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Abstract  The FEM-based topology optimization repeats usually finite element analyses
many times to converge to the stopping criteria. If the near-optimal topology data are available 
in advance at the beginning of an optimization process, the iterative computation could be 
greatly reduced. In an effort to obtain swiftly optimum topology solutions, the deep learning and
neural networks with a special segmentation scheme of digital images are combined with the
BESO (bi-directional evolutionary structural optimization) topology method in this study. The 
pre-trained digital images of 3200 optimum topologies construct the design domain for the main 
topology optimization. Additionally, a new post-processor is developed in order to reconstruct 
the relative locations among finite elements in the raw outputs generated by the neural network.
The proposed method has been demonstrated to be efficient in lowering the iterations with
several 2D and 3D optimization examples. The iteration counts can be reduced 63 % for a 2D 
example and by 72.5 % for a 3D one, compared to BESO results alone. 

 
1. Introduction   

Breakthrough ideas using GPU for general purpose computing have resulted in highly cost-
effective parallel computing power [1-3]. As the threshold for adopting deep learning has been 
lowered, the related studies have been conducted actively in various disciplines [4-9]. Many 
interesting applications of deep learning can be found in the area of topology optimization in 
recent years. The most time-consuming part of topology optimization is an iterative process that 
repeatedly executes finite element analyses to obtain solutions. Researches in the application 
of deep learning for topology optimization usually aim to reduce the number of iterations. 

Ulu et al. [10] created a set of images representing the optimal 2D topologies acquired from 
the general topology optimization method. The feed-forward neural network is trained using 
loading configurations as an input and corresponding optimal topologies as an output. The 
neural network is able to predict the optimal topology for a new loading configuration. After this, 
many studies adopt mainly the convolutional neural network (CNN) which is effective for ex-
tracting the prominent feature of images. Sosnovik and Oseledets [11] introduced a neural 
network having a form of the convolutional autoencoder that is especially devised for image 
segmentation tasks. The intermediate values of design variables and their gradients were rep-
resented in the format of digital images. Those images were then used as an input for the neu-
ral network. Banga et al. [12] took the similar image segmentation scheme and extended it to 
the 3D topology optimization. The neural network by Zhang et al. [13] utilized the displace-
ments and strains obtained from the first finite element analysis during topology optimization as 
an input. This approach gives a good generalization ability to the neural network. It is able to 
predict the optimum topology even for the boundaries that not included in the training dataset. 

In the density-based topology optimization, the number of design variables is equal to the 
number of the elements in the design domain. Therefore, it would take a long time for conver-
gence to an optimum solution, if the number of elements is too large. To solve this weakness, 
some methods based on a multi-resolution scheme were introduced. FEA and elements up-
date are performed on a low resolution FE model and then the optimum solution for a high 
resolution model is obtained by interpolating the results of the low-resolution procedure [14, 15].  
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Xue et al. [16] incorporated CNN into the process of the multi-
resolution topology optimization to reduce the time for the in-
terpolation procedure. 

Yu et al. [17] created both the low- and high-resolution 2D 
images of the optimum topologies obtained from traditional 
optimization. The low-resolution images of the optimum topolo-
gies are paired with the corresponding information such as 
forces, degree of freedom and mass fraction and then are used 
as a training set for a convolutional autoencoder. The genera-
tive adversarial network (GAN) interpolates the low-resolution 
optimal topology images predicted by the autoencoder to the 
high-resolution optimum topology images. Li et al. [18] adopted 
GANs for the topology optimization concerning thermal con-
duction. They used the GANs for both predicting a low-
resolution optimal solution and interpolating the low-resolution 
optimum to a high-resolution one. Oh et al. [19] integrated the 
topology optimization into a deep generative design framework. 
The proposed design framework could generate more various 
and higher quality novel wheel designs satisfying both aesthet-
ics and practical performances. 

