. 

 
5. Conclusions 

1) NACA four-digit airfoil equations are improved by adding 
an additional expression of airfoil discrete points. The validity of 
the improved formula is verified, which can achieve a more 
reasonable and accurate description of airfoil while reducing 
the number of points, and effectively reduce the amount of 
calculation in the later optimization. 

2) A generalized regression neural network model is estab-
lished based on small sample sets. The limitations of applying 
the small sample set neural network model for airfoil aerody-
namic optimization design are analyzed, and multiple con-
straints on the airfoil design variables are proposed in a tar-
geted manner. Optimization by multi-constraint conditions can 
avoid the appearance of misaligned curves and improve the 
accuracy of neural network model prediction. 

3) Based on the small-sample neural network model under 
multi-constraints, the optimized design of the airfoil series was 
combined with the particle swarm optimization algorithm, and 
the new airfoils with Tmax of 15 %, 18 %, 21 %, and 24 % 
were obtained. Compared with the basic airfoils, the maximum 
CL of the optimized airfoil increased by 1.30 %, 14.16 %, 
16.93 % and 13.23 %, and the maximum CL/CD increased by 
9.90 %, 3.47 %, 10.07 % and 10.41 %, respectively, with sig-
nificant improvement in aerodynamic performance. Moreover, 
the optimization efficiency of this method is much higher than 
that of traditional methods. Therefore, the effectiveness of the 
method is verified. 
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Nomenclature------------------------------------------------------------------ 

Cmax  : Maximum relative camber 
Tmax : Maximum relative thickness 
xC  : Maximum relative camber position 
xT  : Maximum relative thickness position 

Rle  : Leading edge radius 
Re  : Reynolds number 
Ma : Mach number 
CL  : Lift coefficient 
CD : Drag coefficient 
CL/CD  : Lift-drag ratio 
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