In general, the deep learning can be a solution for topology 
optimization of complex structures. Doi et al. [20] adopted the 
deep learning for a multi-objective topology optimization prob-
lem. They took two kinds of approaches. One was to apply a 
neural network, trained with the results of genetic algorithm 
(GA) using a small population, for the actual optimization using 
a large population. The other was to apply a neural network, 
trained with the results of torque performance optimization, for 
the torque screening of another kind of optimization. These two 
approaches reduced the number of unnecessary FEA execu-
tions. Tan et al. [21] introduced the combined CNN and GAN 
for the inverse design of microstructural materials. The neural 
networks took the desired effective compliance tensors as an 
input and was able to generate porous microstructures corre-
sponding to the tensors. 

Preceding studies concerning the deep learning applications 
for topology optimization have basically approached from the 
perspective of an image processing based on the CNN. There-
fore, the input data of the neural network has the format of 
digital images. Digital images consist of pixels (or voxels in 3D) 
and channels that have the color information of pixels. Gener-
ally, the shape of each pixel is rectangular and voxels are cu-
boid. A good strategy to record the information of FE models 
according to the format of digital images is to match each pixel 
(or voxel) with a finite element at one-to-one. Most of previous 
studies used this one-to-one matching input data format. How-
ever, the one-to-one matching limits the application of various 
kinds of finite elements and complicated FE models. 

In order to obtain a rapidly converging optimal topology solu-
tion, a new method combining the deep learning with a spe-
cially designed segmentation scheme for digital images and 
BESO (bi-directional evolutionary structural optimization) has 
been developed in this study. Additionally, we devised a unique 
method that can convert various types of 3D finite elements 
(FE) including the hexahedron and complex FE models, which 

could not be dealt with in previous studies where the pixels and 
finite elements of the digital image were matched simply one-
on-one, into input/output data of neural networks (see Fig. 1). 
The details are described in Figs. 4-6 and Sec. 3.2 later in the 
text. 

Fig. 2 shows the flow chart of the deep learning-based topol-
ogy optimization used in this study. The neural network is 
added from the early stage of topology optimization and the 
neural network already trained with 3200 known optimum to-
pologies is loaded on the AI procedure. Along with some pro-
cedures related to the conversion of FE-model information to 
digital images, the neural network predicts the potential opti-
mum topology candidate that is provided as an initial domain in 
the subsequent topology optimization procedure. This new 
combined approach of deep learning and topology optimization 
is proven to be effective in reducing the iteration numbers in 
the optimization with several examples. 

 
2. Topology optimization 
2.1 Bi-directional evolutionary structural opti-

mization 

The algorithm of topology optimization in this study is based 
on the BESO method with a “soft-kill” material interpolation 
scheme. BESO is a gradient-based optimization method with 
convergent and mesh-independent algorithm [22]. The basic 
idea is to remove materials in a low stress region and add ma-
terials in a high stress region. The concept of the evolutionary 
structural optimization (ESO) method, the predecessor of the 
BESO method, is to remove gradually the inefficient elements 
in a specified order in the design domain [23]. However, once 
elements are removed in the ESO, the removed elements are 
never restored in the subsequent optimization process. As a 

 
 (a) (b) 

 

   
(c) 

 
Fig. 1. (a) Voxel and finite elements matched one-to-one in the previous 
studies; (b) an example for the capability to accommodate both (c) the 
different types of elements and complicated geometrical shapes of FE 
models; (c) the input format and voxel (or pixel in 2D) image for the en-
hanced application of the deep learning for topology optimization. 
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result, the important changes in the removed elements in the 
structural model cannot be reflected in the subsequent optimi-
zation process. Therefore, the solution by the ESO method 
cannot ensure an absolute optimum.  

The BESO method overcomes the deficiency in the ESO 
method by means of allowing elements to be removed and 
added simultaneously [24]. BESO method can be easily im-
plemented as a post-processor to commercial finite element 
analysis software and the resulting optimal design gives a clear 
topology contour without grey area. 

For the implementation of the BESO method, a Python code 
coupled with Nastran has been developed in this study. In the 
code, finite element analyses are executed by the Nastran. 
This was possible by adopting pyNastran, a Python library for 
handling both the input and output files of Nastran. 

 
2.2 Problem formulation 

The topology optimization problem here is stated as the 
compliance minimization of structures with a volume constraint. 
It can be described mathematically as follows [22, 25], 

 
1 1( )mini i e :
2

m z
2

T TC = =
x

X F U U KU   (1) 

minsubject to : }, 1  { 1,...,e ex Nx ex or== ∀ =X   (2) 
=F KU   (3) 

*)( e eV vx V= =∑
x

X    (4) 

 
where the compliance C is an objective function, X is the vector 
of relative elemental densities, xe is the eth design variable with 
a value of either 1 for presence or xmin (0.001 in this paper) for 
absence, N is the total number of elements, F and U are the 

global force vector and displacement vector, respectively, K is 
the global stiffness matrix, V is the total volume of the structure 
with ev  being the elemental volume, V* is the imposed value 
of the volume constraint. The constraint defined in Eq. (3) en-
sures the equilibrium of the structure.  

 
2.3 Filter scheme and sensitivity with BESO 

The BESO algorithm is used to solve the above optimization 
formulation. The gradient of the objective function C regarding 
to each element density is the sensitivity of each element and 
the density design variables are updated depending on the 
element sensitivity, ae, which can be calculated based on linear 
elasticity and the SIMP material model and expressed as [22, 
26], 
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where p is the penalty exponent [26], ue is the element dis-
placement vector and k0 is the element stiffness matrix of a 
survived element (i.e. xe = 1). In this equation, the element 
strain energy, 0

p T
e e ex u K u , is defined as Ee and can be directly 

calculated from finite element analysis during topology optimi-
zation. For solid-void designs, the element sensitivity is used to 
determine the presence or absence of elements constituting a 
structure during the element updating process. 

The filtering scheme for the element sensitivity shown in Ref. 
[25] is applied here to avoid numerical instabilities such as 
checkerboard patterns and mesh-dependency, as follows, 
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Fig. 2. A full outline of the AI-based topology optimization. The AI phase provides information on the initial design domain necessary for next topology optimi-
zation such as finite elements and boundary conditions represented in voxel images. 
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where m is the total number of nodes in a sub-domain; w(rei) is 
a weight factor described in Eq. (7); rei is the distance between 
the centers of elements e and i; rmin is a filter radius. The weight 
(μi) is independent of the sensitivity values and computed in 
advance. Since the BESO method using only ea  in Eq. (6) is 
difficult to converge, the averaged value of the sensitivity of the 
current and previous steps, as shown in Eq. (8), is used to 
secure a convergent solution. k in Eq. (8) denotes the current 
iteration number.  

The sensitivity (i.e., ea ) of solid and void elements is equal 
to the element strain energy and 0, respectively. Void elements 
are completely deleted from the design domain except where 
the removal causes the singularity problems in a global stiff-
ness matrix. The BESO method starts from the full design do-
main and iteratively reduces the design volume by switching 
elements to solid or void. The next target volume, Vk+1, is up-
dated iteratively using the current volume, Vk, and an evolu-
tionary ratio (er, 2 % here), as follows: 

 
1 (1 )k k

rV V e+ = ±   (9) 
 

when the element having a value greater than the reference 
sensitivity value is changed to void, and the element having a 
small value to soild. At the same time, when the target volume 
is achieved, the value is set as the reference sensitivity crite-
rion by a bisection method. 

 
3. Topology optimization with the deep 

learning 
3.1 Neural network architecture 

Artificial neural networks (ANNs) are a type of function con-

structed with layers of artificial neurons. In this study, the neural 
network, as described in Fig. 3, is a function that feeds the 
information on the initial design domain necessary for further 
topology optimization such as finite elements and boundary 
conditions represented in voxel images and then outputs the 
necessary images containing information of elements removal 
in the corresponding optimum topology.  

The neural network architecture as in Fig. 3 was constructed 
for this study, based on U-Net [28] and the similar concept [11] 
in which topology optimization problems are considered as an 
image segmentation task. The U-Net architecture consists of 
two paths. One path is to capture the context along with grad-
ual contraction of image size. The other is a symmetric ex-
panding path that extract segmentation masks from the outputs 
of the contracting path. By concatenating each contracting 
path’s convolutional layer with corresponding level of expand-
ing path’s convolutional layer, the U-Net architecture is able to 
execute more precise localization than any other neural net-
work architectures in image segmentation.  

In Fig. 3, the size of images and the number of channels are 
described on the top of each level of layers. Checkered pattern 
bars represent the convolutional layer having a 3×3×3 filter size 
with the ReLU activation function. The right end bar without the 
pattern is an output convolutional layer possessing a 1×1×1 
filter size with the sigmoid activation function. 

 
3.2 Input/output generation scheme 

The neural network here takes necessary input and output 
data in the form of images. In this study, we devised a unique 
method that can convert various types of finite elements (FE) 
and complex FE shapes, which could not be dealt with in pre-
vious studies where the pixels and finite elements of the digital 
image were matched one-on-one, into input/output data of 
neural networks. The information of the FE model is assigned 
to each channel where RGB color information of digital images 
is stored originally. Digital images consist of 2D pixels (or 3D 

 
 
Fig. 3. The neural network used for this study. 
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voxels) and channels that have some information of pixels. In 
this study, FE-models information is stored into the channels of 
input image data. Specific information stored in the input data 
includes the number of finite elements, boundary conditions, 
and the force components in x, y and z directions in the corre-
sponding voxel. 

Although this study is focused on 3D, just for easy explana-
tion of the new concept used in this study. Fig. 4 illustrates an 
example of input data that are represented as 2D images. First 
of all, a unit space in a square is created with the side length 
equal to the longest of x or y coordinate of the FE model and the 
FE-model is placed in the middle of the space. Secondly, the 
space is divided into 2×2 pixels. In the first channel of the input 
data, the number of the finite elements belonging to each pixel 
are stored. Whether a pixel includes a finite element or not de-
pends on the location of the centroid of each element. In Fig. 4, 
the number of the elements in each pixel is divided by the larg-
est number in the channel one. This is like a normalization pro-
cedure which is necessary to stabilize and make the training of 
the neural network faster. In the second channel, the number of 
fixed DOFs in each pixel is stored and the normalization is also 
applied. In the third and fourth channels, the magnitudes of x- 
and y-directional forces in each pixel are stored. The normaliza-
tion for these channels is applied but in different way. In that 
case, the divisor is the largest absolute value in the third and 
fourth channels. Note that in the actual practice of the study with 
3D cases, a space is divided into 32×32×32 voxels and the 
input image has one additional channel for storing the informa-
tion of z-directional force component. 

For simplicity, let’s consider the case that a target volume 
fraction is 0.5; Poisson’s ratio is 0.3; a filter radius is 1/20 of the 

longest of x, y, or z coordinate length of the design domain. 
There are already some previous studies considering the varia-
tion of these scalar factors. A simple way to store the scalar 
factors into an input image is adding more channels [13, 18]. 
However, filling up a channel with the same scalar value for a 
factor having no spatial information is computationally inefficient. 
More efficient way is to input a scalar value directly into the layer 
of latent variables [17]. Fig. 5 shows an example of output data 
represented in 2D for convenience. The procedure that locates 
the FE model in an image space is the same as that of input 
data. The output image has only one channel. In the channel, 
there is each pixel holds information about the number of ele-
ments removed in the corresponding optimum topology. After 
normalization, each pixel value in the channel can be inter-
preted as the probability of element removal in the pixel.  

It must be considered for the generation of output images that 

 
 
Fig. 4. An example of input data for the neural network is illustrated for 2D image data that has 2×2 pixels with four channels. The arrows and triangles on the 
FE-model represent force vectors and fixed DOFs, respectively. 

 
Fig. 5. An example of output data for the neural network for 2D image data 
that has 2×2 pixels with one channel. The removed FEs are represented in 
black. 
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not only the creation but also the reflection of an image onto the 
design domain. Fig. 6 shows an example of the reflection pro-
cedure. Fig. 6(a) shows that a value of pixel is assigned to each 
FE. Some FEs are removed from the design domain in the or-
der of higher assigned values closer to a preset target volume 
fraction and the results could be somewhat discontinuous.  

For better results, a post-processing procedure is added af-
ter assigning pixel values to FEs. The procedure is inspired 
from the mesh-independent filtering of the density-based topol-

ogy optimization [25, 27]. A filtering scheme depicted in Eqs. 
(6)-(8) is applied. Fig. 6(b) shows that FEs in the design do-
main have more continuously varying pixel values after post-
processing and the isolated FEs that are removable can be 
relocated. Fig. 7 shows that filtering enhances the resolution of 
the reflection result. 

 
3.3 Training dataset 

Three different types of the design domain are studied for 
the training dataset as shown in Fig. 8. There are 1700 data-
sets for a 2D cantilevered square plate with 100×100×1 shell 
elements, 900 datasets for a 3D cantilevered beam with 
40×25×25 hexahedral elements, and 600 datasets for a 3D 
cantilevered one with 60×25×25 hexahedral elements. For 
each training data related with the design domain of the 2D 
square plate, a concentrated force is applied in any direction on 
the top edge. For each cantilever data in the two types of 3D 
design domains, a randomly-oriented concentrated force is 
applied on any surface. The BESO-based topology optimiza-
tion is conducted for these design domains with fixed boundary 
conditions. The total number of samples in the obtained train-
ing dataset is 3200 and only 320 (i.e., 10 %) samples are util-
ized as a validation dataset. 

In order to increase the diversity of the acquired training 
dataset, two kinds of data augmentations are applied. One is 
the random rotation augmentation, as shown in Fig. 9. The 
images in the training dataset are randomly rotated about x, y 
or z axis through 0, 90, 180 or 270 degrees. The other is the 
random flip augmentation. Images can be randomly flipped 

 

 
 
Fig. 6. Example of the procedure that reflects the output image onto the 
design domain. The shade gradients represent the value assigned to each 
FE: (a) FEs have assigned values of pixel in their specific region without 
filtering; (b) assigned values are filtered. The dark black FEs would be 
removed from the design domain. 

 

 
 
Fig. 7. Comparison of design changes obtained with and without filtering. 
The post-processing for the raw output values enhances the resolution of 
the reflection result. 

 

 

 
Fig. 8. Three types of cantilevered FE-models used for generating a train-
ing dataset for validation study subjected to a randomly oriented concen-
trated force. 

 

 
 (a) (b) (c)  (d) 
 
Fig. 9. Examples of random rotation augmentation. Each image in the training dataset randomly rotates for x, y or z axis while the neural network is trained: 
(a) initial position; (b) 90o rotation about the y-axis from (a); (c) 180° rotation about the z-axis from (b); (d) 90o rotation about the x-axis from (c). 
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through about x, y, or z axis. 
It is emphasized in Fig. 10 that the loading should be rotated 

together with the image pixels. Rotating only pixels is insuffi-
cient to realize the rotation of the input image. Because the 
spin of forces is also required along with pixels, the additional 
rotation of forces is necessary separately.  

In order to train the neural network, the ADAM optimizer is 
applied to minimize the loss that is a binary cross-entropy. The 
batch size was 4 and the initial learning rate was 0.0002. The 
learning rate became half at 1280 epoch and 1/4 at 1920 ep-
och. The training has finished after 2048 epoch. This hyper-
parameter setting was chosen because it showed the highest 
voxel-wise prediction accuracy for both training and validation 
datasets among some candidate settings. Fig. 11 shows the 
history of training and validation accuracy in the given setting. 
At the final epoch, the training accuracy is 0.9925 and the vali-
dation accuracy is 0.9902. The training may be thought to be 
accurate because the gap between two accuracies is small in 
Fig. 11.  

In this suggested neural network, predictions are performed 
for every voxel value separately. It means total number of pre-
dictions executed is 32×32×32. The predictions are usually 
considered to be correct if the predicted voxel values are within 
an acceptable limit, approximately ±6×10-6 %, from the real 
voxel values. As an evaluation metric for the training of neural 
networks, the accuracy is defined as follow, 

 
   

   
Number of correct predictionsAccuracy
Total number of predictions

=   (10) 

4. Results and discussions 
To validate the proposed method, two types of structural ex-

amples having different finite elements and shapes are dem-
onstrated. One is two 2D square plates modeled with 100×100 
shall elements. The other is a 3D cantilever modeled with 
40×20×20 hexahedral elements without using the prepared 
training dataset. The convergence criteria of the BESO method 
[22] is expressed in Eq. (11) and the same parameters are 
used in the both 2D and 3D structures. 
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where k is the current iteration number, τ is an allowable con-
vergence error, and N is an integer. In this study, τ is 10-5 and 
N is 5. Note that τ used here is relatively smaller than usual 10-
3 to 10-4. Even if a small τ requires more iterations to converge, 
τ = 10-5 has been chosen in this study in order to ensure that 
every automatically created samples of datasets converge to 
optimum points. 

 
4.1 2D square plate 

In the case of the 2D cantilevered plate, many samples of 
the training dataset can be acquired without difficulty due to its 
simple geometry and consequently more accurate results were 
obtained. The convergence performance of the BESO-based 
topology optimization only is compared to that of the combined 
deep learning and BESO optimization for the 2D square plate 
with two different loading points.  

The initial design domain of the cantilevered square plate 
consists of 100×100×1 finite shell elements. All DOFs at one 
edge are fixed and a concentrated force is applied to the center 
of the free end, as shown in Fig. 12(a). A target volume fraction 
is set to be 0.5 and a filter radius is 5. When only BESO topol-
ogy optimization was performed, the convergence reached 
after 68 iterations, as shown in Fig. 12(c). On the other hand, 
when topology optimization was started with initial design do-
main (Fig. 13(a)) predicted first by the neural network, the op-
timization converged to the solution after 28 iterations (see Fig. 
13(c)). The neural network predicts all details clearly, as shown 
in Fig. 13(a). In terms of the number of iterations, which is pro-
portional to CPU run time, it is reduced by 59 % compared to 
when only BESO was used. The objective function, which is 
structural strain energy, converges to 0.003533 in this case, 
when optimum design is reached. 

As the second example, this time the same concentrated 
vertical force shown in Fig. 12(a) is applied at the bottom cor-
ner of the cantilever plate, as in Fig. 14(a). The same target 
volume fraction of 0.5 and filter radius of 5 are also set. When 
topology optimization with BESO only is performed in a normal 
way, it requires 67 iterations to reach convergence (see Fig. 

 (a) (b) (c) 
 
Fig. 10. An example of 90° rotation of an input image in 2D. When the input 
image rotates or flips, force as well as pixel move together and are re-
corded in the pixel channels. 

 

 
 
Fig. 11. Graph shows the accuracy change in voxel-wise prediction as 
training progresses. 
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14). On the other hand, when it is started with the initial design 
domain provided by the neural network, it takes only 25 itera-
tions to reach convergence (see Fig. 15). The iteration is re-
duced by 63% compared to when only BESO was used. The 
objective function converges to 0.00541 in this case, when 
optimum design is reached. It can be seen that some errors in 
the learning process, shown in Fig. 15(a), have been com-
pletely corrected. 

As the third example, the MBB (Messerschmitt-Bölkow-
Blohm) beam problem with 3-1 aspect ratio is solved, as in Fig. 
16(a). The same target volume fraction of 0.5 and filter radius 
of 5 are set. The MBB beam consists of 300×100×1 shell ele-
ments. When topology optimization with BESO only is per-
formed in a normal way, it requires 71 iterations to reach con-
vergence. When it is started with the initial design domain pro-
vided by the neural network, as in Fig. 16(b), it takes only 20 

 
 
Fig. 12. The optimum solution of the normal BESO-based topology optimization for a 2D cantilevered square plate. The iteration count was 68 for the conver-
gence: (a) an initial design domain with boundary and load conditions; (b) a final optimum topology; (c) plots for convergence history. 

 

 
 
Fig. 13. The optimum solution of the combined deep learning and BESO-based topology optimization for a 2D cantilevered square plate. The iteration count 
was 28 for the convergence: (a) an initial design domain obtained from the neural network predictions; (b) a final optimum topology; (c) plots for convergence 
history. 

 

 
 
Fig. 14. Conventional BESO-based topology optimization results of the 2D square plate. It takes 67 iterations for the convergence: (a) an initial design domain 
and boundary conditions; (b) a final optimum topology; (c) plots for convergence history. 
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iterations to reach convergence (see Figs. 16(c) and (d)). 

 
4.2 3D cantilever 

The 3D cantilever beam, which consists of 40×20×20 solid 
finite elements, is illustrated here. This case with 40×20×20 
elements is not included in the training dataset. A vertical force 
is applied to the centroid of the free end. A target volume frac-
tion is set to be 0.5 and a filter radius is 4. Note that this filter 
radius is twice larger than the filter radius of samples in training 
dataset. Usually, a larger filter radius results in the optimum 
topology in a simple structure. When topology optimization was 
performed with only BESO, it requires 98 iterations to reach 

convergence (see Fig. 17). On the other hand, when it was 
started with the initial design domain provided by deep learning 
even with excluded beam shape data, it takes only 27 itera-
tions to reach convergence (see Fig. 18). The iteration is re-
duced by 72.5 % compared to when only BESO was used. As 
in all other studies, the time consumed by the deep learning 
process is not considered in the count. With the advancement 
of neural network algorithms, the time for learning will be sig-
nificantly reduced. 

Since the current neural network can still give many incorrect 
topology solutions during the learning process, it indicates the 
need for the subsequent optimization presented in this study. 
In the proposed method, if the results from the learning proc-
ess that can be independently performed are prepared in ad-
vance, topology optimization can be achieved quickly even if 
they are not in the dataset. The results of the examples show 
that the present method which combines the topology optimi-
zation and neural networks can predict the optimum solutions 
well even for new untrained cases in some range without loss 
of generality. 

This study presents a fundamental and common deep learn-
ing-based topology optimization methodology. 3200 topologies 
learned for this paper are included in the training dataset. 
However, if trained for other 3D structures with different load 

 
Fig. 15. AI-assisted BESO-based topology optimization results of the same 
2D square plate. It takes 25 iterations for the convergence: (a) an initial 
design domain obtained from the neural network predictions; (b) a final 
optimum topology; (c) plots for convergence history. 

 

 
(a) 

 

 (b)  (c) 
 

 
(d) 

 
Fig. 16. AI-assisted BESO-based topology optimization results of the MBB 
beam: (a) it takes 20 iterations for the convergence; (b) an initial design 
domain obtained from the neural network predictions; (c) a final optimum 
topology; (d) plots for convergence history. 
 

 
Fig. 17. Conventional BESO-based topology optimization results of a 3D 
cantilever. It takes 98 iterations for the convergence: (a) an initial design 
domain with loading; (b) a final optimum topology; (c) a convergence his-
tory. 

 

 
Fig. 18. AI accelerated BESO-based topology optimization results of a 3D 
cantilever. It takes 27 iterations for the convergence: (a) an initial design 
domain obtained from neural network predictions; (b) a final optimum to-
pology; (c) a convergence history. 
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and boundary conditions such as simply supported beams, 
torsional problems, etc., this method is applicable and can 
predict the correct topologies due to its 3D optimization ability 
with 3D filtering and FE elements. 

 
5. Conclusions 

In an effort to reduce the number of iterations in the topology 
optimization, the deep learning is combined with the BESO 
method. By dividing the design domain into voxels based on 
the longest length among the lengths in each axial direction of 
the design model and storing the information of the FE model 
in an averaged value, it is possible to convert even a complex 
shape model into an input for deep learning. Besides, a new 
post-processing technique has been also developed in order to 
restore the information on the relative locations among finite 
elements, that may be lost in large design domains with many 
finite elements, in the raw outputs generated by the neural 
network, because the neural network applied here uses a fixed 
40×25×25 resolution voxel image as input and output. Since 
the 2D and 3D examples show that satisfactory optimal topolo-
gies can be obtained from as few as 3200 topologies in the 
training dataset, the novel combined approach has proven 
effective in reducing the number of iterations by 72.5 % in the 
3D example, compared to only BESO result. 
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